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Stony coral tissue loss disease (SCTLD) was first documented in 2014 near the
Port of Miami, Florida, and has since spread north and south along Florida’s Coral
Reef, killing large numbers of more than 20 species of coral and leading to the
functional extinction of at least one species, Dendrogyra cylindrus. SCTLD is assumed
to be caused by bacteria based on presence of different molecular assemblages
of bacteria in lesioned compared to apparently healthy tissues, its apparent spread
among colonies, and cessation of spread of lesions in individual colonies treated with
antibiotics. However, light microscopic examination of tissues of corals affected with
SCTLD has not shown bacteria associated with tissue death. Rather, microscopy shows
dead and dying coral cells and symbiotic dinoflagellates (endosymbionts) indicating
a breakdown of host cell and endosymbiont symbiosis. It is unclear whether host
cells die first leading to death of endosymbionts or vice versa. Based on microscopy,
hypotheses as to possible causes of SCTLD include infectious agents not visible at the
light microscopy level or toxicosis, perhaps originating from endosymbionts. To clarify
this, we examined corals affected with SCTLD and apparently healthy corals using
transmission electron microscopy. Endosymbionts in SCTLD-affected and apparently
healthy corals consistently had varying degrees of pathology associated with elongated
particles compatible in morphology with filamentous positive single-stranded RNA
viruses of plants termed anisometric viral-like particles (AVLP). There was apparent
progression from early to late replication of AVLP in the cytoplasm of endosymbionts
adjacent to or at times within chloroplasts, with morphologic changes in chloroplasts
consistent with those seen in plant cells infected by viruses. Coral host cell pathology
appeared limited to massive proliferation and lysis of mucus cells. Based on these
findings, we hypothesize that SCTLD is a viral disease of endosymbionts leading to
coral host death. Efforts to confirm the presence of a virus associated with SCTLD
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through other means would be appropriate. These include showing the presence of
a virus through molecular assays such as deep sequencing, attempts to grow this
virus in the laboratory through culture of endosymbionts, localization of virus in tissue
sections using immunohistochemistry or in situ hybridization, and experimental infection
of known-virus-negative corals to replicate disease at the gross and microscopic level.

Keywords: stony coral tissue loss disease, Symbiodiniaceae, zooxanthellae, transmission electron microscopy,
Flexiviridae, pathogenesis

INTRODUCTION

Stony coral tissue loss disease (SCTLD) was first identified in
2014 near Virginia Key off Miami, Florida (Precht et al., 2016;
Aeby et al., 2019), and has spread to the northernmost extent
of Florida’s Coral Reef (FCR), south through the Florida Keys
and multiple distant sites. The disease is severe enough to have
led to functional extinction of at least one species of coral,
Dendrogyra cylindrus in Florida (Neely et al., 2021). SCTLD
presents as varying degrees of acute to subacute tissue loss,
variably bordered by focal bleaching, affecting more than 20
species of corals (Florida Coral Disease Response Research and
Epidemiology Team, 2018; Aeby et al., 2019) and is assumed by
some to be caused by an infectious agent (Muller et al., 2020).
Supporting this hypothesis is a spatial epidemiology suggestive of
a contagion (Muller et al., 2020), corals affected by SCTLD have
specific groups of bacteria associated with lesions as detected by
molecular assays (Meyer et al., 2019; Rosales et al., 2020; Ushijima
et al., 2020), and multiple species of affected corals respond
positively to treatments with antibiotics (Neely et al., 2020, 2021),
although this practice does not prevent genesis of additional
lesions (Shilling et al., 2021; Walker et al., 2021). Finally,
experimental mesocosm studies suggest SCTLD is transmissible
(Aeby et al., 2019; Eaton et al., 2021; Meiling et al., 2021).

Contradicting the possibility that bacteria cause SCTLD
are light microscopy descriptions of the disease that have, to
date, not shown bacteria or any other organism associated
with cell pathology such as visible evidence of bacterial
clusters adjacent to dead cells (Landsberg et al., 2020).
Instead, endosymbiotic dinoflagellate algae from the family
Symbiodiniaceae (endosymbionts) living in the gastrodermal
cells of the corals’ polyps (LaJeunesse et al., 2018) and
coenenchyme were degenerating at, as well as some distance
away from, the tissue-loss margins, suggesting that they were
more sensitive to damaging factors than the corals’ cells. Thus,
histopathology indicates that SCTLD appears to be a dysfunction
of the symbiotic relationship between host and endosymbionts
leading to death of endosymbionts and host cells and gross
clinical signs of tissue loss and focal bleaching (Landsberg
et al., 2020). Based on microscopic findings, the hypothesis is
that either endosymbionts are dying leading to host cell death
or vice versa. Because light microscopy cannot, in general,
resolve microorganisms smaller than bacteria, SCTLD could be
caused by smaller infectious agents such as viruses. Alternatively,
SCTLD could be some sort of toxicosis that leads to host
cell lysis (Landsberg et al., 2020). Dinoflagellates are known to
produce a variety of toxic substances that can be harmful to

humans and aquatic animals (Landsberg, 2002), so plausibly,
endosymbionts might be producing toxins that kill the coral
host. Indeed, studies exist documenting production of toxins
in endosymbiotic dinoflagellates from corals (Nakamura et al.,
1993) some of which are implicated in pathogenesis of coral
bleaching (McConnaughey, 2012).

The role of viruses in causing cell pathology in corals is
not well explored. Most work on coral viruses has focused
on molecular deep sequencing studies to assess presence of
viruses in coral reef environments, a topic reviewed extensively
(Vega Thurber and Correa, 2011; Vega-Thurber et al., 2017).
According to these authors, viruses infect coral cells, symbionts,
and bacteria associated with corals. Based on molecular presence
of viruses in various geographic locations or associations of these
with various disease states, certain viruses, like bacteriophages,
play a potential role in nutrient cycling by lysing bacteria.
Bacteriophages are also thought to be protective against certain
bacterially induced diseases in corals. Finally, shifts in viromes
associated with bleaching in corals also implicate a potential role
of viruses in coral health. For instance, a bleaching event in
Acropora from the Pacific revealed molecular and transmission
electron microscopy (TEM) evidence of a herpesvirus association
(Correa et al., 2016). Experimental studies have also tried to
induce virus replication in cultured symbionts from a variety
of corals from the Pacific and visualizing these endosymbionts
with TEM. Examples include detection of viral-like particles in
endosymbionts of Euphyllia paradivisa exposed to particulate
organic matter (Rosset et al., 2015), Acropora digitifera,
Echinopora hirsutissima, Porites rus, Pocillopora damicornis, and
P. damicornis exposed to UV and far-red radiation (Camaya
et al., 2016). In all those cases, the viruses had icosahedral
morphology. In contrast, filamentous viral-like particles were
also seen in TEM studies of UV or heat-stressed endosymbionts
from unspecified Cnidaria by Lohr et al. (2007), and studies
with Acropora tenuis by Weynberg et al. (2017). Less effort
has been expended on looking at viruses in Caribbean corals.
One instance is the discovery of single-stranded RNA viruses
in Montastraea cavernosa (Correa et al., 2013), but their role in
disease causation was unclear.

Transmission electron microscopy allows for detection of very
small structures like cell organelles and viruses. The purpose
of this study was to examine tissues from SCTLD-affected
and apparently healthy corals by using TEM to characterize
the disease at the ultrastructural level in attempts to relate
light microscopic findings to those from TEM, clarify whether
endosymbionts or host cells die first, and see if infectious agents
could be associated with cell pathology.
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MATERIALS AND METHODS

Samples were collected from coral colonies from various
locations in Florida during 2016 and 2018 by Florida’s Fish and
Wildlife Conservation Commission (FWC) Fish and Wildlife
Research Institute (FWRI) and preserved in TEM (Trump’s)
fixative (McDowell and Trump, 1976) as described in Landsberg
et al. (2020). Briefly, sections of corals sampled for the Landsberg
et al. (2020) paper had a fragment collected for light microscopy
and from that fragment, a smaller (<5 mm) subfragment was
fixed for TEM. So, the coral samples examined here were the same
ones used to describe SCTLD by light microscopy in Landsberg
et al. (2020; Supplementary Table 1). For methods of routine
paraffin-embedded tissue sections with hematoxylin and eosin
staining, refer to Landsberg et al. (2020). Briefly, a sample targeted
for TEM (less than 0.5 cm diameter) to encompass surface and
portions of basal body wall was excised with a bone cutter from
a piece of core biopsy punch (2.54 cm diameter size) taken for
histology, and live tissues placed in TEM fixative. Fragments
were labeled as originating from apparently healthy colonies
(Healthy) originating from geographic areas not then known to
have SCTLD based on absence of gross lesions [see Landsberg
et al. (2020) for details], or colonies manifesting gross lesions
of SCTLD comprising apparently normal fragments (SCTLD-
Healthy) or fragments with lesions (SCTLD-Lesion). For SCTLD-
Lesion, sampling focused on intact tissue or areas with apparent
tissue integrity near bare skeleton. Fragments were stored at 4◦C
in TEM fixative until processing.

To prepare fragments for TEM examination in the
United States Geological Survey, National Wildlife Health
Center, Honolulu Field Station, corals were decalcified in 10%
EDTA (1–2 days) then postfixed in TEM fixative. Tissues were
then rinsed in 0.1 M sodium cacodylate buffer containing 0.35 M
sucrose and postfixed with 1% osmium tetroxide in 0.1 M sodium
cacodylate buffer. Tissue was dehydrated in a graded ethanol
series, the ethanol was replaced with propylene oxide, and the
tissue was embedded in LX112 epoxy resin. Epoxy-embedded
tissues were cut into 1-µm thick sections and stained with
Richardson’s stain for light microscopy. For electron microscopy,
ultrathin (60- to 80-nm) sections were obtained on an RMC
Powertome ultramicrotome, double stained with uranyl acetate
and lead citrate, viewed on a Hitachi HT7700 transmission
electron microscope at 100 kV, and photographed with an AMT
XR-41B 2k-by-2k charge-coupled device camera.

To prepare fragments for TEM examination in Florida,
samples were decalcified with 10% EDTA solution for 8 days
without agarose enrobing, followed by postfixation with 1%
osmium tetroxide in 1.25% sodium bicarbonate buffer, pH 7.2,
for 1 h at room temperature. Tissue samples were then washed in
Nano-pure water, three times, for 5 min each, and subsequently
dehydrated in a graded series of ethanols and embedded in Spurr’s
epoxy resin. Thin sections (90 nm) were cut with a diamond knife
on a Leica EM UC6 ultramicrotome and placed on grids. The
sections were post-stained with 2% uranyl acetate in 50% ethanol
and Reynolds’ lead citrate (Reynolds, 1963) and examined with a
Jeol JEM-1400 transmission electron microscope in TEM bright
field mode at 80 kV.

The tissues of surface body wall (epidermis, mesoglea,
gastrodermis with endosymbionts) and basal body wall
(gastrodermis with endosymbionts, mesoglea, calicodermis)
were examined and representative lesions were photographed.
Coral host cells and symbionts were judged healthy if they
had intact cell and nuclear membranes with expected
complement of organelles or structures appropriate to that
cell type (Fautin and Mariscal, 1991).

During examination of tissues, it became evident, based on
variety of pathology in endosymbionts, that efforts be dedicated
to documenting morphologic changes in endosymbionts that
differed from what has been described for normal endosymbionts
in the literature. Normal endosymbionts (Trench and Blank,
1987; Wakefield et al., 2000) enclosed by a host symbiosome
membrane are characterized by a cell wall enclosing a space
mostly filled by a peripherally located multi-lobed chloroplast
composed of stacked thylakoid membranes, a stalked pyrenoid
surrounded by an annulus of starch, a nucleus with condensed
chromatin, mitochondria, starch granules, lipid vacuoles, and
sometimes a granular accumulation body (Figure 1A). The
following features were categorized as present/absent in the first
30 endosymbionts encountered on a TEM grid for each sample,
because they were morphologic changes that deviate from what
is considered normal endosymbionts ultrastructure (Trench and
Blank, 1987; Wakefield et al., 2000): loss of laminar detail in
thylakoid membranes, gigantism of chloroplast exemplified by
enlarged chloroplasts with remnants of thylakoid membranes,
absence of starch granules, absence of annular starch around
pyrenoid (Figure 1B), presence of amorphous homogenous
electron-dense aggregates in endosymbiont cytoplasm or
membrane formation within intracellular cavities (Figure 1C),
presence of variably sized non-membrane bound cavities within
the cell cytoplasm (Figures 1C–E), and lysis of endosymbionts.
We also categorized anisometric viral-like particles (AVLP)
compatible in morphology and size with positive single-stranded
RNA (+ssRNA) viruses of plants with linear to sinuous
morphology (Stevens, 1983; Agrios, 2004) as follows: whorled
electron-dense material (viroplasm; Figure 1E) often associated
with fine AVLP (Figures 1F, 2A,B), coarse AVLP arranged in
stellate clusters (Figures 2C,D), or coarse AVLP in layered or
haphazard clusters (Figures 2E,F; Zechmann and Zellnig, 2009).
Mucus in coral tissues was identified in TEMs according to
published criteria (Fautin and Mariscal, 1991). Representative
photographs were also taken of endosymbionts to document
features listed above. For negative stains, fixed tissues were
macerated into a slurry that was placed on a TEM grid, stained
with ca. 1% uranyl acetate, and imaged as above.

We processed 25 samples of five coral species including six
samples each from M. cavernosa and Pseudodiploria strigosa,
five each from Colpophyllia natans and Orbicella faveolata, and
three from Siderastrea siderea comprising 11 SCTLD-Healthy,
9 SCTLD-Lesion, and 5 Healthy from a reference area, outside
of known SCTLD locations at the time of sampling (Landsberg
et al., 2020). The total number of individual colonies examined
for TEM was 19. Additional 2016 archived TEM samples
of two M. cavernosa were reviewed for potential presence
of AVLP and pathological changes in endosymbionts. 1776
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FIGURE 1 | (A) Normal endosymbiont with pyrenoid (p) and annular starch (s), starch granule (white arrow), nucleus (n), multilobulated chloroplasts with distinct
thylakoid membranes (arrowhead); bar = 1 µm, S. siderea SCTLD-Healthy. (B) Gigantism of chloroplasts (g); note massive enlargement and lack of detail of
thylakoid membranes, lack of starch granules, and lack of pyrenoid with nucleus (n); bar = 1 µm, M. cavernosa SCTLD-Healthy. (C) Cavity (asterisk) and
electron-dense amorphous matrix (arrow) and membrane formation (arrowhead); bar = 1 µm, P. strigosa SCTLD-Healthy. (D) Cavity with viroplasm (v) from which
emanate coarse anisometric viral-like particles (AVLP), the granular material surrounding the viroplasm; bar = 1 µm, O. faveolata SCTLD-Healthy. (E) Whorled
electron-dense viroplasm (v) and AVLP (arrow) within cavity; bar = 1 µm, P. strigosa SCTLD-Lesion, (F) Detail of (E) note putative early stage AVLP (arrow) near
viroplasm (v); bar = 200 nm.
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FIGURE 2 | (A) Endosymbiont with intracellular cavity and putative early inclusion of anisometric viral-like particles (AVLP) within chloroplasts (arrow); bar = 1 µm,
C. natans SCTLD-Lesion. (B) Detail of (A); note arrays of sinuous AVLP (arrow) mixed with electron-dense material and cross sections with a core (arrowhead);
bar = 100 nm. (C) Putative intermediate stage of viral infection; note large cavity containing clumps of electron-dense material and clusters of coarse AVLP arranged
in stellate (arrow) and haphazard (arrowhead) pattern; bar = 1 µm, O. faveolata SCTLD-Healthy. (D) Detail of (C); note cluster of stellate AVLP (arrow) and coarser
haphazardly arranged AVLP (arrowhead) admixed with clumps of electron-dense material; bar = 200 nm. (E) Putative advanced stage of viral infection; note cavity
containing clumps of electron-dense material mixed with AVLP arranged in stellate (arrow) or haphazard manner (arrowhead); bar = 1 µm, C. natans SCTLD-Healthy.
(F) Detail of haphazardly arranged AVLP; note core in sagittal (arrow) of AVLP apparently emanating from electron-dense viroplasm and cross (arrowhead) sections of
individual AVLP; bar = 100 nm.
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TABLE 1 | Number of TEM photomicrographs (number of individual
endosymbionts) partitioned by health status of fragment and genus.

Genus SCTLD-lesion SCTLD-healthy Healthy Grand total

Colpophyllia natans 136 (52) 152 (12) 20 (76) 308 (140)

Montastraea cavernosa 100 (37) 202 (29) 60 (78) 362 (144)

Orbicella faveolata 105 (26) 152 (29) 87 (55) 344 (110)

Pseudodiploria strigosa 136 (63) 181 (21) 60 (67) 377 (151)

Siderastrea siderea 126 (33) 73 (47) 186 (19) 385 (99)

Grand total 603 (211) 760 (138) 413 (295) 1,776 (644)

photographs comprising 644 endosymbionts were also taken
to document features (Table 1). Features were enumerated
in 735 endosymbionts (only 15 endosymbionts were seen in
one sample). This number differs from the 644 endosymbionts
photographed in that we did not photograph every endosymbiont
seen. A pairwise scatterplot of all ten pathological features
described above along with correlation coefficients were plotted
and analyzed for all corals regardless of health status. All analyses
were done with R (R Core Team, 2017).

RESULTS

Putative Viral Infections
Putative early viral infections were inferred as such based on
the size of viral inclusions. This assumed that smaller inclusions
most often associated with viroplasm (assembly components
of viruses) were early stages and larger inclusions less often
associated with viroplasm were likely later stages (McWhorter,
1965). In this study, putative early viral inclusions were
characterized by clumps of electron-dense whorls associated
with fine AVLP (Figures 1E,F, 2A,B). Putative intermediate
stage viral infections were characterized by AVLP arrayed in
haphazard or stellate patterns and found almost exclusively
in cavities within endosymbionts (Figures 2C,D). AVLP
were occasionally associated with electron-dense to stippled
viroplasm (Figure 3A) and more often with stacked or laminated
membranes (Figure 3B). Membranes were also evident,
associated with stippled viroplasm (Figures 3C,D). Putative
late-stage infections were characterized by large cavities replete
with coarse AVLP (Figures 2E,F) that occasionally appeared to
originate from electron-dense viroplasms (Figures 3E,F); AVLP
ranged in diameter from 15–20 nm. Terminal infections were
characterized by endosymbionts distorted with large cavities
replete with stacks of coarse AVLP mixed with membranes
(Figures 4A,B) or clusters of AVLP that appeared to be
emerging from host cells associated with lysed cell membrane
(Figures 4C–F). Fifteen/735 (2%) enumerated endosymbionts
were lysed. Negative stains revealed sinuous (Figure 5A) to
linear (Figure 5B) filamentous AVLP ranging in width from
18 to 20 nm and length from 558 to 6,697 nm. Like the
2018 samples, we also confirmed putative AVLP in TEMs of
endosymbionts prepared from archived lesioned M. cavernosa
samples obtained in July and November 2016 from the Upper
Keys (Grecian Rocks) and Southeast Florida (Broward County 4),

respectively, (Landsberg et al., 2020) with associated chloroplast
pathology exemplified by AVLP associated with membrane-
bound vesicle formation in chloroplasts, and degrading thylakoid
lamellae (Supplementary Figure 1). AVLP appeared limited to
endosymbiont cytoplasm with apparent early stages (smaller
aggregates of AVLP) associated with the chloroplast and later
stages seen in cavities in degrading endosymbionts adjacent
to deformed chloroplasts (Figures 1–5 and Supplementary
Figures 1E,F).

Endosymbiont Pathology
Intracellular cavities and shrinkage of endosymbionts within
symbiosomes were the only changes we could reliably relate
from light microscopy to TEM. On light microscopy, cavities
were variably sized and differentiated from pyrenoids that have
a distinct core and annulus (Figure 5C). Putative inclusions or
viroplasm (Figures 5C–E) were inferred on light microscopy by
their punctate refractile appearance. Shrunken endosymbionts
were characterized by hypereosinophilic cytoplasm and
increased space in the symbiosomes (Figures 5C,F). In addition
to aforementioned changes in starch or chloroplasts, we
occasionally saw accumulations of what appeared to be stacks
of scrolled cell membranes accumulating in the enlarged
symbiosome spaces (Figures 6A,B).

Coral Host Cell Pathology
The most significant aspect of coral host cell pathology was
hyperplasia and hypertrophy of mucocytes in the gastrodermis
leading to general effacement of tissue architecture with swollen
mucocytes and ruptured cell membranes visible with both light
microscopy (Figure 6C) and TEM (Figures 6D–F). On TEM
images, putative early changes consisted of localized swelling
of mucocytes (Figure 6D) that appeared to progress to general
cell distention accompanied by rupture of cell membranes with
accumulations of cell debris underlying mesoglea and leading
to separation of calicodermis (Figure 6E). Putative late-stage
(more severe) changes were characterized by massive deposits
of mucus effacing tissue architecture of gastrodermis, liberation
of endosymbionts into gastrovascular canals, and accumulations
of debris in mesoglea separating calicodermis from gastrodermis
(Figure 6F). Nuclei of gastrodermal cells with symbiosomes
appeared uniformly intact.

Quantification of Endosymbiont
Pathology
Of the ten morphologic changes enumerated from most to
least common were absence of annular starch granule around
pyrenoid (448/735 or 61%), electron-dense bodies (416/735 or
56%), variably sized intracellular cavity (400/735 or 54% each),
indistinct thylakoid membrane (324/735 or 44%), stellate AVLP
(282/735 or 38%), membrane formation (180/735 or 24%),
absence of starch granules (139/735 or 19%), fine AVLP (120/735
or 16%), gigantism of chloroplasts (93/735 or13%), and coarse
AVLP (49/735 or 7%).

All morphologic changes were observed and photographed
in all species regardless of health status. For enumerated
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FIGURE 3 | (A) Note detail of viroplasm (v) with formation of anisometric viral-like particle (AVLP-arrow); bar = 100 nm, C. natans SCTLD-Healthy. (B) Note laminated
membranes (arrowhead) associated with cluster arranged stellate AVLP (arrow); bar = 100 nm, M. cavernosa SCTLD-Healthy. (C) Note large cavity with
electron-dense material suggestive of viroplasm (v); bar = 1 µm, C. natans SCTLD-Lesion. (D) Close up of (A) with viroplasm (v), cluster of stellate AVLP (arrow), and
membrane formation (arrowhead); bar = 400 nm. (E) Note viroplasm (v) surrounded by numerous haphazardly arranged coarse AVLP; bar = 200 nm, C. natans
SCTLD-Healthy. (F) More electron-dense viroplasm (v) out of which appear to arise AVLP visible in longitudinal (arrow) and cross (arrowhead) sections; bar = 200 nm,
C. natans SCTLD-Healthy.
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FIGURE 4 | (A) Putative late-stage infection; note large cavity effacing most of the cellular architecture and replete with electron-dense material, membranes
(arrowhead) and anisometric viral-like particles (AVLP, arrow); bar = 1 µm, M. cavernosa SCTLD-Healthy. (B) Detail of (A); note AVLP arrayed in lamina (arrow);
bar = 200 nm. (C) Large inclusion of coarse AVLP arrayed haphazardly mixed with electron-dense material associated with lysis of cell wall (arrow); bar = 1 µm,
P. strigosa SCTLD-Healthy. (D) Detail of (C); note AVLP (arrow) near lysed cell wall to the left; bar = 200 nm. (E) Lysed cell; note large pleomorphic cavity with
abundant debris and loss of membrane integrity with clumps of AVLP (arrow); bar = 1 µm, P. strigosa SCTLD-Healthy. (F) Detail of (E); bar = 500 nm.
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FIGURE 5 | (A) Linear anisometric viral-like particles (AVLP -arrow); negative stain; bar = 200 nm, P. strigosa SCTLD-Lesion. (B) Linear AVLP with electron-dense
core (arrow); negative stain; bar = 50 nm, P. strigosa SCTLD-Lesion. (C) Light micrograph of paraffin embedded section. Note endosymbionts with pyrenoid (white
arrowhead) characterized by eosinophilic core surrounded by lighter annulus, intracellular cavity (white arrow), putative viroplasm or early inclusions with punctate
refractile appearance (black arrow), and shrunken endosymbiont with hypereosinophilic cytoplasm (black arrowhead); H&E; bar = 10 µm, M. cavernosa
SCTLD-Lesion. (D) TEM of endosymbiont with cavity containing whorled viroplasm (arrow); 800 nm, P. strigosa SCTLD-Lesion. (E) Close up of (D); note AVLP in
various stages of formation (arrow) within viroplasm; bar = 100 nm. (F) Shrunken endosymbiont within symbiosome; note deformed cell wall, absence of pyrenoid,
starch granules, loss of detail of thylakoid membranes, and aggregate of coarse AVLP within chloroplast (arrow); bar = 1 µm, C. natans SCTLD-Healthy.
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FIGURE 6 | (A) Endosymbiont with cavity (black arrowhead), viroplasm (white arrowhead), and accumulation of scrolled membranes within symbiosome (arrow);
bar = 1 µm, S. siderea Healthy. (B) Detail of (A); note accumulations of scrolled membranes (arrow); bar = 200 nm. (C) Light micrograph of paraffin embedded
section. Note swelling of gastrodermis (arrow) with liberation of endosymbionts (arrowhead); H&E; bar = 50 µm, S. siderea SCTLD-Lesion. (D) Note putative early
stage lesion with swollen mucocytes (arrow) among gastrodermal cells overlying mesoglea (m); bar = 4 µm, C. natans SCTLD-Lesion. (E) Note putative
intermediate-to-late-stage lesion with markedly swollen mucocytes disrupting cellular architecture with rupture of cell membranes (white arrowhead), debris in
mesoglea with lifting off of calicodermis (black arrowhead), and endosymbiont within gastrodermal cell with intact nucleus (white arrow); Skeleton to left,
gastrovascular canal to right. bar = 6 µm, O. faveolata SCTLD-Healthy. (F) Note massive mucus production disrupting gastrodermal architecture with cell membrane
rupture (white arrowhead), mucus secretions in the gastrovascular canals along with an endosymbiont (black arrowhead), and endosymbionts within gastrodermal
cells with intact nuclei enclosed by symbiosomes (white arrow); bar = 6 µm, O. faveolata SCTLD-Healthy.
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FIGURE 7 | Percent of endosymbionts enumerated manifesting various morphologic abnormalities partitioned by abnormalities, health status, and species.
CNAT-C. natans, MCAV-M. cavernosa, OFAV-O. faveolata, PRST-P. strigosa, and SSID-S. siderea. For features, ED stands for electron dense bodies, TM_Indistinct
stands for indistinct thylakoid membrane, and AVLP stands for anisometric viral-like particle. For X axis, SCTLD_H and SCTLD-L stand for healthy and lesion
fragments from SCTLD affected corals, respectively.

endosymbionts, fine AVLP were seen in 0–33% of endosymbionts
in each of the samples whereas coarse AVLP were seen in 0–
30%. Intracellular cavities were seen in 17–70% endosymbionts in
each of the samples whereas stellate AVLP were seen in 20–57%.
Electron-dense bodies were seen in 10–82% of the endosymbionts
in each of the samples whereas membranes were seen in 0–40%.
Missing circumpyrenoid starch annulus was seen in 40–80% of
the endosymbionts in each of the samples whereas missing starch
granules were seen in 0–50%. Indistinct thylakoid membranes
were seen in 0–100% of the endosymbionts in each of the samples
whereas gigantism was seen in 0–73%. No consistent pattern
was seen across species or health condition for any of these
features (Supplementary Table 2 and Figure 7). The highest
correlation coefficients between pathology features across species
and health states were those between stellate AVLP and cavity
formation and those between electron dense bodies and coarse
AVLP (Supplementary Figure 2).

DISCUSSION

Ultrastructural morphologic changes in Florida corals affected
with SCTLD and apparently healthy corals seen here were

suggestive of a viral infection affecting exclusively their
endosymbionts. Unlike cases of bleaching, or white syndrome,
where viral-like particles (VLPs) have been documented in coral
host tissues (Patten et al., 2008; Bettarel et al., 2013), we did not
see AVLP in coral host cells. Rather, abnormalities in coral host
cells were initially limited to mucus hyperplasia/hypertrophy.
In apparently early stages of SCTLD where endosymbionts
contained mild pathology such as small AVLP inclusions and
small cavities, coral host cells enclosing the endosymbionts
were intact with healthy-appearing nuclei and the expected
complement of internal organelles (Figures 6E,F). This indicates
that SCTLD is, fundamentally, a disease of the endosymbionts
that eventually leads to coral host cell death.

Three lines of evidence point to +ssRNA viruses as an
explanation for the presence of AVLP in endosymbionts. First, all
known viruses of plants with filamentous to linear morphology
are +ssRNA viruses (Agrios, 2004; Martelli et al., 2007). Second,
+ssRNA viruses promote membrane formation in host cells,
because these membranes are used by virally encoded proteins
to make -ssRNA that is then used as a template to make+ssRNA
(Ahlquist, 2006; Martelli et al., 2007), and membrane formation
was a prominent feature of endosymbiont pathology. Third,
+ssRNA viruses replicate in cell cytoplasm and do not bud from
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the host cell membrane (Ahlquist, 2006), a consistent feature of
endosymbionts seen here where AVLP were exclusively located
in the cytoplasm either in or near chloroplasts in early stages or
more commonly in cavities adjacent to chloroplasts.

Negative stains confirmed the filamentous nature of AVLP
with dimensions compatible with those of +ssRNA viruses that
in plants range from 10 to 28 nm wide and 128–1,250 nm long
with a filamentous core (Stevens, 1983). This group of viruses are
classified as Flexiviridae (Martelli et al., 2007). We acknowledge
that some of the AVLP seen in negative stains here were up to
five times as long as the longest known plant Flexivirus, and
possibly not all AVLP seen on negative stain were actual viruses.
The only linear structures we are aware of in corals are collagen
fibers and nematocysts tubules. The AVLP on negative stain
were too narrow to be nematocysts’ tubules that exceed 300 nm
diameter (Reft, 2012). Likewise, the AVLP on negative stain were
unlike collagen fibrils that have distinct striations, do not have a
core, and generally have a diameter exceeding 30 nm (Starborg
et al., 2013). Future efforts to confirm dimensions of AVLP by
virus isolation attempts or immunogold studies to tag confirmed
viruses would be important areas to pursue.

Two explanations exist for the different morphologies of
AVLP seen here: (1) Endosymbionts, the species of which we
were unable to identify by ultrastructure, are infected with at
least three different types of viruses or, (2) This variation in
morphology reflects different developmental forms of the same
virus. As the most parsimonious explanation, we suspect the
second option is more likely. In animals (Netherton et al.,
2007) and plants (Yang et al., 2017), virus particle assembly
goes through a maturation process involving nucleic acids and
proteins that are initially visible as amorphous electron-dense
masses (viroplasm) from which emerge mature viral particles.
This pattern was evident in multiple endosymbionts from
multiple corals. We inferred the progression of early- versus late-
stage virus disease based on the size of viral inclusions, assuming
that smaller inclusions most often associated with viroplasm
(assembly components of viruses) were early stages and larger
inclusions less often associated with viroplasm were likely later
stages (McWhorter, 1965).

Morphologic changes in host endosymbionts including
formation of variably sized intracellular cavities, loss of detail of
thylakoid membranes and gigantism of chloroplasts (Figure 7)
were also compatible with the way these organelles respond
to virus infections in plants. In plants, the chloroplast is
often targeted by viruses (Zhao et al., 2016; Bhattacharyya
and Chakraborty, 2018; Jin et al., 2018), and virus-infected
chloroplasts manifest morphologic changes very similar to those
seen in endosymbionts here. For example, during the +ssRNA
(barley stripe mosaic virus) infection and viral replication
complex formation, chloroplast abnormalities included the
formation of peripheral vesicles and cytoplasmic invaginations
(Jin et al., 2018), with the former notably observed in early
stage chloroplast degradation associated with putative VLPs in
M. cavernosa endosymbionts (Supplementary Figure 1). Given
that the chloroplast makes up a considerable volume of the
endosymbiont, this organelle could be a primary target for
viral infections. Other changes such as loss of starch seen in

endosymbionts were less clearly associated with viral infections.
Electron-dense structures in cavities within endosymbionts could
have been lipids (Weng et al., 2014) or viroplasm.

Cavities in endosymbionts were round and often filled with
debris but were unlike accumulation bodies. Accumulation
bodies in endosymbionts, hypothesized to be waste accumulation
structures, are normally round and filled with tightly packed
electron-dense material (Taylor, 1968; Zhu et al., 2011).
In contrast, in endosymbionts examined here, cavities were
correlated with presence of AVLP (Supplementary Figure 2)
mixed with debris, electron-lucent matrix, membranes, and
viroplasm. Finally, depletion of starch reserves was commonly
seen indicating depletion of energy reserves or inability of the cell
to generate sugars. This would accord with chloroplast pathology,
which likely resulted in reduced ability of the cell to carry
out photosynthesis, a key process needed to generate sugars in
endosymbionts (Yellowlees et al., 2008). Reduced photosynthesis
can lead to starch depletion in endosymbionts in other Cnidaria.
For instance, light-starved Aiptasia have endosymbionts with
reduced starch reserves (Muller-Parker et al., 1996). Whether
the cavities were a harbinger of endosymbiont death could not
be confirmed from findings herein. In plants, vacuolation is an
important morphologic indicator of cell death (van Doorn et al.,
2011), however, we were unable to convincingly see membranes
surrounding the intracellular spaces of endosymbionts, and
thus termed them cavities. Clearly, lysed endosymbionts were
likely dead. Ideally, documenting morphologic progression
of endosymbiont pathology associated with AVLP in more
controlled settings, preferably with cultured endosymbionts,
would help clarify pathogenesis of this disease.

Viruses have been detected in corals by electron microscopy
and molecular assays, and they are thought to play potentially
important roles in coral bleaching, stress responses, and
microbial turnover (Vega Thurber and Correa, 2011). In free-
living marine phytoplankton, including dinoflagellates, double-
stranded icosahedral DNA viruses in the Phycodnaviridae are
well known but in recent years, evidence for a significant
ecological role of +ssRNA viruses has been found (Nagasaki
et al., 2006). For example, the icosahedral + ssRNA virus,
HcRNAV (Alternavirdiae, dinornavirus) plays a major role in the
termination of Heterocapsa circularisquama blooms through lytic
activity (Tomaru and Nagasaki, 2004; Tomaru et al., 2007). Viral
lysis of dinoflagellate endosymbionts has also been explored as
one possible mechanism for coral bleaching. A small (∼30 nm
diameter) icosahedral ssRNA virus closely related to HcRNAV
and the cricket paralysis virus have been detected in coral-
associated endosymbionts (Correa et al., 2013, 2016; Levin et al.,
2017; Montalvo-Proaño et al., 2017; Grupstra et al., 2021), but
pathogenic mechanisms for these endosymbiont viruses in coral
diseases have yet to be systematically proven. Endosymbionts
are hosts for a diverse assemblage of viruses, mainly double
stranded DNA bacteriophages, which may not necessarily be
pathogenic (van Oppen et al., 2009; Wood-Charlson et al.,
2015). Molecular assays detect only the presence of an infectious
agent and by themselves provide little information as to the
viability of the agent or its role in causing host cell pathology
and disease. Putative pathogenicity of an infectious agent to a
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host can only be reliably determined by documenting host cell
pathology associated with that agent (Work and Meteyer, 2014),
as in this study.

Uncharacterized VLPs have been extensively documented
in endosymbionts by electron microscopy both in hospite
and culture. For instance, VLP were seen in thylakoids of
endosymbionts from heat-shocked Anemonia viridis (Wilson
et al., 2001), in UV-treated endosymbionts cultures (Lawrence
et al., 2014), and VLP were seen in host tissues and
endosymbionts of heat-shocked Pavona danai (Wilson et al.,
2005). Various morphologies of VLP were seen in mucus of
Pseudodiploria and Acropora from Australia (Davy and Patten,
2007), water surrounding thermally stressed endosymbionts
(Davy et al., 2006), and within endosymbionts of heat-stressed
P. damicornis (Grupstra et al., 2021). Unfortunately, in these
studies, VLP were sparse, making them very difficult to
differentiate from similar sized and shaped structures that
often turn out to be artifacts such as condensed proteins
or nucleic acids, a common problem in interpretation of
transmission electron micrographs (Ackermann and Tiekotter,
2012). Moreover, none of these studies showed convincing
morphologic evidence of cell pathology associated with viral
infection; however, we acknowledge that these studies did not
have as a primary objective to document host cell pathology
associated with viral replication. Ideally, documentation of
plausible viral infections in organisms by TEM should illustrate
various stages of viral morphogenesis associated with clear
evidence of cell pathology with abundant virions (Work et al.,
2017). It is these aspects of our findings and their consistency
across susceptible sampled species that make a compelling case
for the possibility that a lethal viral infection of endosymbionts
could be involved in the pathogenesis of SCTLD. That said,
confirming the role of AVLP in causing lesions seen in
endosymbionts will benefit from additional studies, ideally such
as virus isolation in cultured cells so that progression of
morphologic changes associated with viral infection over time
can be more closely monitored.

Another interpretation of our findings is that the AVLP seen
in chloroplasts are some form of degradation structures of this
organelle (e.g., thylakoid membranes) secondary to heat stress
or other undefined environmental insult. Structures observed
here have not been documented by TEM in endosymbionts of
E. paradivisa exposed to particulate organic matter (Rosset et al.,
2015), Aiptasia pallida deprived of light (Muller-Parker et al.,
1996), A. digitifera, E. hirsutissima, P. rus, P. damicornis, and
Aiptasia pulchella undergoing bleaching (Ladrière et al., 2008),
A. pulchella undergoing nitrogen deprivation (Jiang et al., 2014),
or P. damicornis exposed to UV and far-red radiation (Camaya
et al., 2016). The three exceptions were studies on endosymbionts
from unspecified Cnidaria by Lohr et al. (2007), studies with
A. pulchella by Lawrence et al. (2014), and studies with A. tenuis
by Weynberg et al. (2017) where cultured endosymbionts from
archived and cultured collections exposed to UV radiation or heat
showed intracytoplasmic cavities in endosymbionts associated
with AVLP. Interestingly, in the one study where molecular
analyses were done, no sequences of Flexiviridae were seen
(Weynberg et al., 2017). However, the genomes of Flexiviridae

are not well conserved and can be very plastic (Martelli et al.,
2007) perhaps making a divergent form hard to detect from
existing genomic databases. Moreover, molecular detection of
viruses from marine specimens can be a fraught endeavor
subject to whims of methods of nucleic acid extraction, sample
purification, and other procedural variables that can significantly
impact downstream bioinformatics analyses (Wood-Charlson
et al., 2015). In plants, AVLP are not a feature of chloroplast
degradation except for viral infections (Sowden et al., 2017), so
it is difficult to explain the structures we saw as a byproduct of
UV or heat exposure in corals.

The most obvious coral host response to endosymbiont
pathology appeared mainly limited to hyperplasia and
hypertrophy of mucocytes leading to disruption and effacement
of gastrodermal architecture with rupture of cell membranes.
This feature accorded with light microscopy where cell lysis
(lytic necrosis) secondary to massive mucus production is a
signal histologic feature of SCTLD (Landsberg et al., 2020),
and fits with some features of cell necrosis in animal cells that
include plasma membrane rupture (Kroemer et al., 2009). Unlike
Landsberg et al. (2020), we did not see coral host cell changes in
Montastraea such as degraded nuclei or vacuolation which were
possibly more advanced than those documented here. Tissue
sections for TEM are very small, so it is possible that the sections
we examined did not have those host cell responses. Likewise,
Landsberg et al. (2020) did not note the mucus changes seen
in this study. These discrepancies illustrate that further studies
to better characterize host cell pathology relative to progressive
stages of SCTLD would be useful.

One possible reason why affected corals produce excessive
mucus might be the result of endosymbiont metabolic
dysfunction. Viral infections of eukaryotic algae can have
profound effects on host cell metabolism influencing, for
example, lipid metabolism, photosynthesis, and sulfur
metabolism (Jackson et al., 2021). Chloroplasts clearly
manifested varying degrees of pathology, and this organelle
provides carbohydrates to the coral host through photosynthesis
(Yellowlees et al., 2008). Gigantism of chloroplasts was
occasionally seen and starch granule depletion in endosymbionts
was common indicating an inability to store carbohydrates.
Coral mucus is a carbohydrate-rich substance subject to many
regulatory pathways such as diet, use for defense, aid to feeding,
and maintenance of microbiome (Brown and Bythell, 2005), so
many opportunities exist to disrupt its production. Additionally,
in Montastraea heat stress can lead to loss of endosymbionts
associated with increased mucocytes (Piggot et al., 2009). As
such, the mucus production observed in this study could also
simply be a host stress response. Disintegration of mesoglea and
dissociation of calicodermis would accord with gross clinical
signs of tissue loss, a key clinical manifestation of SCTLD. The
calicodermis is the cell layer that adheres coral tissue to skeleton
(Hyman, 1940), so loss of that layer would mean loss of tissue
anchorage (Drake et al., 2020).

A viral infection killing endosymbionts would explain many
epidemiologic and anatomic features of SCTLD. The disease
appears to have originated near the Port of Miami and spread
north and south affecting multiple species of corals and indicating
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an infectious contagion (Muller et al., 2020). Histologic
examination of diseased and apparently healthy corals showed
necrosis of endosymbionts and host cells indicating a widespread
phenomenon (Landsberg et al., 2020). Endosymbionts are the
common denominator of all species of corals in the Caribbean.
A viral infection killing endosymbionts leading to host cell death
and clinical manifestations of SCTLD is a reasonable hypothesis
to explain the large number of coral species affected by the disease
(Aeby et al., 2019). Perhaps endosymbionts in the Caribbean are
particularly susceptible to viral infections in contrast to those
of corals in the Pacific where lesions compatible with SCLTD
at the microscopic level have yet to be documented (Williams
et al., 2010; Work and Aeby, 2011; Work et al., 2012, 2014, 2015;
Rodríguez-Villalobos et al., 2014, 2015). More information on
endosymbionts species-specific susceptibility to potential virus
infections would be of interest.

Other aspects of SCTLD would also support a virus infection
of endosymbionts. Landsberg et al. (2020) found histologic
lesions in corals that were apparently healthy, and we also
saw endosymbiont pathology associated with AVLP in both
apparently healthy and lesioned corals indicating that viral
infection is widespread and enzootic. Treating lesion margins
of corals affected with SCTLD stops progression of tissue loss
but does not prevent the appearance of new multifocal lesions
(Shilling et al., 2021) fitting the pattern of a systemic virus
disease affecting endosymbionts throughout the colony where
virus-induced pathology could arise anywhere either through
reactivation of systemic lesions or reinfection. A possible analogy
would be smallpox in humans with multicentric lesions on
the skin (Councilman, 1905). We note that Landsberg et al.
(2020) did not report AVLP on TEMs, and we suspect this was
in part because greater effort and close scrutiny of numerous
TEMs in this study allowed us to develop an image recognition
pattern permitting identification of AVLP as a possible cause
of endosymbiont pathology. A review of TEMs showed the
ultrastructural changes seen here were similar to those from
corals processed in Florida indicating that our findings are not
an artifact of processing.

Reasons why a viral disease would appear in endosymbionts
of Florida corals in 2014 and its origins are speculative
but could relate to host cell movement, temperature, or
sedimentation. Endosymbionts can move long distances. For
instance, Durusdinium (LaJeunesse et al., 2018), was recently
documented invading the Caribbean from the Pacific rendering
infected host corals there less susceptible to bleaching but
making them poorer depositors of calcium carbonate (Pettay
et al., 2015). A similar mechanism could be responsible for
introduction of novel pathogens. Alternatively, this putative
virus has been present historically in Florida, but somehow
environmental conditions have changed sufficiently to allow it
to flourish. For instance, SCTLD was originally described in
2014 during unusually high temperatures and prior bleaching
events (Precht et al., 2016). Climate change is expected to
significantly alter the dynamics and spread of plant pathogens
(Jones, 2012), so a plausible conjecture is that rising temperatures
could have the same effect for pathogens of endosymbionts.
A final possibility is sedimentation. A dredging operation in

Miami harbor was ongoing during the time when SCTLD
appeared in Florida that resulted in a sediment plume covering
an area exceeding 200 km2 (Barnes et al., 2015) leading to
sediment deposition on corals (Miller et al., 2016). Sediments are
known reservoirs of other viruses infecting marine dinoflagellates
(Nagasaki et al., 2006), so perhaps dredging released viruses
previously locked in deep sediments.

Endosymbiont pathology associated with AVLP was seen in
both apparently healthy and SCTLD affected tissues, including
from colonies from presumably SCTLD free areas. The lack of
a clear pattern between presence of endosymbiont pathology,
AVLP, and health status has several potential explanations.
First, it is almost certain that corals were sampled in various
stages of disease as no scoring was assigned to severity of
gross lesions, and it was impossible to know in the field at
what temporal stage of infection a coral might be. Second,
there is clear evidence of differential host responses to SCTLD
as manifested by differential susceptibility; for instance, the
disease severely affects D. cylindrus (Neely et al., 2021) but
hardly affects Acropora sp. (Alvarez-Filip et al., 2019). This
difference in host response is further seen at the cellular level
where histologic manifestation of disease varied inconsistently
between species both in apparently healthy and lesioned tissues
(Landsberg et al., 2020). Third, even within apparently normal
tissues from SCTLD-enzootic areas, there was evidence of
cellular pathology at the light microscopic level. Based on
presence of microscopic lesions in a single M. cavernosa
from the Florida Keys, Landsberg et al. (2020) suspected that
SCTLD would have been present in the area months earlier
than documented in the field grossly. We acknowledge that
a majority of samples from SCTLD-free areas examined by
histology had no histologic lesions (Landsberg et al., 2020), yet
all samples from SCTLD-free areas examined by TEM were
AVLP positive. Because TEM allows visualization of structures
not visible on light microscopy, it is possible that corals from
SCTLD-free areas were in early stages of viral replication
but not at advanced stages sufficient to show lytic necrosis
visible on light microscopy. Because cellular pathology precedes
manifestation of gross lesions (Cheville, 1976), morphologic
changes at the microscopic level are detected earlier than
gross pathology, so it is not surprising that light microscopy
could be a more sensitive tool to detect presence of disease
in an ecosystem. Also, because TEM is able to detect more
subtle cellular changes than light microscopy, it is possible
that we simply detected early signs of disease with this tool
that were not yet evident on light microscopy. Although it
is possible that endosymbiont pathology has nothing to do
with gross lesions of SCTLD, this would completely contravene
precepts of veterinary pathology where evidence of cellular
pathology is presumed to play a role in manifestation of gross
pathology unless proven otherwise (Cheville, 1988). In summary,
given all the variables above (differential host susceptibility,
temporal variation in disease manifestation, a sampling design
not structured to account for severity of disease) presence
of pathology in apparently normal tissues is expected, and
the potential role of viruses as a cause of SCTLD merits
further investigation.
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The lack of a clear pattern between gross and microscopic
pathology could be rectified in future studies. If SCTLD is
confirmed to be a viral disease, careful manipulative experiments
using well-characterized hosts confirmed microscopically and
molecularly to be virus free and tracing of gross and microscopic
pathology as disease progresses temporally would go a long
ways to increase our understanding of disease pathogenesis and
relating microscopic to gross pathology. Given the variation in
species’ response to SCTLD (Alvarez-Filip et al., 2019), there
is a need to develop host-specific case definitions for SCTLD
which would also increase our understanding of how to relate
gross to microscopic pathology. Field sampling for SCTLD might
consider developing some sort of subjective disease severity score
based on systematic gross descriptions (Work and Aeby, 2006).
This approach has proven to be useful in other wildlife diseases.
For example, for the tumor disease in green turtle (Chelonia
mydas) fibropapillomatosis, a subjective four-point field tumor
scoring system correlates well with cellular manifestation of
blood pathology (Work and Balazs, 1999), host immune response
(Work et al., 2001), and susceptibility to opportunistic bacterial
infections (Work et al., 2003). Perhaps a similar scheme applied
to corals would aid in yielding better associations between
cellular and gross pathology. Our findings are a cautionary tale
about depending only on gross appearance of animals to assess
health or determine whether a pathogen exists in an ecosystem.
Finally, the fact that AVLP associated with cell pathology were
seen in apparently normal corals from areas apparently free of
SCTLD, at least as manifested grossly, emphasizes the need for
proper “negative controls” preferably defined based on gross and
microscopic morphology.

Logical next steps would be to confirm the presence of viral
infections in endosymbionts through other means. Attempts
to grow and propagate the virus in culture guided by light
and electron microscopy would confirm whether lesions seen
in the laboratory can replicate those seen here. It would also
allow for a better understanding of viral morphogenesis and
host response, thus confirming or refuting our interpretation
of putative developmental stages. Fortunately, endosymbionts
(Taguchi and Kinzie, 2001) are more readily cultured than
coral host cells (Helman et al., 2008), so this is a plausible
objective. Identifying the virus through molecular means is also
critical. Single-stranded RNA viruses have been identified in
corals in the Caribbean through molecular means, however,
none of the viruses identified to date match the morphology
of AVLP seen here (Correa et al., 2013). Molecular biology
of plant and algal viruses is a well-developed field (Roossinck
et al., 2015), so deep sequencing to identify this putative
virus is also a plausible objective. Detection of possible lytic
activity by the putative AVLP seen here, and their potential
mechanistic role in the mortality of endosymbionts and the
associated sequential pathology of SCTLD are important next
steps for investigation. It will be critical to localize the virus
to the anatomic lesion through tools like in situ hybridization
or immunohistochemistry (Mochizuki and Ohki, 2015), and
fortunately, archived tissues exist to do this (Landsberg
et al., 2020). Assessing whether SCTLD can be reproduced
in corals known to be AVLP-negative would be important

and would ease the development and validation of rapid
diagnostic assays to detect the virus in the field. This would
then permit a better understanding of the epidemiology of
infections, possibly setting the stage for management options
and interventions.
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Supplementary Figure 1 | Ultrastructure of endosymbionts and putative viral-like
particles (VLP) associated with chloroplast pathology in M. cavernosa sampled in
2016; (A) Endosymbiont with multifocal vesicle formations in the chloroplast;

bar = 0.5 µm. (B) Inset of (A), higher magnification view of vesicles (arrowhead) in
chloroplast (C); bar = 200 nm (C) Vesicle in chloroplast with clumped AVLP
(arrowhead); bar = 100 nm. (D) Higher magnification view of clumped AVLP in a
chloroplast vesicle; bar = 50 nm. (E) Degraded endosymbiont with peripheral
chloroplast, and enlarged vacuolar cavities with electron-dense inclusions and
VLP; bar = 1 µm. (F) Inset of (E), higher magnification view of vacuole with
filamentous VLP (arrowheads) adjacent to the degrading chloroplast (C) with a
vesicle (V); bar = 100 nm.

Supplementary Figure 2 | Pairwise scatterplots of percent of pathological
features (lower right) and correlation coefficients (upper left) for pairwise plots. The
higher the correlation, the larger the number. For the features, ED stands for
electron dense bodies, TM, Indistinct stands for indistinct thylakoid membrane,
and AVLP stands for anisometric viral-like particle.
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