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Body condition is a crucial and indicative measure of an animal’s fitness, reflecting
overall foraging success, habitat quality, and balance between energy intake and
energetic investment toward growth, maintenance, and reproduction. Recently, drone-
based photogrammetry has provided new opportunities to obtain body condition
estimates of baleen whales in one, two or three dimensions (1D, 2D, and 3D,
respectively) – a single width, a projected dorsal surface area, or a body volume
measure, respectively. However, no study to date has yet compared variation among
these methods and described how measurement uncertainty scales across these
dimensions. This associated uncertainty may affect inference derived from these
measurements, which can lead to misinterpretation of data, and lack of comparison
across body condition measurements restricts comparison of results between studies.
Here we develop a Bayesian statistical model using known-sized calibration objects to
predict the length and width measurements of unknown-sized objects (e.g., a whale).
We use the fitted model to predict and compare uncertainty associated with 1D, 2D,
and 3D photogrammetry-based body condition measurements of blue, humpback, and
Antarctic minke whales – three species of baleen whales with a range of body sizes. The
model outputs a posterior predictive distribution of body condition measurements and
allows for the construction of highest posterior density intervals to define measurement
uncertainty. We find that uncertainty does not scale linearly across multi-dimensional
measurements, with 2D and 3D uncertainty increasing by a factor of 1.45 and 1.76
compared to 1D, respectively. Each standardized body condition measurement is highly
correlated with one another, yet 2D body area index (BAI) accounts for potential
variation along the body for each species and was the most precise body condition
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metric. We hope this study will serve as a guide to help researchers select the
most appropriate body condition measurement for their purposes and allow them to
incorporate photogrammetric uncertainty associated with these measurements which,
in turn, will facilitate comparison of results across studies.

Keywords: baleen whales, drones (unmanned aerial vehicles or UAVs), body condition, aerial photogrammetry,
Bayesian statistical model, Cetacea (whales), uncertainty analysis

INTRODUCTION

An animal’s body condition is a crucial and indicative measure
of its fitness, as it reflects the balance between energy intake and
energetic investment in growth, maintenance, and reproduction
(Jakob et al., 1996; Schulte-Hostedde et al., 2001). Body condition
is defined as the energy stored in the body, which is assumed
to reflect individual health, and can be expressed as any
morphological, physiological, or biochemical measure of an
individual’s energy reserves, independent of its structural size
(Green, 2001; Peig and Green, 2009). As such, body condition
reflects an individual’s foraging success and provides information
on habitat quality and reproductive output (Stevenson and
Woods, 2006). For example, in high quality habitats with
increased availability of salmon, female North American brown
bears (Ursus arctos) were in better body condition, produced
larger litter sizes, and lived at greater population densities
compared to females in lower quality habitats (Hilderbrand et al.,
1999). As global temperatures rise, with consequences at local
scales (Sippel et al., 2020), it is important to monitor the body
condition of populations in rapidly changing habitats to inform
conservation and management decisions, especially for marine
species which may be disproportionally susceptible to changes in
habitat (Lenoir et al., 2020).

Baleen whales can serve as “ecosystem sentinels,” as their body
condition not only reflects the health of their populations, but the
state of marine ecosystems (Moore, 2008; Bengtson Nash et al.,
2018). As such, measurements of the body condition of baleen
whales can help track their responses to environmental change
and anthropogenic stressors. Aerial photogrammetry is a non-
invasive method for acquiring morphological measurements
of an individual’s energy reserves and provides an opportunity
for assessing the body condition of cetaceans that are too
large for capture and handling (Whitehead and Payne, 1978;
Perryman and Lynn, 2002; Miller et al., 2012). Recently,
unoccupied aircraft systems (UAS or drones) have greatly
increased the capacity to obtain body condition measurements
from aerial imagery to monitor baleen whale populations,
especially in their role as ecosystem sentinels (Johnston, 2019;
Castrillon and Bengtson Nash, 2020). These platforms are
safer, yield higher resolution data, and are more accurate,
immediate, and affordable compared to using traditional camera
systems mounted on airplanes. Several studies have used
UAS to measure body condition of baleen whales, including
blue (Balaenoptera musculus), gray (Eschrichtius robustus),
humpback (Megaptera novaeangliae), and Southern (Eubalaena
australis) and North Atlantic (Eubalaena glacialis) right whales

(Christiansen et al., 2016, 2018, 2020a,b, 2021; Durban et al.,
2016; Lemos et al., 2020; Aoki et al., 2021). These studies
have derived estimates of intra- and inter-seasonal variation
across individuals and populations (Christiansen et al., 2016;
Durban et al., 2016; Lemos et al., 2020), documented how
calf growth rate is directly related to maternal loss during
lactation (Christiansen et al., 2018), and even estimated body
mass (Christiansen et al., 2019). However, several different
photogrammetry-based methods for measuring body condition
have emerged from these studies and, as Castrillon and Bengtson
Nash (2020) argue, a standardization of measurements across
studies is needed and uncertainty should be both quantified
and minimized, as a measurement result is complete only when
accompanied by a quantitative statement of its uncertainty
(Taylor and Kuyatt, 1994).

Analyzing body condition in cetaceans using morphometric
measurements made from aerial-photogrammetry typically relies
on estimates in 1−, 2−, or 3-dimensions – a single width (SW),
a projected dorsal surface area (SA), or a body volume (BV)
measure, respectively (Figure 1). These 1−, 2−, or 3-dimensional
(hereafter referred as 1D, 2D, and 3D, respectively) measurements
are then converted into body condition indices – either using
a ratio to correct for total length (TL) or using the residuals
from a linear regression with TL – to provide a relative measure
of an individual’s body condition in relation to its structural
size and allow comparison among individuals and populations
(Stevenson and Woods, 2006; Wilder et al., 2016). However, it is
unknown how photogrammetric uncertainty scales across these
1D, 2D, and 3D measurements, or how this uncertainty may affect
inference derived from these measurements. For example, the
SA and volume of two geometrically similar bodies of different
sizes are not related to their linear dimensions in the same
ratio, but rather to the second and third power, respectively
(Schmidt-Nielsen, 1984). Likewise, photogrammetric uncertainty
should not be expected to scale linearly across 1D, 2D, and 3D
body condition measurements. This associated uncertainty can
lead to misinterpretation of data and lack of comparison across
body condition measurements restricts comparison of results
between studies.

One-dimensional estimates consist of a single body width
measurement of an individual. One-dimensional approaches are
simple, save analytical time, and can accurately reflect energy
reserves (Miller et al., 2012; Fearnbach et al., 2018). For example,
Miller et al. (2012) found that measurements of body widths
were comparable to measurements of the girths of carcasses.
Durban et al. (2016) demonstrated how a SW measure could
distinguish between a “robust” and “lean” blue whale of similar
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length. Perryman and Lynn (2002) measured the maximum
width of gray whales to show that individuals were thinner on
their northbound migration to the feeding grounds than on their
southbound migration to the breeding grounds. However, a 1D
measurement requires knowledge of which width measurement
best captures change along the body, which is something that
may be more challenging for species with a data deficiency
in morphometry (e.g., Hooker et al., 2019). One-dimensional
approaches also risk missing subtle, but important, variation in
energy reserves over the body (Lockyer, 1981; Miller et al., 2011,
2012; Christiansen et al., 2013, 2016).

In comparison, 2D and 3D estimates encompass variation
along the body by measuring the total body length of the
animal and then segmenting the animal into perpendicular and
incremental width measurements, typically at increments of 5
or 10% of TL (Figure 1). Two-dimensional body condition
measurements sum these width segments to calculate a projected
dorsal SA (m2). This approach has been used to measure
changes in body condition of humpback whales on the breeding
and foraging grounds (Christiansen et al., 2016; Aoki et al.,
2021). Cubbage and Calambokidis (1987) reported the first
use of stereo-photogrammetry from airplanes to measure body
length of bowhead whales in 3D images and demonstrated it
had better precision than estimates from 2D images, though
the authors noted the added complication of obtaining 3D

measurements may not be worth the cost. Most UAS platforms
are equipped with a single-camera and thus obtain 3D body
condition estimates by measuring the width segments in the
horizontal and vertical plane of the body to calculate total
BV (m3) (Christiansen et al., 2018, 2020a,b, 2021). Volumetric
models allow for estimation of body mass, which can then be
used in energetic models to quantify energy storage in absolute
standard units (Christiansen et al., 2019).

Both SA (2D) and BV (3D) are commonly used to calculate
a body condition index (BCI), which represents the residuals
from a linear regression between the 2D or 3D measurement and
the TL of the animal. This approach has been used to compare
relative body condition between different reproductive classes of
humpback whales on the breeding grounds, as well as Southern
and North Atlantic right whale populations (Christiansen et al.,
2016, 2018, 2020a,b). Body area index (BAI) is a 2D standardized
measurement of whale body condition developed based on the
body mass index (BMI) that is commonly used for humans, where
BMI = mass (kg)/height (m2) (Gallagher et al., 1996; Flegal et al.,
2012). BAI uses SA as a surrogate for body mass and has been
used to quantify variation in body condition in individual gray
whales across multiple years (Burnett et al., 2018; Lemos et al.,
2020). BAI is standardized by length and is thus unitless and scale
invariant, facilitating comparisons of individuals and populations
over time (Burnett et al., 2018).

FIGURE 1 | Overview of Bayesian framework for calculating the different body condition metrics in this study. (A) An example of a MorphoMetriX output (Torres and
Bierlich, 2020) from a UAS image of a blue whale. Total length (TL) measured from rostrum to fluke notch with perpendicular widths segmented in 5% increments of
TL. Head-Tail Range represents the region of the body that excludes the fins, head, and tail that will be used to calculate each body condition metric. (B) Posterior
predictive distributions for each 5% width included in the Head-Tail Range (20–90%) that will be used to calculate each body condition metric. (C) One-dimensional
(1D), 2D, and 3D body condition metrics are calculated using CollatriX (Bird and Bierlich, 2020) for each iteration in the MCMC output of the posterior predicted
widths. (D) The posterior predictive distributions for each body condition metric calculated for a single individual. SWstd , standardized single width; SA, surface area;
BAI, body area index; and BV, body volume.
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Recently, Bierlich et al. (2021) developed a statistical model
using training data of known-sized calibration objects to predict
the length and associated uncertainty of unknown sized objects
(e.g., whales). In the present study, we apply the model outputs
from Bierlich et al. (2021) to aerial imagery collected via UAS to
predict and compare uncertainty associated with 1D, 2D, and 3D
photogrammetry-based body condition measurements in three
baleen whale species of different sizes: blue, humpback, and
Antarctic minke whales (AMWs; Balaenoptera bonaerensis).

The four objectives of the present study are to: (1) apply
methods described in Bierlich et al. (2021) to incorporate
uncertainty associated with multiple measurements of the same
individual from image(s) to estimate the body condition of blue,
humpback and minke whales; (2) compare how uncertainty
scales across 1D, 2D, and 3D body condition measurements
of these estimates; (3) compare precision in the posterior
predictive distributions for each body condition estimate; and
(4) compare how body condition indices are correlated for
these species. The focus of our study is to shed light on how
uncertainty scales across each body condition measurement to
help guide other researchers to choose a method that best
addresses their research objectives with the least uncertainty.
Our study provides a framework for researchers to quantify
and report measurement uncertainty associated with different
body condition measurements and to facilitate collaboration and
comparisons across studies.

MATERIALS AND METHODS

Model Development and Overview
We followed the Bayesian statistical framework described in
Bierlich et al. (2021) to incorporate TL and width measurements
of each individual whale from single and multiple images. We
used the freely available training data (Bierlich et al., 2020)
used by Bierlich et al. (2021) for the UAS hexacopters FreeFly
Alta 6 and LemHex-44 (see section “Error Estimation” for
description of these UAS platforms) of known-sized floating
calibration objects collected in Monterey, CA (length = 1.27 m),
Beaufort, NC (length = 1.48 m), and along the Western Antarctic
Peninsula (WAP; length = 1.33 or 1.40 m), for a total of 110
images. We first estimated the posterior probability distribution
of photogrammetric error parameters (θ) for each UAS platform
used in data collection using the calibration data of the known-
sized objects (x) via

f (θ|x) =
f (x|θ)f (θ)

f (x)
, (1)

where f (x|θ) is the likelihood function, f (θ) is the prior
probability distribution that defines the potential range for θ, f (x)
is the marginal distribution of the measurement data, and f (θ|x)
is the posterior distribution that defines the likely range of θ given
data x. We then used the posterior probability distribution for θ

as prior information to form a posterior predictive distribution
for TL and width measurements of the whale via

f (xnew|x) = ∫ f (xnew|θ) f (θ|x) dθ , (2)

where f (xnew|θ) is the likelihood function, and f (θ|x) is the
posterior probability distribution estimated from the training
data that is set as the new prior probability distribution. The
posterior predictive distribution f (xnew|x) quantifies uncertainty
for each measurement (TL and widths) of the whale, based on
the measurement errors from the calibration data. The length
and width posterior distributions are then used to calculate a
posterior predictive distribution for each body condition metric
for each individual.

Error Estimation
We designed the likelihood function based on the ground
sampling distance (GSD) and length measurement in pixels
(Lp) described in Bierlich et al. (2021), with the addition of
including multiple measurements from single or multiple images
to estimate body condition of individuals. We used the following
photogrammetric equations,

GSDj =
aj

fc
×

Sw

Iw
, (3)

Lp, k, i, j =
Lengthk,i

GSDj
, (4)

which relate the altitude aj (the distance (m) from the camera
to the object of interest in image j), to the focal length fc of
the camera (mm), the sensor width Sw of the camera (mm),
the image width Iw in pixels, the exact pixel-length Lp,k,i,j of
measurement k (i.e., total body length, 5% width, 10% width,
etc.) of whale i in image j, and the exact, unknown Lengthk,i
in meters of measurement k for whale i. Errors related to the
object positioning within the image frame and lens distortion for
the cameras used in this study (see section “Error Estimation”
for description of UAS cameras) were found to be negligible by
Bierlich et al. (2021), and were thus not included in the model.
The data x = (aL,j

′, aB,j
′ , Lp,k,i,j

′) denotes the altitude as measured
by a laser altimeter (aL,j

′) and barometer (aB,j
′), and the measured

length in pixels (Lp,k,i,j
′), all measured values with some level of

uncertainty from the exact values of aj and Lp,k,i,j, respectively.
We set a uniform prior distribution for aj (min = 5 m and
max = 130 m) to restrict the model to the altitude range of the
UAS during image collection. We modeled the barometer and
laser altimeter’s measurement error with a normal distribution
around the true aj,

aL,j
′
∼ N(aj, σ2

L), (5)

aB,j
′
∼ N(aj, σ2

B), (6)

with an inverse gamma prior distribution for the variance
parameters σ2

L and σ2
B (shape = 2, rate = 1). Following Bierlich

et al. (2021), we used the known length (Lco,i) of each calibration
object i to calculate its true pixel length Lp,i,j by rearranging
Eqs 3, 4:

Lp,i,j =
Lco,i × fc × Iw

aj × Sw
. (7)
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We model the measured pixel-length, Lp,i,j
′, for each calibration

object i with a normal distribution

Lp,i,j
′
∼ N(Lp,i,j, σ2

Lp), (8)

with an inverse gamma prior distribution for σ2
Lp (shape = 5,

rate = 4). The relationship between Lp,I,j and aj in Eq. 7 implies a
joint distribution that is conditional on Lco,i and has the following
structure

f
(

a′L,j, a′B,j, Lp,i,j
′
|θ, Lco,i

)
= ∫ f

(
aj
)

f
(

a′L,j|aj, θ
)

f
(

a′B,j|aj, θ
)

f
(
Lp,i,j

′
|aj, θ,

Lco,i
)
d
(
aj
)
, (9)

where f
(
aj
)

is the uniform prior for the true altitude,

f
(

a′L,j|aj, θ
)

and f
(

a′B,j|aj, θ
)

are the densities for the
measurement error distributions (Eqs 5, 6), respectively,
and f

(
L′p,i,j|aj, θ, Lco,i

)
is the measurement error distribution

for the pixels (Eq. 8), in which the true altitude determines
the true pixel measurement Lp,i,j via Eq. 7. Throughout, the
parameter vector θ = (σ2

L, σ2
B, σ2

Lp) contains the measurement
error parameters. We then use measurements of Lco,i as training
data to estimate the error parameters.

Measurement Predictions
We can now make inferences about multiple measurements
of an unknown sized object (Lnew), i.e., a whale, which are
conditional on a new set of measurements (a′new and L′p,new)
and the error parameter estimates (θ). We assume Lnew is
independent from the training data and thus has the following
conditional structure

f
(

Lnew,k,i,j|a′B,new,j, a′L,new,j, L′p,new,k,i,j, θ
)

∝ f (a′B,new,j, a′L,new,j, L′p,new,k,i,j |Lnew,k,i,j, θ) f (Lnew,k,i,j),

(10)

where each Lnew of measurement k for individual i in image
j is calculated using Eqs 3, 4 with an assumed gamma
prior distribution for the unobserved, true Lnew (shape = 4.0,
rate = 0.0013) (Bierlich et al., 2021). This model structure
allows for multiple measurements (i.e., TL and widths) to
be estimated from a single image, as well as repeated
measurements across multiple images, of the same whale.
The final model output produces a single posterior predictive
distribution of each measurement for each individual. We then
use the posterior predictive TL and width distributions to
calculate body condition metrics described in section “Body
Condition Metrics.”

Model development and analyses were conducted in R
(Version 4.0.2, R Core Team, 2020) using the drake package
(Landau, 2018). Estimation and prediction were performed using
Markov Chain Monte Carlo (MCMC) sampling in NIMBLE (de
Valpine et al., 2017) with 1,000 burn-in followed by 1,000,000
iterations with a thinning rate of every 10th sample. Three

independent chains were run to confirm consistency between
runs and inspected visually for convergence. The model was
validated by randomly sampling half of the training data (x)
and then using the error parameters to predict the length
measurement for the remaining half to compare with the known
length of the calibration object (Bierlich et al., 2021).

Testing Data
Unoccupied Aircraft Systems Data Collection
We used the model to predict TL and width measurements
of blue, humpback, and AMWs from high resolution images
collected using two hexacopters: a Mikrokopter LemHex-44
and FreeFly Alta 6. Both UAS platforms contained an onboard
barometer and were fitted with a LightWare SF11/C laser
altimeter, as well as a Sony Alpha a5100 camera with an APS-
C (23.5 × 15.6 mm) sensor, 6,000 × 4,000 pixel resolution, and
either a 35 or 50 mm Sony SEL fc. Images were collected between
2017 and 2019 along the coast of Monterey, CA (blue whales) or
the WAP (humpbacks and AMWs).

Data Filtering
The best images were selected for each individual and ranked
for quality in measurability following Christiansen et al. (2018),
where a score of 1 (good quality), 2 (medium quality), or 3
(poor quality) was applied to seven attributes: camera focus,
straightness of body, body roll, body arch, body pitch, TL
measurability and body width measurability. Images with a score
of 3 in any attribute were removed from analysis, as well as any
images that received a score of 2 in both roll and arch, roll and
pitch, or arch and pitch (Christiansen et al., 2018). Measurements
from up to five images collected during the same flight were
used per individual.

As in Bierlich et al. (2021), the model was designed to
accommodate images with altitude readings from both the
barometer and laser simultaneously, or from either in isolation
[e.g., caused by a missing (NA) altitude value for the laser
or barometer]. For images with an altitude difference >10%
between the barometer and laser altimeter, barometer values were
changed to NA, as results from Bierlich et al. (2021) showed that
measurements with NA barometer values yielded similar results
to those when both laser and barometer were included.

TABLE 1 | The Head-Tail Range and single width (SW) measurement for each
species used for measuring body condition.

Species Head-Tail Range Single width (SW)

AMW 20–85% 40%

Blue 20–90% 55%

Humpback 25–85% 60%

Humpback calf 20–85% 50%

Head-Tail Range excludes the head, fins, and caudal peduncle and is used for 2D
and 3D metrics. SW is determined from the width% within the Head-Tail Range with
the largest standard deviation and is used as a 1D body condition measurement.
AMW, Antarctic minke whale.
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Photogrammetry
We used MorphoMetriX (v1.0.2) open-source photogrammetry
software (Torres and Bierlich, 2020) to measure (in pixels)
the TL (tip of rostrum to fluke notch) and perpendicular
widths in 5% increments of the TL measurement (Figure 1).
MorphoMetriX outputs were collated using CollatriX (v1.0.7)
(Bird and Bierlich, 2020), and then input into the uncertainty
model. As demonstrated by Christiansen et al. (2018), initial
analysis of individuals with measurements from multiple images
(see section “Data Filtering”) confirmed that filtering for images
with quality scores of 1 or 2 was robust to potential biases of
width measurements related to variation in TL measurements,
such as from any slight bending or arching of the individual
(Supplementary Figure 1).

Body Condition Metrics
Selecting Head-Tail Range
We define body condition as a morphological measure of an
individual’s relative energy reserves compared to its structural
size (Peig and Green, 2009). Green (2001) noted that it is
imperative to separate effects of structural size of the body
from the size of the energy capital, as both aspects can have
major consequences for fitness, survival rates, and habitat use.
Therefore, an initial goal of any study of body condition should
be to identify the body components that best reflect variation
in energy reserves. Intra-seasonal changes in energy storage are
not exhibited homogenously over the body of baleen whales,
and are species specific (Lockyer, 1981; Miller et al., 2012;
Christiansen et al., 2013). Cetaceans do not store energy reserves
in their pectoral fins, head, or tail flukes (Brodie, 1975; Lockyer,
1981; Koopman et al., 2002). This pattern was also confirmed
photogrammetrically by Christiansen et al. (2016), who found
no intra-seasonal variation in the width of the head or the
lower section of the peduncle across all reproductive classes of
humpback whales. Thus, we used the width range along the body
between the head and tail of each individual, which we refer to as
the “Head-Tail Range,” to encompass changes in energy storage
(Figure 1). To account for potential individual variation across
and within species, we assigned a Head-Tail Range specific to
each individual to ensure that the range used to calculate each
body condition metric captured the relative energy stores for that
individual. The boundary of the head was based on the location
of the eyes to the nearest perpendicular width, and the boundary
for the tail was determined as the nearest perpendicular width to
the start of the peduncle (Figure 1). The Head-Tail Range was
20–90% for blue whales, 20–85% for AMWs, 25–85% for juvenile
and mature humpback whales, and 20–85% for humpback whale
calves (Table 1).

One-Dimensional: Single-Width (SWstd)
The SW measurement, assessed as the 1D body condition
estimate, was defined as the perpendicular width measurement
within the Head-Tail Range that had the largest standard
deviation across individuals in each species. Thus, the SW
measurement is species-specific and should capture the greatest
variation in width amongst individuals within that species
(Miller et al., 2012; Durban et al., 2016; Figure 1). The SW

measurement was 40% for AMWs, 55% for blue whales, 60% for
humpback whales, and 50% for humpback whale calves. We then
standardized each SW measure, SWstd, by the TL of the individual
(Miller et al., 2012; Fearnbach et al., 2018),

SWstd =
SW
TL

. (11)

Two-Dimensional: Projected Dorsal Surface Area
The Head-Tail Range for each individual was used to calculate
the projected dorsal SA following Christiansen et al. (2016). SA
was modeled as a series of trapezoids connected at each width
measurement site (Figure 1), where the SA (m2) of each trapezoid
segment, As, was calculated using

As =
h
2
(
a+ b

)
, (12)

where a is the anterior base (width) of a trapezoid segment, b is
the posterior base (width) of a trapezoid segment and h is the
distance between both width measurement sites (h = 0.05 × TL)
(Figure 1). The total SA (m2) for each individual was calculated
by summing the area of each trapezoid segment, As, within the
Head-Tail Range,

SA =
S∑

s=1

As , (13)

where S is the total number of trapezoid segments within the
Head-Tail Range.

Two-Dimensional: Body Area Index
Surface area was also used to calculate BAI, but instead of
modeling each perpendicular width segment as a series of
trapezoids (as in Eqs 12, 13), a parabola was fit through each
perpendicular width point within the Head-Tail Range on each
side of the whale (see Burnett et al., 2018). The SA was then
calculated as the area under each parabola and used to calculate
BAI by

BAI =
SA

(HT × TL )2 × 100, (14)

where HT is the Head-Tail Range of the individual (i.e., 0.70
for a Head-Tail Range between 20 and 90% as in Figure 1)
and the multiplication by 100 allowed for a more intuitive value
(>1.0). A linear regression between the trapezoidal SA calculated
in Eq. 13 and the parabolic SA calculated in Eq. 14 yielded an
r2 = 0.99, suggesting that these two methods for calculating SA
are virtually identical.

Three-Dimensional: Body Volume
Body volume was modeled as a series of frustums (truncated
cones) connected at each perpendicular width measurement site
following Christiansen et al. (2018; Figure 1). The cross-section
of each frustum was assumed to be circular and the volume of
each frustum segment, Vs, was calculated by

Vs,i,k =
1
3
πh
(
ri,k

2
+ ri,kRi,k + Ri,k

2) , (15)

where h is the distance between both body width
measurement sites (h = 0.05 × TL), r is the radius of the
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FIGURE 2 | Body shapes for each species. (A) Absolute widths (m), (B) relative widths, standardized by dividing each width by the total length of the individual.
AMW, Antarctic minke whale (n = 40), blue whales (n = 32), humpback (n = 40), and humpback calves (n = 15). The middle line in each box represents the median,
or second quartile (50th percentile), the lower and upper hinge of the box represent the first and third quartile (the 25th and 75th percentile), respectively, and the
lower and upper whisker represents the smallest and largest value that extend at most 1.5 × IQR, where IQR is the interquartile range. Any data beyond these
whiskers are considered outlying points and plotted individually.

anterior girth measurement of the frustum (i.e., half the
anterior width measurement), and R is the radius of the posterior
girth measurement of the frustum (i.e., half the posterior width
measurement). The total body volume, BV (m3), was then
calculated from the summation of all the frustum segments
within the Head-Tail Range

BVi =

S∑
s=1

Vs (16)

where S is the total number of frustum segments within the Head-
Tail Range.

Predicted Body Condition Posterior Distributions
Each of these body condition measurements were calculated
in each MCMC iteration for each whale (niterations = 50,000,
after excluding first half as burn-in). This yields the posterior
predictive distribution of SW, SWstd, SA, BAI, and BV for
each individual (Figure 1). We then calculated the mean and
95% highest posterior density (HPD) interval for each posterior
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FIGURE 3 | Example of posterior predictive distributions of measurements and associated uncertainty from UAS images of an individual blue whale. Measurements
include total length (TL), single-width (SW), single-width standardized (SWstd ), surface area (SA), body area index (BAI), and body volume (BV). The longer thin black
bars represent the 95% HPD interval, the thicker shorter black bars represent the 65% HPD interval, and the black dot represents the mean value. Note that each
x-axis is on a different scale.

distribution (Figure 1). The 95% HPD interval represents the
shortest interval containing 95% of the posterior distribution’s
mass, and ultimately serves as the measure of uncertainty around
each measurement prediction (Bierlich et al., 2021).

Body Condition Index
The mean of the predictive posterior distributions for SA and
BV were then used to calculate the BCI following methods from
Christiansen et al. (2018). BCISA was calculated as

BCISA,i =
SAobs, i − SAexp, i

SAexp, i
(17)

where SAobs, i is the observed mean of the posterior predictive
distribution of SA for whale i, and SAexp, i is the expected SA
for whale i from a linear relationship between SAobs, i and the
observed mean of the posterior predictive distribution of TL for
whale i, on a log-log scale.

Likewise, BCIBV was calculated using

BCIBV,i =
BVobs, i − BVexp, i

BVexp, i
(18)

where BVobs, i is the observed mean of the posterior predictive
distribution of BV for whale i, and BVexp, i is the expected BV for
whale i from the linear relationship between BVobs, i and observed
mean of the posterior predictive distribution of TL for whale i,
on the log-log scale. It has been assumed that a positive BCI

value reflects an animal in “good” condition, while a negative
value indicates an animal in “poor” condition for that population
(Christiansen et al., 2018, 2020a).

Statistical Analysis
For the purposes of this study, we intentionally ignored
considerations of when each whale was sampled (e.g., day
within season, year), as our focus was on comparing the
different methods for measuring body condition rather than
understanding the ecological context of these measurements.

Scaling
To analyze how uncertainty scaled across 1D, 2D, and 3D
measurements, we analyzed the linear relationship between the
standard deviation of the posterior predictive distribution for
each unstandardized body condition measurement (SW, SA, and
BV) of each individual on a log-log scale.

Precision
We also compared the precision of the posterior predictive
distributions for each body condition measurement (SW,
SWstd, SA, BAI, and BV). The National Institute of Standards
and Technology (NIST) defines precision as the closeness of
agreement between independent measurements of a quantity
under the same condition (Taylor and Kuyatt, 1994). Precision
is a measure of how well a measurement can be made without
reference to a true value, while uncertainty incorporates the range
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TABLE 2 | Summary of each body condition measurement for each species.

Mean Std.dev Min Max

TL

AMW 8.01 1.26 4.56 10.18

Blue 22.62 1.54 19.46 25.77

Humpback 12.76 1.63 9.21 15.52

Humpback calf 8.90 0.46 8.29 9.77

SW

AMW 1.37 0.22 0.66 1.94

Blue 2.25 0.24 1.62 3.29

Humpback 2.65 0.43 1.62 3.50

Humpback calf 1.52 0.14 1.19 1.95

SWstd

AMW 0.17 0.01 0.15 0.17

Blue 0.10 0.01 0.08 0.10

Humpback 0.21 0.02 0.18 0.21

Humpback calf 0.17 0.02 0.15 0.17

SA

AMW 5.62 1.62 1.88 8.56

Blue 32.68 4.46 23.05 41.08

Humpback 16.13 4.29 7.49 23.52

Humpback calf 8.48 0.87 6.97 10.03

BAI

AMW 20.29 1.11 17.99 23.01

Blue 12.99 0.78 11.84 15.03

Humpback 26.95 1.90 23.89 31.39

Humpback calf 25.29 1.31 23.54 27.37

BV

AMW 5.32 2.19 1.01 9.55

Blue 60.67 12.63 34.62 88.53

Humpback 30.06 11.79 8.97 51.13

Humpback calf 10.86 1.70 7.94 14.04

The mean, standard deviation (std.dev), minimum (min), and maximum (max) of
each species are calculated from the mean of the posterior predictive distribution
of total length and body condition measurements for each individual.

of values in the distribution that is expected to contain the true
value. The true body condition of each individual in this study
is not known, but precision can help identify a metric’s ability to
detect small changes in body condition amongst individuals. As
each metric varies in measured units, i.e., unitless, m, m2, and
m3, we analyzed the precision of each metric by calculating the
coefficient of variation (CV%) as

CV%i,m =

(
σi,m

µi,m

)
× 100 (19)

where σ is the standard deviation and µ is the mean of the
posterior predictive distribution for each body condition metric
m of individual i.

Correlation
We used a correlation matrix and linear regression with Pearson’s
correlation coefficient r to analyze the relationship between each
standardized BCI (SWstd, BAI, BCISA, and BCIBV ). All analyses
were conducted in R (Version 4.0.2, R Core Team, 2020).

RESULTS

After filtering for image quality, we used photogrammetric
measurements of 127 whales for the analysis: 32 blue whales,
40 AMWs, and 55 humpback whales (including 15 calves). The
absolute and relative (standardized) perpendicular widths of each
species varied, illustrating differences in body shapes (Figure 2).

Body Condition Measurements
The posterior predictive distribution of TL and each body
condition measurement were calculated for each individual whale
(Figure 3 provides an example output for an individual blue
whale). Both the Head-Tail Range and SW captured variability
in body condition amongst individuals in each species, as well as
across species (Table 2 and Figure 4). As expected, SW, SA, and
BV increased as the TL increased for each species, while SWstd
and BAI did not because they are standardized by TL (Figure 4).
Despite being almost 10 m shorter than blue whales, humpback
whales displayed similar and greater SW measurements (absolute
width) (Figures 2, 4). Overall, blue whales had smaller SWstd
(relative width) and a lower BAI range compared to humpback
and minke whales (Figure 4), reflecting differences in their
body shapes (Figure 2). Each species clearly displayed its own
unique range of BAI values, with little overlap amongst species,
suggesting that this measurement of body condition is species-
specific (Figure 4 and Table 2). There was more overlap in SWstd
values between AMW and humpback whales, especially with
humpback whale calves (Figure 4 and Table 2).

Scaling of Uncertainty
Overall, uncertainty associated with 2D and 3D body condition
measurements increased at a greater proportion than uncertainty
associated with 1D measurements (Figure 5). For every unit of
increase in 1D uncertainty, 2D uncertainty increased by 1.45
(CI: 1.20, 1.69) and 3D uncertainty increased by 1.76 (CI: 1.39,
2.13) (Figure 5).

Precision
The precision of each body condition measurement was
calculated as the CV% (Eq. 19) to analyze the closeness in
agreement of the posterior predictive distribution for each
individual. In other words, CV% compares the relative width
of the predictive posterior distributions of each body condition
measurement for each individual (i.e., the distributions illustrated
in Figure 3). BAI was the most precise measure with the smallest
CV% (CV%: mean = 1.31%, SD = 0.53%) (Table 3 and Figure 6).
Thus, in theory, BAI should be able to detect smaller changes
in body condition than the other measurements. SWstd was
the second most precise measurement (CV%: mean = 3.73%,
SD = 1.65%), followed by SA (CV%: mean = 4.01%, SD = 2.82%),
SW (CV%: mean = 4.29%, SD = 1.83%), and finally BV (CV%:
mean = 6.2%, SD = 4.21%) (Table 3 and Figure 6).

Correlation
Each standardized body condition measurement (SWstd, BAI,
BCISA, and BCIBV ) was highly correlated across species
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FIGURE 4 | One-dimensional (1D), 2D, and 3D body condition measurements with uncertainty. Each point represents the mean of the posterior predictive distribution
of that body condition measurement with the bars representing the lower and upper bounds of the 95% HPD interval for that specific individual whale (represented in
Figure 3). Unstandardized measurements are in the top three panels, while the bottom two panels are standardized versions of 1D and 2D measurements.

(Figure 7), demonstrating that each of these standardized body
condition measurements provides similar information. AMWs
had the strongest relationship between each metric (all r > 0.93),
followed by adult humpback whales (all r > 0.92), humpback
calves (r > 0.88), and blue whales (r > 0.87) (Figure 7). Both
BCISA and BCIBV were consistently the most correlated across
each species (all r > 0.99) (Figure 7). BAI showed slightly higher
correlation with each metric for each species (all r > 0.88)
compared to SWstd, BCISA, and BCIBV (all r > 0.87) (Figure 7).

DISCUSSION

Here we present the first comparison of 1D, 2D, and 3D
photogrammetry-based body condition estimates of baleen
whales, while incorporating the uncertainty associated with
each estimate. This study builds on the Bayesian statistical
framework described in Bierlich et al. (2021); this framework
allows us to incorporate multiple measurements (i.e., body
length and width) of the same individual whale from a
single image, as well as across multiple images, in order to
creat posterior predictive distributions for body condition.

Our study serves as a guide to help researchers select the
most appropriate body condition measurement for their study
and incorporate photogrammetric uncertainty associated with
these measurements to yield robust scientific conclusions and
facilitate collaboration and comparisons across studies. Data and
model code are available at https://github.com/KCBierlich/Body_
Condition_Analysis.

Scaling of Uncertainty
Uncertainty does not scale linearly across 1D, 2D, and 3D body
condition metrics. Just as scaling relationships between multi-
dimensional shapes do not change in the same ratio as their linear
dimensions (Schmidt-Nielsen, 1984), uncertainty associated with
2D and 3D measurements of these three whale species increases
by a factor of 1.45 and 1.76 compared to 1D measurements,
respectively (Figure 5). This is an important finding, as
utilizing a multi-dimensional body condition measurement may
incur a higher cost of increased uncertainty. Thus, studies
should consider the potential added cost of uncertainty when
choosing a body condition measurement. For example, if a
project is primarily aimed at measuring relative body condition
change for a given baleen whale species, it may be best
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FIGURE 5 | Scaling of 2D and 3D uncertainty with 1D uncertainty. Each point represents an individual whale and the uncertainty (defined here as the SD of the
posterior predictive distribution for each metric), associated with 1D, 2D, and 3D body condition metrics. The black lines represent the linear regression for
uncertainty between 1D and 2D (slope = 1.45; CI: 1.20, 1.69; intercept = 2.89) and 1D and 3D (slope = 1.76; CI: 1.39, 2.13, intercept = 4.47). Data from 40
Antarctic minke whales (AMW), 32 blue whales, 40 humpback whales, and 15 humpback whale calves.

to use a 1D or 2D measurement to yield results with less
uncertainty. However, calculating BV is often a preferred
metric if the project goal necessitates approximation of whale
body mass (Schmidt-Nielsen, 1984), which can be applied
to quantify the maternal cost of reproduction (Christiansen
et al., 2018) and estimate body mass (Southern right whales;
Christiansen et al., 2019). BV has also been useful for studies
comparing locomotion and hydrodynamic performance across
baleen whale species (Woodward et al., 2006). In this paper
we compared ways to calculate BV from 2D measurements
but did not have actual 3D measurements which could
have potentially improved the calculation of BV. However,
as demonstrated in Cubbage and Calambokidis (1987), the
complication and cost of obtaining actual 3D measurements
may not be cost-effective. Bierlich et al. (2021) found that
measurement error varies depending on the camera, focal length
lens, altimeter, and altitude, so studies calculating BV can
help mitigate relatively higher rates of associated uncertainty
by selecting a UAS platform with sensors that yield low
uncertainty and implementing strict field protocols to further
minimizes errors.

The goal of our study was to describe broad trends in how
uncertainty scales across different body condition measurements
rather than a detailed comparison between species, but it is

interesting to note that uncertainty appears to scale differently
for each species, which likely contributed to the wide confidence
intervals observed (Figure 5). For instance, adult humpback
whales had greater uncertainty in SA and BV measurements
compared to the other species (Figure 5). This variation is
likely due to differences in body shape (Figure 2). For example,
humpback whales have larger absolute and relative widths
compared to blue whales along the mid-line of the body,
despite being almost 10 m shorter (Table 2 and Figures 2, 5).
Humpback whales also displayed the largest variation in body
widths compared to AMWs and blue whales (Table 2 and
Figure 2). Overall, each species followed the broader trend
of increasing uncertainty with a similar positive slope, and
these slight variations in scaling can be further studied using
interaction effects.

Comparing Body Condition Change
In measuring relative body condition change, BAI was the most
precise measurement, followed by standardized single-width
(SWstd) (Table 3 and Figure 6). SWstd provides a time saving
advantage, as it only requires a single measurement, reducing
the time spent performing and processing measurements. Hence,
SWstd may be useful for pilot or exploratory studies of body
condition. However, a SW measure may miss other widths that
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TABLE 3 | Comparison of metric precision.

CV%

Method Mean Min Max SD

SW 4.29 1.78 9.56 1.83

SWstd 3.73 1.2 8.33 1.65

BAI 1.31 0.49 3.12 0.53

SA 4.01 1.38 16.33 2.82

BV 6.2 2.19 24.58 4.21

The coefficient of variation (CV%) was calculated from the posterior predictive
distribution for each body condition metric for each individual. Lower CV% equates
to higher precision.

may contribute to the body condition of an individual. For
example, while SW uses the perpendicular width with the largest
standard deviation for each species, neighboring widths also
display high variation and may collectively better contribute to
the quantification of an individual’s condition (Figure 2). This
is likely the reason why AMW and humpback whale calves had
more overlap in their range of SWstd measurements than in BAI
(Figure 4 and Table 2). Thus, a 2D standardized metric, such
as BAI, which captures this potential variation along the body,
may be a preferred metric. Studies interested in a standardized
volumetric approach, especially as imagery is collected on the
lateral height of the animal, could incorporate a body volume
index (BVI), where BV is divided by the cube of the Head-Tail
Range multiplied by the TL.

In comparing BCISA and BCIBV with the mean posterior
predictive distributions for SWstd and BAI, each of these
standardized metrics are highly correlated with one another
(Figures 4, 7). This correlation is an important finding, as it
suggests that 1D, 2D, or 3D standardized metrics will draw similar
relative predictions for body condition of individuals. In other
words, researchers can be confident that similar conclusions
will be drawn pertaining to the relative body condition of
individuals in a study, regardless of which standardized metric
they use. However, researchers should still expect differences
in the uncertainty associated with these different measurements
and employ the approach best suited to their research question
and study species.

Advantages of Body Area Index for
Detecting Body Condition Change
All standardized measurements were highly correlated with one
another, but there were several clear advantages for using BAI
in studies of variation in body condition. BAI incorporates
multiple perpendicular widths to capture potential variation
along the body and was the most precise measure across species,
with a CV% range between 0.40 and 3.12% (mean = 1.31%,
SD = 0.49%) (Table 3 and Figure 6). This measure accounts
for potential variation along the body and, thus, is able to
detect small changes in body condition. Studies can further
explore how small of a change in BAI is detectable based on
the size of their target species and the camera, focal length lens,
altimeter, and altitude of the UAS. BAI is also a standardized
measurement that can be calculated directly within the MCMC

FIGURE 6 | Comparison of metric precision. The coefficient of variation (CV%)
was calculated from the posterior predictive distribution for each body
condition metric for each individual. SW, single width (1D); SWstd ,
standardized single width (Eq. 11) (1D); BAI, body area index (2D) (Eq. 14);
SA, surface area (2D) (Eq. 13); and BV, body volume (Eq. 16). The middle line
in each box represents the median, or second quartile (50th percentile), the
lower and upper hinge of the box represent the first and third quartile (the 25th
and 75th percentile), respectively, and the lower and upper whisker represents
the smallest and largest value that at extend at most 1.5 × IQR, where IQR is
the interquartile range. Any data beyond these whiskers are considered
outlying points and plotted individually.

output from the Bayesian statistical model. This capability
means that the predicted BAI posterior distribution is already
standardized to the TL of the individual, making comparisons
much easier across populations, species, and even the same
individual over time (i.e., Lemos et al., 2020). BAI may also be
particularly favorable for situations where sample size is limited
(Hooker et al., 2019), because BCI needs a larger sample size
to generate a relative index for the population (Eqs 17, 18)
(Miller et al., 2012).

Nevertheless, the conversion of SA and BV to BCI is a
useful standardized measure for comparing the relative body
condition of individuals within and across populations, as it
provides a reference index of 0 to compare each individual’s
BCI score. Other BCI-type measurements have also been used
extensively across a variety of taxa (Schulte-Hostedde et al.,
2005; Stevenson and Woods, 2006; Hamilton et al., 2017;
Shirane et al., 2020). Christiansen et al. (2020a) calculated BCI to
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FIGURE 7 | (A) Correlogram (graph of correlation matrix) comparing each standardized metric for each species. SWstd , standardized single width (Eq. 11); SA_BCI,
BCISA (Eq. 17); BV_BCI, BCIBV (Eq.18); BAI, body area index (Eq. 14). (B) Regression between BAI and each standardized metric. BAI is highly correlated with each
standardized metric, with Pearson’s correlation coefficient r > 0.88 for each comparison.

demonstrate differences between relatively thin North Atlantic
right whales and more rotund Southern right whales.

One caveat is that BCI can potentially oversimplify
conclusions about individuals in a population, as it is often
assumed that animals with a positive BCI are above average
and in “good” condition, while animals with negative BCI are
below average and in “poor” condition. For example, if an
extremely healthy population is sampled in which all animals
are in excellent condition, some individuals will still receive
negative BCI values, and thus would be mislabeled as being
in “poor” condition. This issue may extend further if “bigger
is better” – since BCI values rely on a linear regression with
respect to TL, nominally about half of all whales within a
population will have negative BCI values even if it is generally
better within the population to be longer rather than shorter.
An advantage of using BAI over BCI in this context is that it
produces a value that is directly comparable across populations.
In using the same example, the individual whales in the “fatter”
population would all have a higher BAI value compared to other
“thinner” populations.

Application of BAI to understand variation in whale nutrition
is challenged by a limited knowledge of what a “healthy” body
condition range is for a whale. In humans, a healthy BMI
range is generally considered 18.5–24.9, below 18.5 is considered
underweight, above 24.9 is considered overweight, and above
30 is considered obese (Flegal et al., 2012). However, BMI has
been criticized because it is susceptible to misclassification and
bias due to differences in muscle and fat gain associated with
sex and age (Rothman, 2008). This framework was adopted

by Nieminen et al. (2001) to describe the seasonal “obesity”
of raccoon dogs and blue foxes during their pre-hibernation
fattening period. Our results show strong evidence that a healthy
range of BAI is species-specific (Figure 4), as each species
displayed a distinctive range in BAI; blue whales: 11.84–15.03;
AMW: 17.99–23.01; humpback whales: 23.89–31.39; humpback
whale calves: 23.52–27.37 (Table 2). BAI values for each species
in this study were also lower than reported for gray whales
(Burnett et al., 2018; Lemos et al., 2020), although a body width
range between 20 and 60% was used rather than a Head-Tail
Range in those studies. These differences in BAI ranges reflect
differences in the body shape of each species. Humpbacks have
the widest range of BAI compared to other species, which was
also reflected in their larger variation in perpendicular widths
(Figure 2). Thus, it seems that BAI offers conditionally “scale-
free” comparisons between species, yet it is unreasonable to set
a single, all-whale BAI threshold to determine “healthy” versus
“unhealthy” body condition. Linking BAI to pregnancy – whether
a whale is currently pregnant or becomes pregnant the following
season – will help determine a healthy BAI range for each species.
Collecting a large sample of body condition measurements on
individuals and populations over space and time and linking
these measurements to vital rates will help elucidate a healthy BAI
range for each species.

Caveats and Considerations
We intentionally ignored the effects of season or year as a
covariate in the measurement of body condition. Season, day,
and year have all been shown to influence the body condition
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of baleen whales (i.e., Christiansen et al., 2016, 2018; Lemos
et al., 2020). Our focus was on comparing different body
condition measurements and developing a Bayesian statistical
model to predict uncertainty associated with each, rather
than the ecological context of these predicted body condition
measurements. Future studies should follow the framework
described here to document uncertainty and assess the effect of
season and year on body condition in their ecological analyses.

Volumetric models using shapes other than frustums have
also been used to analyze body condition in baleen whales
in which the entire body of the whale (0–100% of TL) is
modeled as a series of ellipses (with 0–5 and 85–100% modeled
as a cone) (Christiansen et al., 2019, 2020b). The ellipses are
calculated using a height to width ratio (H:W), where lateral
height (H) is measured from UAS images of the animal when
turned on its side (Christiansen et al., 2020b). We chose to
not assess this method because H:W measurements for the
three species used in this study were not available and these
models include the head and peduncle – regions of the body
not used for energy storage (i.e., Brodie, 1975; Koopman et al.,
2002) – and would thus be less comparable to the other body
condition measurements we assessed. BV is particularly useful in
approximating body mass, thus studies using these volumetric
measurements should follow a similar framework presented
here to incorporate uncertainty. Collecting more UAS images of
individuals from different angles will help elucidate variability in
3D body shapes and thus may help improve BV measurements
(i.e., see Christiansen et al., 2020b).

CONCLUSION AND CONSERVATION
APPLICATIONS

As the capacity to collect body condition measurements on
various species using UAS continues to grow, frameworks such
as the one presented in this study will be key to help quantify
uncertainty associated with these measurements to yield robust
scientific conclusions and better monitor population health. Our
study shows that measurement uncertainty does not scale linearly
across 1D, 2D, and 3D body condition measurements, and that
while all standardized body condition estimates were highly
correlated, BAI accounts for potential variation along the body
for each species and was the most precise body condition metric.

Linking BAI to vital rates will help elucidate a healthy BAI
range for each species, enabling the ability to describe individual
whale health status (i.e., malnutrition and pregnancy) and overall
population trends. For example, over 30 years of photographic
observations of North Atlantic right whales were combined
with data on life history status, visual body condition, and
health in a hierarchical Bayesian state-space model to infer
health status and survival at the individual, demographic, and
population levels (Pettis et al., 2004; Schick et al., 2013, 2016;
Rolland et al., 2016). Incorporating quantitative measures of body
condition from UAS imagery, and other health parameters such
as entanglement rate (Ramp et al., 2021), will improve measures
of health when monitoring effects of anthropogenic disturbance
(Pirotta et al., 2018) and environmental change (Lemos et al.,

2020; Christiansen et al., 2021). As baleen whales and other
sentinel species continue to face multiple threats and sources
of disturbance, the application of UAS-based photogrammetry
to monitor, quantify, and understand individual and population
level health is a powerful and important tool to progress
conservation management.
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