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Population size estimates are key parameters used in assessments to evaluate and
determine a species’ conservation status. Typically, sea turtle population estimates
are made from nesting beach surveys which capture only hatchling and adult female
life stages and can display trends opposite of the full population. As such, in-water
studies are critical to improve our understanding of sea turtle population dynamics
as they can target a broader range of life stages – though they are more logistically
and financially challenging to execute compared to beach-based surveys. Stereo-video
camera systems (SVCS) hold promise for improving in-water assessments by removing
the need to physically capture individuals and instead extract 3D measurements from
video footage, thereby simplifying monitoring logistics and improving safety for the
animals and surveyors. To demonstrate this potential, snorkel surveys were conducted
at artificial habitats in the northeastern Gulf of Mexico (neGOM) to collect size and photo-
identification data on sea turtles in situ using a SVCS. Over 29.86 survey hours, 35
sea turtles were observed across three species (Caretta caretta, Chelonia mydas, and
Lepidochelys kempii) and all neritic life stages (juvenile, sub-adult, and adult) utilizing
different habitats, including artificial reefs, jetties, and fishing piers. Greens straight
carapace length ranged from 28.55 to 66.96 cm (n = 23, mean 43.07 cm ± 11.26 cm
standard deviation; SD) and loggerheads ranged from 59.71 to 91.77 cm (n = 10, mean
74.50 cm ± 11.35 cm SD), and Kemp’s ridleys ranged from 42.23 cm to 44.98 cm
(mean 43.61 cm ± 1.94 cm SD). Using a linear mixed model, we found that species and
habitat type were the most important predictors of sea turtle body length distribution.
Overall, this case study demonstrates the potential of SVCS surveys to enhance our
understanding of the population structure of sea turtle species within the neGOM
and elsewhere.

Keywords: green sea turtle, loggerhead sea turtle, Kemp’s ridley sea turtle, abundance, size distribution,
photogrammetry, stereo-video camera system
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INTRODUCTION

Population assessments are crucial to determine population
trends and status (i.e., trends in size class distribution; Crouse
et al., 1987; Summers et al., 2017). For a population assessment
to be considered robust it requires demographic data on all life
stages, survival rates, habitat distribution, species-specific size
data, and movement patterns (Heppell et al., 2003). Typically,
only abundance data are used to assess population size and to
estimate extinction risk for sea turtles and other endangered
species (Schroeder and Murphy, 1999; Caswell, 2002; Morris
and Doak, 2002; National Research Council (U.S.) et al., 2010).
While abundance-centered assessments are essential, these data
alone are insufficient to predict sea turtle population trends
(Heppell et al., 2003). Abundance-based data alone can be
misleading and lead to potentially erroneous conclusions about
the direction and severity of population decline or recovery,
especially if the population index is based on only one life
stage, e.g., reproductive females (Esteban et al., 2017; Piacenza
et al., 2019; Casale and Ceriani, 2020; Ceriani et al., 2021).
Incorporating demographic data, specifically morphometric data,
would lead to more effective modeling of populations and allow
for researchers to estimate age at maturity, growth rates, and
survival rates (Heppell et al., 2003; Casale et al., 2011). These vital
rates allow researchers and conservation management agencies
to determine if a population is declining or recovering and
which, if any, conservation management actions are needed to
aid in recovery (Bjorndal et al., 2011; Redfoot and Ehrhart, 2013).
Collecting morphometric data in addition to abundance data can
also be used to predict recruitment to reproductive life stages,
particularly when populations are unstable, and the population
structure is transient (O’Farrell and Botsford, 2006; White et al.,
2013; Froese et al., 2018; Rudd and Thorson, 2018). Moreover,
size-frequency distributions which encompass juvenile sizes can
be powerful tools to understand population recovery that may
not yet be reflected in adults, who are more commonly monitored
(Hilborn and Walters, 2001; Ault et al., 2008; Heppell et al., 2012).

Sea turtle populations in general are commonly monitored
by observing the number of females nesting or numbers of
nests laid [National Research Council (U.S.) et al., 2010]. While
nesting surveys provide readily accessible data for population
assessments, sea turtles only spend 1% of their life on nesting
beaches (as embryos to hatchlings and as nesters), yet 90% of
sea turtle literature is derived from these surveys (Bjorndal,
1999; Wildermann et al., 2018). Studying a single life stage,
such as nesting females, has been equated to studying human
maternity wards with the assumption that the results represent
the entire species (Bjorndal et al., 2011). In addition, a stage-based
matrix model of loggerhead sea turtles (Caretta caretta) suggests
juvenile life stages of sea turtles can have the largest impact on
population growth and recovery (Crouse et al., 1987). However,
due to their highly migratory behavior and difficulty to capture,
studying in-water life stages presents a unique set of challenges
(Wildermann et al., 2018).

Traditional methods for studying turtles in-water are to
capture them via rodeo or tangle netting (Limpus and Walter,
1980; Ehrhart and Ogren, 1999; Fuentes et al., 2006). Both

methods are time- and labor-intensive, which could result in
additional stress on the animal, the turtle evading capture, and
can leave researchers with small sample sizes, especially on short-
term projects. However, observing turtles in situ using a stereo-
video camera system (SVCS) can allow researchers to expand
efforts to study different demographic classes while eliminating
difficulty related to capturing turtles, thus improve the accuracy
of population status estimates (Goetze et al., 2015; Araujo et al.,
2016, 2019; Logan et al., 2017; Boldt et al., 2018). The SVCS is a
non-invasive, remote method that allows for 3D measurements
to be extracted from video footage (Harvey et al., 2002). The
SVCS requires no handling of sea turtles and is highly accurate
when compared to traditional hand measurements. Mean percent
bias of the SVCS across three species of sea turtles ranged from
−0.61% (±0.11 SE) to −4.46 % (±0.31 SE; Siegfried et al., 2021).
Body size data is incorporated into length-based population
assessment models, such as length-frequency analysis, which
can be used to estimate growth rates, size at maturity, survival
rates, and abundance of sea turtle populations (Casale et al.,
2011). Length-frequency analysis requires relatively high sample
numbers of turtles (Casale et al., 2011). Fortunately, since SVCSs
do not require time-intensive capture methods, it is possible to
achieve a larger sample size than methods that require capture.

The nearshore estuarine habitats and artificial reefs of the
northeastern Gulf of Mexico (neGoM) have been recognized
as geographic gaps in in-water sea turtle research in Florida
(Eaton et al., 2008). For sea turtle species in these coastal waters,
fewer studies have been conducted in situ to assess population
structure and size-class distributions for loggerhead (C. caretta),
green (C. mydas), and Kemp’s ridley (L. kempii) sea turtles
known to use this region (but see: Avens et al., 2012; Hart
et al., 2012, 2013, 2014, 2020; Metz and Landry, 2013; Lamont
et al., 2015; Lamont and Iverson, 2018; Wildermann et al., 2019;
Broadbent et al., 2020; Chabot et al., 2021; Lamont and Johnson,
2021). These existing studies have either focused on satellite
telemetry studies, or have used in-water capture methods for
other regions in the northern GOM, i.e., the lower Texas Coast,
St. Joseph’s Bay, Florida, or off Crystal River, Florida, and only one
included a study site in northwestern Florida. To demonstrate
how SVCS surveys could be used to fill these data gaps and
improve the accuracy and completeness of sea turtle population
assessments, this study sought to (1) record sea turtle population
size distributions, and (2) relate this distribution to artificial
habitat preferences in the western Florida Panhandle as a case
study for the application of SVCS.

MATERIALS AND METHODS

Study Sites
The neGOM is a dynamic coastal environment composed mostly
of soft, sandy bottom interspersed with inlets of estuarine seagrass
beds and sparse natural hard-bottom or reefs (Locker et al.,
2000) used by loggerhead, green, and Kemp’s ridley sea turtles
(Lamont and Iverson, 2018; Wildermann et al., 2019). However,
since the Deepwater Horizon oil spill in 2010, local and state
authorities began adding additional artificial reef habitats to aid
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FIGURE 1 | Northeastern Gulf of Mexico survey sites from Escambia County to South Walton County, Florida.

in fish recovery (Nelson, 2017). As of 2019, there have been 1,065
artificial reefs installed in the region from the Alabama border
to Mexico Beach, Florida to attract marine wildlife and sustain
ecotourism (Barnette, 2017; FWC Database, 2019).

Shore-based dive surveys on local artificial reefs, piers, and
jetties from Santa Rosa to South Walton Counties of Florida with
a SVCS were conducted weekly, weather permitting, from May
2019 to August 2020 with locations selected on an opportunistic
rotating basis (Figure 1). We conducted a total of 58 dive
surveys (29.86 total observation hours, surveys typically took
∼ 30 min to complete) at 14 sites from the Florida-Alabama
border to just west of Panama City, FL, United States (Table 1
and Figure 1). Artificial habitats included artificial reefs, fishing
piers, and rocky jetties. We attempted to survey each site an equal
number of times; however, certain conditions, such as sea state,
water visibility, or reef accessibility influenced the number of dive
surveys at each site.

Stereo-Video Camera System Surveys
The SVCS was used to conduct video surveys throughout the
neGOM. The SVCS was comprised of two GoPro R© cameras
attached at a fixed distance apart (0.8 m) that were inwardly

converged at an angle of∼4◦. The SVCS was calibrated following
the procedure described by Harvey and Shortis (1998) at the
University of West Florida Aquatic center in <1 m depth of
water using the SeaGIS CAL software v.3.23 (SeaGIS, 2008a
Pty., Ltd., Bacchus Marsh, VIC, Australia). In previous work,
the SVCS measurements were validated by comparing hand-
captured measurements to stereo measurements and percent
error was between −0.61% (±0.11 SE) and −4.46% (±0.31 SE)
across three sea turtle species (Siegfried et al., 2021).

Opportunistic searches for sea turtles were conducted via
snorkel, covering the entire artificial reef site while visually
inspecting around and under each reef module at least
once per survey. Surveys at all reefs were conducted at
equivalent times of the day, typically between 10 am and
3 pm. The survey methodology was modified slightly for
the fishing piers and jetties, where we swam linearly along
the center of the pier pilings or along the edge of the
jetty, rather than systematically swimming around the reef
pilings. One researcher swam with the SVCS while the other
researcher carried a secondary GoPro R© camera to assist in
obtaining facial identification photos. At each field site, water
temperature, maximum depth, visibility, and weather conditions
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TABLE 1 | Relative filming catch per unit effort (CPUE) of all species of sea turtles
(n) per survey hour among locations during snorkel surveys. CPUE calculation
includes Kemp’s ridleys.

Site location Number
of dives

Survey hours Total
turtles

CPUE

Miramar Beach 4 1.91 0 0.00

Access Way 4 4 1.6 0 0.00

Topsail Hill 3 1.63 0 0.00

Beasley Park 7 2.97 2 0.67

Navarre Beach 12 5.85 6 1.03

Park East 8 4.98 6 1.20

Inlet Beach 4 1.56 2 1.28

Henderson Beach 2 0.75 1 1.33

Gill Crest 1 0.72 1 1.39

Okaloosa Pier 3 2.02 3 1.49

Crab Trap 2 1.15 2 1.74

Grayton Beach 3 2.08 4 1.92

Navarre Pier 2 0.88 2 2.27

Destin Jetties 3 1.76 6 3.41

TOTAL 29.86 35 1.17

FIGURE 2 | Size-frequency distribution of sea turtle species across our study
sites in the northeastern Gulf of Mexico.

were recorded. We also noted if flipper tags were apparent,
however, we usually could not read the tag identification codes,
due to distance of turtle or bioaccumulation on tags. To be
included in the data set, a survey was considered successful
when the entire artificial reef assemblage was inspected and
visibility was ≥2 m to allow for adequate detection of sea
turtles. Visibility was visually estimated based on the divers’
experience. If these conditions were not met, the survey was
not considered part of the sample set and was not included
in the analysis.

Video footage was analyzed using SeaGIS EventMeasure
software, v.5.22 (SeaGIS, 2008b Pty., Ltd., Bacchus Marsh, VIC,
Australia) to record straight carapace length (SCL; cm). The
measurement points for SCL were selected at the nuchal scute and
the tip of one of the supracaudal scutes (Bolten, 1999) when both

were clearly visible in the same frame. To reduce measurement
error, the average of ten SCL measurements from separate video
frames was calculated for each turtle (Harvey et al., 2001).

Catch per unit effort (CPUE) was calculated as the
number of turtles filmed (i.e., “caught”) per dive time:

CPUE =
Nt

t

Where Nt is the number of turtles filmed and t is the time (in
hours) at a given location (Table 1). When applicable, photo-
identification using the I3S software with the random pattern
search was used to check for re-sighting events (Calmanovici
et al., 2018). I3S has a high success rate for positively identifying
resighted individuals; for free-swimming turtles I3S has an
85% success rate (Calmanovici et al., 2018). Additionally, all
matches identified by I3S were visually inspected to confirm
potential match. To avoid pseudoreplication, all resighted
turtles were treated as an individual average measurement
as resightings happened <1 year apart and no substantial
growth was observed.

Statistical Analysis
To examine factors that may be influencing size distribution,
we evaluated individual body size (i.e., SCL) as a function of
water temperature, species, and habitat type in a linear mixed
effects model (LMM). Survey site was used as a repeated effect
to account for spatial autocorrelation as we made multiple visits
to each site. We ran model diagnostic tests to evaluate which
model type was appropriate for the data and model residuals were
assessed for homoscedasticity and normality. Visual inspection
of the quantile-quantile plot and fitted values vs. residuals plot
conformed to the model assumptions. Therefore, we evaluated
factors influencing body size using LMM using R package lme4
(Bates et al., 2015).

We used the information-theoretic approach for model
selection based on Akaike Information Criterion correction
(AICc) for small sample sizes (Burnham and Anderson, 2002;
Johnson and Omland, 2004) to identify explanatory variables
that influence the size distribution using the dredge function in
the R package MuMin (Barton, 2020). In the dredge function,
we limited the number of allowed explanatory variables to 2
due to our small sample size. Models with 1AICc < 2 from
the top-ranked model were retained in the confidence model
set. Lastly, we examined the 95% confidence intervals of all
explanatory parameters to identify uninformative parameters,
i.e., parameters that had confidence intervals crossing zero
(Burnham and Anderson, 2002; Arnold, 2010; Leroux, 2019). All
candidate models were tested against our global model:

SCL = β0 + β1 × Species+ β2 ×Habitat Type+ β3×

Water Temperature (
◦

C)+ εi,j,

Where SCL is the predicted mean body length at site i, β0
is the intercept, and εi ∼ N(0, σ2) of site i. All analyses were
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TABLE 2 | Straight carapace length ranges, with mean ± SD, of each species at each habitat type.

Habitat type N Range Mean ± SD

Artificial Reef

Green 15 33.49–66.96 cm 50.68 ± 8.38 cm

Loggerhead 7 54.86–91.77 cm 73.44 ± 13.06 cm

Kemp’s ridley 2 42.23–44.98 cm 43.61 ± 1.94 cm

Jetties

Green 6 30.76–34.57 cm 31.81 ± 1.51 cm

Piers

Green 2 28.53–52.02 cm 40.27 ± 16.61 cm

Loggerhead 3 69.20–81.70 cm 77.04 ± 6.83 cm

Kemp’s ridley turtle sightings are included here for reference but were not included in the statistical analyses due to their small sample size.

performed in R v.3.5.2 (R Development Core Team, 2021) and
R Studio v.1.0.153 (RStudio Team, 2021 Inc.).

RESULTS

Throughout our study, 35 sea turtles were recorded, but only
33 sea turtles were measured using the SVCS. CPUE among
the different site locations varied considerably (Table 1). Destin
Jetties had the highest CPUE with 3.41 turtles/h, while three
sites (Dolphin Reef, Access Way 4, and Topsail Hill) had zero
observed turtles despite over 5 h of surveying, combined. Overall,
the average filming frequency across all dive surveys were 1.17
turtles/h. Three turtles were resighted at the same artificial reefs.
Two individuals were resighted once, while the third individual
was resighted three times.

We observed body lengths of green turtles (n = 23) ranging
from 28.55 to 66.96 cm (mean 43.07 cm ± 11.26 cm standard
deviation; SD) and loggerhead turtles (n = 10) ranging from 59.71
to 91.77 cm (mean 74.50 cm ± 11.35 cm SD) across all sites and
locations (Figure 2). Green turtles were primarily juveniles, with
only one subadult (defined as 65 < SCL < 90 cm; Bresette et al.,
2010) observed (Table 2). Of the loggerhead turtles observed,
26% were classified as adults (SCL > 82 cm) and 74% were
subadults (SCL < 82 cm; Márquez, 1990), and no juveniles were
filmed. It should be noted that recent research indicates that the
size at maturity cut-off for adult loggerhead and green turtles
may be lower than previously thought (Phillips et al., 2021).
However, we decided to use a more broadly accepted cutoffs
for these species as this study was just recently published and
was based on data from one nesting beach, albeit with very
high numbers of nesters. In the future, it may be worthwhile
to use these lower cut-offs for size-at-maturity, as well as to
consider regionally specific cut-offs. One adult male loggerhead
turtle was confirmed based on tail length. Kemp’s ridley turtles
were observed as well (Figures 3A-D), but because their sample
size was small (n = 2), they were excluded from the statistical
analysis, and their size ranged from 42.23 cm to 44.98 cm (mean
43.61 cm± 1.94 cm SD).

When evaluating the effect of water temperature, habitat, and
species on the size distribution, the model confidence set included
one top ranked model (Table 3). In the top ranked model, habitat

type and species best predicted SCL of sea turtles in the neGOM.
Upon evaluating the explanatory variables in the confidence set,
only one variable’s confidence intervals crossed zero: the fishing
pier habitat type. Overall, the rock jetties supported the smallest
green turtles, with the fishing pier and artificial habitat supporting
a wider range size of this species (Figure 4). The artificial reefs
supported a wider range of loggerhead turtles, subadult to adult,
while we observed only sub-adult loggerhead turtles at the fishing
piers (Figure 4).

DISCUSSION

The SVCS successfully collected length-based data on sea turtle
populations at nearshore artificial habitats. Research on artificial
reefs in Florida’s nearshore coastal waters is generally lacking
due to the difficulty in capturing and accessing the turtles on
these reefs with traditional research methods. However, the use
of SVCS provided a snapshot of the local sea turtle populations in
the neGOM, with minimal cost and without the need for direct
capture methods. The SVCS allowed us to remotely measure
SCL from each turtle encounter, separate each animal into the
appropriate size class, and then examine the size class distribution
among different habitat types.

Our LMM analysis indicated that habitat type and species
greatly influenced size distribution of sea turtles throughout
the neGOM. In our study, all green turtles except one were
considered juveniles (SCL < 65 cm), and were observed at
almost all sites, except Beasley Park and Okaloosa fishing
pier. A reasonably high density of juvenile green turtles may
suggest that the area is serving as an important foraging
and recruitment area for this species (León and Diez, 1999).
Once green turtles reach SCL ≥ 35 cm, they undergo an
ontogenetic habitat shift from the open ocean to the nearshore
reefs (Summers et al., 2017). Often, these smaller juvenile green
turtles can be found at rock jetties as they transition from
open ocean to nearshore foraging habitats (Figure 3D; Coyne,
1994; Metz and Landry, 2013). Rock jetties serve as resting
grounds, providing juvenile green turtles shelter and adequate
food, primarily algae, during this transition (Coyne, 1994; Metz
and Landry, 2013). In our study, the Destin Jetties supported the
smallest size range of green turtles (range 30.76 cm–34.57 cm;
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FIGURE 3 | All species of sea turtles using artificial habitats for resting and protection in the northeastern Gulf of Mexico. (A) Kemp’s ridley (Lepidochelys kempii),
(B) Loggerhead (Caretta caretta), (C) green (Chelonia mydas), observed sitting on top of reef module, and (D) two juvenile green turtles observed resting and
swimming together at the Destin East Pass Jetties.

TABLE 3 | Model confidence set (1AICc < 2) for LMM analysis of body length and environmental correlates.

Model terms Model support

Habitat Species Temperature df AICc 1AICc Weight

Model 1 + + – 6 234.68 0 1

+, variable included in the model; –, explanatory variables not included in the model; df, degrees of freedom; AICc, Akaike’s Information Criterion corrected for small
sample size; 1AICc, difference in AICc from the top ranked model and model in consideration.

mean 31.81± 1.51 cm). The observed size distribution may be
a result of size-specific habitat requirements and predation risk
(Bresette et al., 2010).

Loggerhead turtles observed in the study area were sub-adults
and adults, with no observations of juveniles. Loggerhead turtles
are highly migratory and travel between foraging grounds and
breeding grounds (Hart et al., 2014) and may be attracted to
fish and encrusting invertebrates, such as sponges and cnidarians,
present at the artificial reefs (Mendonça et al., 1982). Loggerhead
turtles may use the artificial reefs as resting grounds while
migrating into the neGOM for breeding and nesting. Notably,
most of the loggerhead turtles observed coincided with the
nesting season (May–October), which may be because several
beaches in the neGOM are known nesting beaches for loggerhead
turtles (Fuentes et al., 2016 and Silver-Gorges et al., 2021).
However, only 26% of the loggerhead turtles observed during our
surveys were classified as adults, so this also suggests that the
Florida panhandle is important habitat for sub-adult loggerheads.

Flipper-tagged green turtles were present at Navarre Beach,
Park East, and the Navarre Beach fishing pier; however, untagged

green and loggerhead turtles were present at all site locations.
Most local tagging efforts in the region occur at nearby
sea turtle rehabilitation centers, rather than in-water research
tagging efforts, although sustained in-water capture and tagging
programs exist in St. Joseph’s Bay and in the Big Bend area
(Lamont and Johnson, 2020; Wildermann et al., 2020; Chabot
et al., 2021). Regardless, the SVCS allows researchers to collect
data on turtles that have not yet been tagged and of various
size classes. Green turtles were observed year-round, with three
individuals being re-sighted at the same artificial reef, which
may suggest site fidelity and residency. Juvenile hawksbills have
fidelity to specific sites (Limpus, 1992; van Dam and Diez, 1998),
thus, it is not unlikely that juvenile green turtles may experience
this same sort of site fidelity. Past studies have confirmed that
green turtles tend to overwinter in the neGOM (Lamont et al.,
2018), so, perhaps, it should not be unexpected that green turtles
inhabit artificial reefs year-round even at such northerly sites.
This could be discerned with longer-term monitoring programs
at artificial reefs in the neGOM. If conditions in an area are
favorable (i.e., feeding, protection, adequate temperatures, and
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FIGURE 4 | Sea turtlestraight carapace length (SCL) in relation to habitat type
and species.

nesting for adults), despite the higher latitude location, then there
would be no need for migration elsewhere (Carr, 1980).

In considering the efficacy of using SVCS to obtain
morphometric data, we calculated catch per unit effort. Notably,
our survey sites differed significantly in survey effort and was
heavily influenced by weather and sea state, and therefore sample
sizes were higher at some artificial reefs and between habitat types
(Table 1). Anecdotally, there is probably also an observer effect,
which we did not calculate as our survey team was consistent
throughout the study period. It seems likely that observers that
conduct surveys at different swim speeds, or other variables,
may have different CPUE. In practice, swimming with the SVCS
slows the diver down, and thus this individual would set the
pace for the survey. In the future, it may be useful to physically
measure distance traveled during the survey (e.g., using GPS)
or include survey team as a random effect, when evaluating
patterns in carapace length and SVCS CPUE. In addition, it is
likely that sites with higher turtle abundance would also have
higher CPUE. Future surveys that compared different types of
surveys, e.g., in-water SVC and aerial surveys with unmanned
aerial vehicles, in locations with high water visibility and calm
conditions may help to better ascertain sighting efficiency and
CPUE for the SVCS.

Our CPUE (range: 0.0–3.41 turtles/h) was comparable to
capture frequencies seen in the Dominican Republic (range:
0.0–3.43 turtles/h; León and Diez, 1999) and Mona Island,
Puerto Rico (range: 0.48–2.38 turtles/h) during snorkel surveys.
For example, our maximum CPUE was slightly less than
the maximum sighting frequency observed in the Dominican
Republic (sighting frequency (3.41 vs. 3.43 turtle/h) and slightly
less than maximum capture frequency (3.41 vs. 3.43 turtles/h;
León and Diez, 1999). Our average CPUE was 1.17 turtles/h,
which is comparable to the sighting frequency in the Dominican
Republic (1.67 turtles/h) and slightly less than their capture
frequency (1.42 turtles/h; León and Diez, 1999). During our dive
surveys, only four sea turtles were sighted in the water, but

not successfully filmed. This is substantially less than snorkel
capture surveys in the Dominican Republic, where they sighted
324 turtles and successfully captured 275 of those turtles (León
and Diez, 1999). Ultimately, incorporating the use of SVCS to
conduct dive surveys at artificial habitats would greatly increase
the amount of data collected on a given sea turtle population.

Conclusion

Many mark-recapture studies are commonly conducted in
seagrass beds, which are important habitats for sea turtles.
However, few mark-recapture studies have been conducted in
the coastal waters of the neGOM, and even fewer at artificial
habitats (i.e., fishing piers, jetties, and reefs), due to logistical and
financial challenges associated with direct capture methods (but
see Coleman et al., 2016). SVCS allows researchers to study sea
turtle population structure in areas where it is otherwise difficult
to capture a range of size classes. Importantly, SVCS may be
used in various locations, such as deep offshore artificial reefs,
nearshore habitats, seagrass beds, and mangrove creeks (Santana-
Garcon et al., 2014; Cundy et al., 2017; Logan et al., 2017; Siegfried
et al., 2021); however, decent water visibility is required for turtle
detection (Siegfried et al., 2021). With the implementation of
the SVCS over time, residency and site fidelity traits may be
monitored at selected sites. The use of SVCS gives researchers
a greater chance to study sea turtles in-water, where they spend
most of their lives, without the need to capture or to physically
tag. Therefore, this methodology may give scientists a more
comprehensive understanding of the sea turtle populations in
each area. Through our remote in-water study, we have observed
three species and all neritic life stages using artificial habitats.
Thus, by implementing and collecting demographic data in-
water using novel approaches, such as the SVCS, we demonstrate
the use of an in-water non-invasive monitoring study while
also collecting baseline population data and size structure for
loggerhead and green sea turtles.
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