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For many fish stocks, such as Pampus argenteus and Setipinna taty in China, size
composition data are more accessible than catch data. Varied results can arise
when different length-based stock assessment models are applied to these data, and
fishery managers often need to reconcile conflicting estimates of population status.
Superensemble modeling, a relatively recent innovation in fish stock assessments
commonly used in other fields, may provide an effective solution to resolving
uncertainties among the results from multiple length-based models. To verify potential
for this approach to improve estimates of population status, we applied ensemble
modeling to fit simulated data of P. argenteus and S. taty in the Bohai and Yellow
Seas using predictions from a length-based integrated mixed effects (LIME) and length-
based spawning potential ratio (LB-SPR) models as covariables in a superensemble
model developed in this study. All simulation modeling of P. argenteus and S. taty in the
Bohai and Yellow Seas was conducted using the operating model in the R package
LIME. Initially, the LIME and LB-SPR performances were tested separately under
three scenarios of fishing mortality and recruitment variability (“equilibrium scenario,”
“endogenous scenario,” and “one-way base scenario”). Then, estimates of spawning
potential ratio (SPR) were combined with the superensemble models (a linear model, a
support vector machines, a random forest and a boosted regression tree). We trained
our superensemble models with 80% of the simulated data and tested them with
the remaining 20%. Our results showed that superensemble modeling substantially
improved the estimates of SPR, with support vector machines performing the best
at estimating population status: precision improved by 12.7% for S. taty and 8%
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for P. argenteus on average (namely, median absolute proportional error decreased
by 0.127 and 0.08 on average) compared to the individual models. This finding has
important implications for fisheries management in the context of species for which
catch data are unavailable. Applying the size composition survey data, the results from
support vector machines superensemble model suggested that neither S. taty nor
P. argenteus in the Bohai Sea in 2019 are overfished, but the stock status of P. argenteus
warrants vigilant monitoring.

Keywords: ensemble models, length-based, multimodel averaging, population dynamics, data-limited fisheries

INTRODUCTION

Stock assessment involves providing scientific, quantitative
evaluations to objectively inform fisheries management (Hilborn
and Walters, 1992). Globally, only about 50 percent of exploited
fish species have been assessed due to limitations imposed by the
data requirements of traditional or conventional stock assessment
methods (Ricard et al., 2012; RAM Legacy Stock Assessment
Database, 2018). Evidence-based fisheries management decisions
rely on stock assessments to provide crucial insights into the
status of fish stocks and fisheries. Due to an urgent need for
managing an increasing number of smaller less productive or
marginal fish stocks as well as halting depletion and promoting
recovery of long established once highly productive stocks, in
recent years, data-limited methods to estimate stock status and
exploitation have developed rapidly (MacCall, 2009; Dick and
MacCall, 2011; Free et al., 2017). Most of these methods can be
divided into catch-based methods and length-based methods.

Not all the catch histories for various fish species can be
obtained from fisheries statistical records. In many fisheries with
limited monitoring capacity, it is often easier to collect length
measurements from scientific surveys or catch sampling, such as
for Pampus argenteus and Setipinna taty in the Bohai and Yellow
Seas of China, than to quantify total catch. P. argenteus is a warm
water fish species which aggregates to form a spatially clustered
distribution of schools and is one of the main commercial species
in China coastal waters (Liu et al., 1990). The P. argenteus
population in China can be divided into the Bohai-Yellow Sea
stock and the eastern China Sea stock (Liu et al., 1990). The
Bohai-Yellow Sea stock has been the main target of trawl and
mass drift net fishing for many years (Jin et al., 2005a, 2006; Tang,
2006). Setipinna taty is distributed in spatially clustered schools
along the coast of China (Liu et al., 1990; Jin et al., 2006, 2015).
In recent years, with the decline of traditional economically
remunerative fish resources, S. taty has become one of the main
targets of all kinds of commercial net fishing adjacent to the coasts
of the Bohai and Yellow Seas (Jin et al., 2006, 2015). Length-
based assessment methods, which simply require mean length
or length composition of the catch and estimates of life history
parameters, have become increasingly prevalent for evaluating
the status of data-limited or data-poor fish stocks (Thorson and
Cope, 2014; Hordyk et al., 2015; Then et al., 2015), and have great
potential for application in fish species assessment where catch
data are unavailable.

Exploratory analysis of existing data and some background
research (Rudd and Thorson, 2018; Pons et al., 2019) found
that different results are obtained when applying different stock
assessment models that rely solely on length measurements.
Rational design of management strategies must consider the
uncertainty in model outputs (Schnute and Hilborn, 1993) and
fisheries managers must often reconcile conflicting estimates of
population status and trend. Taking the average or weighted
average of several model predictions, is one often tried and
effective solution (e.g., Burnham and Anderson, 2002; Anderson
et al., 2017). In population assessments where the input data
and error assumptions are compatible, there are many successful
examples in which model averaging has objectively combined
the results of different models (Brodziak and Piner, 2010; Millar
et al., 2015). However, some studies (Schnute and Hilborn, 1993;
Anderson et al., 2017) have demonstrated that when model or
data errors are incompatible, the most likely parameter values are
not intermediary to conflicting values; instead, they occur toward
one of the apparent extremes.

Superensemble modeling, often simply referred to as ensemble
modeling, has been commonly used with success for climate
and weather forecasting It provides a technical framework for
drawing predictions from a group of models as inputs into a
separate statistical model (Krishnamurti et al., 1999; Hamill et al.,
2012). This technique has been used to improve estimates of
population status by optimally leveraging multiple catch-based
model predictions (Anderson et al., 2017). This approach may
overcome the shortcomings of model-averaging methods and
provide an effective solution for reducing the uncertainties that
arise in the results from multiple length-based models to identify
the most plausible combination of model parameters.

In fisheries without catch data or information on relative or
absolute abundance, stock assessments typically use spawning
potential ratio (SPR) as an alternative reference point to biomass
at maximum sustainable yield (BMSY) (ICCAT, 2017; Pons et al.,
2019). The ensemble-method framework developed in this study
will provide appropriate options to inform the management of
fish stocks for which catch data are unavailable.

MATERIALS AND METHODS

To verify the potential of ensemble methods for improving
estimates of population status, we fitted simulated data for
stocks of P. argenteus and S. taty in the Bohai and Yellow
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FIGURE 1 | Migration routes of (A) P. argenteus and (B) S. taty in the Bohai
and Yellow Seas. Refer to Liu et al. (1990).

Seas using predictions from a Length-based Integrated Mixed
Effects (LIME, Rudd and Thorson, 2018) model and a length-
based spawning potential ratio (LB-SPR, Hordyk et al., 2015)
model as covariables in the superensemble models developed in
this study, and compared their predictive performance against
each other and their individual component models. LIME
and LB-SPR are length-based methods that are commonly
used in contemporary stock assessments, and are based on
non-equilibrium and equilibrium principles, respectively. Both
models require a minimum of 1 year of length composition
data together with assumptions about growth, natural mortality,
and maturity to estimate the spawning potential ratio (SPR)
biological reference point, defined as the proportion of unfished
reproductive potential at a given level of fishing pressure
(Goodyear, 1993; Hordyk et al., 2015; Rudd and Thorson, 2018).

Firstly, a comparison was undertaken between the two
methods using an operating model to produce data for simulated
populations (P. argenteus and S. taty in the Bohai and Yellow
Seas) under different length data groupings with three scenarios
of fishing mortality and recruitment variability combinations

(Figure 1). All simulation modeling of populations of the two
species were conducted using the operating model in the R
package LIME from which estimates of SPR were obtained for
each scenario. The performance of the ensemble models using the
simulated datasets was evaluated by using 80% of the simulated
data for training and the remaining 20% for testing. Finally,
based on insights about the robustness of the methods, the
stock status of P. argenteus and S. taty in the Bohai Sea were
estimated (Figure 2).

Operating Models and Data Generation
Population estimates for simulation were generated by an
operating model (all estimation was completed via the R package
Template Model Builder, TMB, Kristensen et al., 2016) and
developed in the LIME package (Rudd and Thorson, 2018;
1) in the statistical software R (R Development Core Team,
2019). Rudd and Thorson (2018, Table 2 and Table 3 in their
manuscript) described the population dynamic equations used
in the operating model and functions for generating data. For
natural mortality of P. argenteus and S. taty in the Bohai
and Yellow Seas, the respective values (Table 1) were assumed
to be constant so that in each instance the median value
of natural mortality was chosen from estimates made using
multiple methods (the Barefoot Ecologist’s Toolbox hosts a tool;
Cope, 2017). For other biological and fisheries parameters of
P. argenteus and S. taty, values were taken from local studies
(Zhao, 1987; Liu et al., 1990; Tang and Ye, 1990; Chen, 1991;
Jin et al., 2005a; Chen et al., 2018; Xu et al., 2019). Life history
parameters for growth and length-at maturity are also listed
in Table 1.

Levels of initial biomass depletion compared to carrying
capacity of each simulated population were drawn from a
uniform distribution between 0.35 and 0.95, and three scenarios
involving combinations of fishing mortality and recruitment
variability were explored (Figure 3):

1https://github.com/merrillrudd/LIME

FIGURE 2 | Flow chart diagram of the simulation process and case study.
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TABLE 1 | Life history parameters for each species assumed in the models; where
L∞ and K are the von Bertalanffy asymptotic length and Brody growth coefficient,
respectively and L50 is the length at which 50% of the population is mature.

Species Max age (y) L∞ (cm) K M L50 (cm)

P. argenteus 6 30.4 0.25 0.817 12

S. taty 4 20.0 0.62 1.350 9

FIGURE 3 | Scenarios of fishing mortality and recruitment under equilibrium
and variable conditions for the three life-history types. The lines show 10
randomly chosen iterations out of 100 as examples. (A) S. taty. (B) P.
argenteus.

(1) “constant” scenario: a constant exploitation rate and
recruitment assumptions;

(2) “endogenous” scenario: an exploitation rate coupled with
biomass, and a Beverton–Holt spawner-recruit function
(Beverton and Holt, 1957); and

(3) “one-way” scenario: a Beverton–Holt spawner-recruit
function and an exploitation rate coupled with fishing
mortality changing linearly from the rate that would result
in the randomly chosen initial depletion to F20% which
was calculated deterministically based on the biological
information and selectivity associated with each life-
history type (Rudd and Thorson, 2018; see text footnote 1).

Scenario (2) and (3) included a standard deviation for fishing
mortality equal to 0.2 (Rudd and Thorson, 2018), a standard
deviation of recruitment residuals equal to 0.737 and a first-
order autoregressive coefficient equal to 0.426, the mean of
the predictive distribution from a meta-analysis of recruitment
variability in global fish orders (Thorson et al., 2014). Selectivity
at length was assumed to follow a two-parameter logistic model
(eq. 4 in the Rudd and Thorson, 2018), with an estimated
parameter length at 50% selectivity and a second parameter
representing the difference between length at 95 and 50%
selectivity. We repeated this process running 100 iterations or
replicates for each combination for each population to generate
the simulation data. More information can be found on Github
(see text footnote 1) and in Rudd and Thorson (2018).

A sample size of 250 individuals was assumed, which
approximates the more realistic sample sizes of P. argenteus
and S. taty measured annually in the Bohai Sea. Although our
ensemble models were only fitted to estimated values obtained
from individual length-based models with length data as the
sole input, the performance of the LIME model with rich data
assumptions was nevertheless tested. This helped to gauge the
level of results that could be deemed acceptable when individual
length-based models were fitted solely to length data. Therefore,
a total of 13 data-availability scenarios for LIME were set up:
(1): “Rich20” with 20 years of catch, abundance index, and
length data; (2) “Rich10” with 10 years of total catch, abundance
index, and length data; (3) “Rich5” with 5 years of total
catch, abundance index, and length data; (4) “I_LC20” with
20 years of abundance index, and length data; (5) “I_LC10”
with 10 years of abundance index, and length data; (6) “I_LC5”
with 5 years of abundance index, and length data; (7) “C_LC20”
with 20 years of total catch, and length data; (8) “C_LC10” with 10
s of total catch, and length data; (9) “C_LC5” with 5 years of total
catch, and length data; (10) “LC20” with 20 years of length data;
(11) “LC10” with 10 years of length data; (12) “LC5” with 5 years
of length data; and (13) “LC1” with 1 years of length data. Only
one data availability scenario was set up for LB-SPR: “LBSPR”
with 1 year of length data.

Individual Length-Based Models and
Testing Performance
Two individual data-limited length-based models that use
simulated data and basic life-history and/or fishery parameters
to estimate SPR were fitted. These length-based models were
chosen because they can be fitted to a majority of fisheries around
the world, are well established in the literature, and have been
extensively simulation-tested (Rudd and Thorson, 2018; Chong
et al., 2019; Pons et al., 2019, 2020; Halim et al., 2020).
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Length-based spawning potential ratio is one of the prominent
length-based methods for estimating reference points in data-
limited fisheries and enables a rapid assessment of stock status
relative to unfished levels. This model assumes equilibrium
conditions (invariant recruitment and mortality) by using a
static, equilibrium-based relative age-structured model (Hordyk
et al., 2015; Prince et al., 2015). Since the status determination
of the LB-SPR model is based on 1 year of data at a
time, we only used the length data of the final year to
calculate the SPR of that year. The inputs to the LB-SPR
included the ratio of the natural mortality coefficient to the
von Bertalanffy growth coefficient; length data in each year;
the von Bertalanffy asymptotic length parameter; the lengths
where 50 and 95% of the fish are mature; and length–weight
parameters. LB-SPR estimates the ratio of fishing mortality to
natural mortality and the lengths at 50 and 95% selectivity
to best fit the predicted and observed length composition
proportions, and derives SPR, outputting estimates for these four
values for each year with length data (Hordyk et al., 2015).
In this study, we used the LB-SPR package version 0.1.5 in
R (Hordyk, 2017).

Length-based integrated mixed effects is an age-structured
population dynamics mixed model and can account for
variable fishing mortality and recruitment when there are
only length data from a single year as well as assumed life-
history parameters; including the length-at-age relationship,
von Bertalanffy growth parameters, allometric length-weight
parameters, natural mortality coefficient, and length at 50%
maturity (Rudd and Thorson, 2018). It can also accommodate
multiple years and types of data, including both length data
and index data and/or catch data, in an integrated manner
to improve the estimation of changes in fishing mortality
over time (Rudd and Thorson, 2018). LIME estimates lengths
at 50 and 95% selectivity to the fishing gear; the Dirichlet-
multinomial parameter; the recruitment standard deviation and
annual fishing mortality coefficient as fixed effects; and estimates
of annual recruitment as random effects. Compared with LB-
SPR, when fitting length data from more than 1 year, LIME
does not assume equilibrium conditions when recruitment is
estimable. In our model runs, when the final gradient for all
parameters was less than 0.001, the model converged. For each
combination of life-history type, data availability scenario, fishing
mortality pattern, and recruitment dynamics, we obtained 100
iterations of generated data and ran the estimation model for
each set. In this study, we used the LIME package 2.1.3 version
(Rudd and Thorson, 2018).

To assess the performance of the LIME and LB-SPR
models under different scenarios we compared the outputs
to the simulated “truth” from the operating models, and
used the relative error (RE, [estimated-true]/true) as an
evaluation indicator.

Building the Ensemble Models and
Testing Performance
The individual models combined as ensembles were intended to
provide estimates of recent stock status (SPR). Therefore, the

ensembles were applied to estimate SPR in the last year of the
data series, which was of interest for both of management and
conservation purposes. The SPR were used in the last year as
the response variable and the predictions from the individual
models (LIME and LB-SPR) as predictors in our ensemble
models (Figure 2).

A model average for each population and four ensembles
of varying complexity were compared: a random forest (RF),
a support vector machine (SVM), a linear model (LM),
and a boosted regression tree (generalized boosted regression
modeling, GBM). The four ensemble models were fitted for
each population separately (e.g., RF_PA for P. argenteus only,
RF_ST for S. taty only), as well as fitting the models for a set
comprising data from populations of both species (e.g., RF for
both P. argenteus and S. taty).

These models can be described in terms of θ̂ , the ensemble
estimated SPR. The individual model estimates of SPR are
represented as x̂. The model average for each population was
calculated as:

θ̂ = (̂xLIME + x̂LB-SPR)/2

The linear model for each individual population or both
populations combined was calculated as:

θ̂ = β0 + β 1̂xLIME + β 2̂xLB-SPR + ε,ε∼N(0, σ 2)

Support vector machines, based on mapping input space to
a high-dimensional feature space where linear separation is
easier than input space, provide a popular machine learning
method and yet also represent a powerful technique for general
(nonlinear) classification, regression and outlier detection with
an intuitive model representation (Cortes and Vapnik, 1995;
Bennett and Campbell, 2000; Chang and Lin, 2011). SVMs
were initially used to train a data set (SPR in the last year of
individual models fitting 80% of the iterations for simulated
data under all fishing and recruitment scenarios) to obtain a
model and secondly, the resultant ensemble model was used
to predict information from a testing data set (SPR in the
last year of individual models from fitting the remaining 20%
iterations of simulated data under all fishing and recruitment
scenarios). SVMs, based the pre-processing strategy in learning
by mapping input space to a high-dimensional feature space,
are used to find an optimal hyper-plane which maximizes the
margin between itself and the nearest training examples in
the new high-dimensional space and minimizes the expected
generalization error (Seo, 2007). We fit SVMs with the e1071
package (Meyer et al., 2021) for R.

Generalized Boosted Regression Modeling (GBM), based
on regression trees, is a type of regression model that is
highly flexible, and has considerable success in predictive
accuracy by maintaining a monotonic relationship between the
response and each predictor (Friedman and Tibshirani, 2000;
Ridgeway, 2007; Al-Mudhafar et al., 2016). GBM via the R
gbm package (Ridgeway, 2007) was fitted using the default
argument values.

Random forest (RF) modeling is also based on regression
trees. In RF, each tree depends on the values of a random vector
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sampled independently and with the same distribution for all
trees in the forest (Breiman, 2001). We fitted RF using the
random Forest package (Liaw and Wiener, 2002) for R with the
default argument values.

Repeated onefold cross-validation was used by randomly
dividing the dataset into two sets, then building the ensemble
model on eight-tenths of the data and evaluating its predictive
performance on the remaining two-tenths. To assess the ability
of the ensemble models to accurately and precisely estimate
quantities of management interest i.e., SPR, the median absolute
relative error (MARE) was used as an evaluation indicator to
quantify precision between estimated and true SPR in the last year
of data across the 20% iterations of simulated data.

Applying the Ensemble Models in the
Assessment of Pampus argenteus and
Setipinna taty in the Bohai Sea
As an example, the LIME and LB-SPR models were applied
to stocks of species of interest (i.e., P. argenteus and S. taty
in the Bohai Sea) and then the resultant SPR estimates of
stock status were used as data in the previously built ensemble
models (i.e., RF, RF_PA, RF_ST, SVM, SVM_PA, SVM_ST, GBM,
GBM_PA, GBM_ST, LM, LM_PA, LM_ST, and Model average).
The Bohai Sea is an important spawning ground for the Bohai-
Yellow Sea stocks of P. argenteus and S. taty thereby playing
an important role in future years’ stock recruitment (Liu et al.,
1990; Jin et al., 2005a, 2006, 2015). May to July is the spawning
period for the Bohai-Yellow Sea stock of P. argenteus and
July to November is the main feeding period. At the end of
November, the stock gradually migrates toward the Yellow Sea
for overwintering (Liu et al., 1990; Jin et al., 2005a, 2006). In the
Bohai Sea, S. taty has been the dominant species since the 1980s
and plays an important role in the nearshore fish community
(Jin et al., 2006). Setipinna taty spawn in the Bohai Sea from
mid-May to June, and then return to the wintering ground in
the Yellow Sea until the end of November (Liu et al., 1990;
Jin et al., 2006, 2015).

The application of ensemble models in this study was based
on P. argenteus and S. taty length data that were collected by
fixed-station bottom trawl surveys conducted in the Bohai Sea
during spring (May), summer (August- September), autumn
(October- November) and winter (December) of 2016–2019 by
the Yellow Sea Fisheries Research Institute, Chinese Academy of
Fishery Sciences (Figure 4).

The modeling results can potentially inform a harvest strategy
that targets a fishing mortality rate that is expected to result in
40% of unfished spawning output (termed “SPR40%”), which is
considered risk-averse for many stocks with very low resilience
(Clark, 2002). SPR30% is considered a threshold below which a
stock is considered to have been overfished (Clark, 2002; Nadon
et al., 2015; Rudd and Thorson, 2018). Therefore, these values
were calculated as possible fishing mortality reference points to
evaluate the status of the P. argenteus and S. taty in the Bohai Sea
to inform future fishery management decisions.

RESULTS

Simulation Testing: Individual
Length-Based Model Performance
Across Fishing Mortality, Recruitment
Variability, and Data Scenarios
Simulation testing demonstrated that the RE distributions of
the LIME and LB-SPR methods under varying conditions were
relatively dispersed compared with those under equilibrium
conditions (Figure 5). In addition, the RE distribution for
P. argenteus was relatively dispersed compared with that for
S. taty. When the time-period of data becomes shorter, the bias
(bias is measured as MRE) of the LIME estimator for both
P. argenteus and S. taty will become larger.

Our results showed that for P. argenteus, both LIME and
LB-SPR can estimate unbiased SPR when length data are
available and biological characteristics are correctly specified
across various scenarios of fishing mortality and recruitment

FIGURE 4 | The spatial distribution of the bottom trawl survey stations in the Bohai Sea.

Frontiers in Marine Science | www.frontiersin.org 6 November 2021 | Volume 8 | Article 766499

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-766499 November 18, 2021 Time: 12:17 # 7

Han et al. Ensemble Model for Estimating Population Status

FIGURE 5 | Distribution of relative error ([estimated – true]/true) for SPR in the last year of the data series for 100 iterations of simulated populations (S. taty and
P. argenteus in the Bohai and Yellow Seas) across LIME and LB-SPR data availability scenarios for the two life-history types and scenarios of equilibrium and variable
fishing mortality and recruitment with 250 length measurements annually.

patterns (Figure 5). Compared with P. argenteus, the SPR
estimated for S. taty by both LIME and LB-SPR had a large
relative error. For P. argenteus, the mean bias in SPR of LIME and
LB-SPR was 0.008 (from−0.005 to 0.017) across all data scenarios
under equilibrium conditions (constant scenario). Under an
endogenous scenario, the mean bias in SPR of LIME and LB-
SPR for P. argenteus was 0.014 (from −0.026 to 0.085) across all
data scenarios, and the SPR from LIME demonstrated relatively
large deviations under scenarios with only length and catch data
(C_LC). Under a one-way scenario, the mean bias in the SPR
of LIME and LB-SPR for P. argenteus was 0.088 (from 0.039
to 0.163) across all data scenarios, and the SPR of LIME also
demonstrated relatively large deviations under scenarios with
only length and catch data (C_LC). In general, LB_SPR and LIME
with length only data had a similar bias for P. argenteus.

For S. taty, the mean bias in the SPR of LIME and LB-
SPR was 0.331 (from −0.176 to 0.405) across all data scenarios
under equilibrium conditions. Under endogenous scenarios, the
mean bias in SPR of LIME and LB-SPR for S. taty was 0.243
(from −0.146 to 0.379) across all data scenarios. But those
RE distributions had relatively large deviations compared with
those obtained under equilibrium conditions. Under a one-way
scenario, the mean bias in SPR of LIME and LB-SPR for S. taty
was 0.348 (from −0.217 to 0.576) across all data scenarios. In
general, for S. taty, the LB-SPR estimate was lower than its true
value, while the LIME estimate was higher than its true value. It
seems that a persistent bias exists for both individual length-based
assessment methods compared with the true values in the OM.

Performance of the Ensemble Models
Ensemble methods, and in particular the machine-learning
ensemble models (support vector machines, SVMs), generally
improved the estimates of stock status beyond those of any
individual model (Table 2). Compared to the LIME models
with LC20, LC10, LC5, LC1, and SVM ensembles (SVM20,
SVM10, SVM5, and SVM1) decreased the MARE (median
absolute relative error to quantify precision) by averages of
0.257, 0.252, 0.243, 0.130, respectively for S. taty and −0.014,
0.004, 0.011, 0.036, respectively for P. argenteus. Compared to
the LB-SPR model, SVM ensembles (SVM20, SVM10, SVM5,
and SVM1) decreased the MARE by averages of 0.161, 0.150,
0.148, 0.136, respectively for S. taty and 0.021, 0.019, 0.011,
−0.006, respectively for P. argenteus. Compared to the LB-SPR
model, only SPR from individual models with the simulation of
individual species (S. taty or P. argenteus) can be used to build
ensemble models with higher accuracy than those fitted by both
species in combination.

Assessments of Setipinna taty and
Pampus argenteus in the Bohai Sea
Using Ensemble Models
We applied ensemble models using the SPR from LIME and
LB-SPR with the length composition data from S. taty and
P. argenteus from the surveys conducted in the Bohai Sea
during 2016–2019 (Table 3). The optimal ensemble model
(SVM) showed that the SPR estimates for P. argenteus and
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S. taty in 2019 were 0.388 and 0.525, respectively. These
results (> SPR30%) indicated that there was no evidence of
overfishing for P. argenteus and S. taty in the Bohai Sea.
Notwithstanding this result, the SPR of P. argenteus (0.388<
SPR40%) indicated that extra monitoring attention is needed, and
further protection warranted to reduce the risk of this stock
becoming overfished. Most ensemble models tested produced
consistent results.

DISCUSSION

Applications of ensemble models were firstly applied to empirical
data acquired from two data-poor Chinese stocks (P. argenteus
and S. taty), which were then extended in a combination
of equilibrium-based (LB-SPR) and relaxed equilibrium-based
(LIME) length-based methods. As a mixed model, LIME
attributed changes in the length composition data to variability

TABLE 2 | Ensemble models performance in estimates of status (SPR in the last year) compared with LB-SPR and LIME.

Setipinna taty Pampus argenteus

MARE Constant Endogenous One-way Constant Endogenous One-way

LC20 0.341 0.298 0.376 0.041 0.092 0.078

LC10 0.327 0.317 0.389 0.040 0.147 0.083

LC5 0.293 0.304 0.414 0.043 0.168 0.104

LC1 0.247 0.169 0.293 0.070 0.168 0.202

LBSPR 0.186 0.256 0.286 0.043 0.141 0.131

Average20 0.068 0.109 0.124 0.035 0.150 0.094

Average10 0.069 0.103 0.126 0.036 0.172 0.090

Average5 0.070 0.145 0.120 0.034 0.175 0.088

Average1 0.056 0.114 0.169 0.053 0.174 0.206

RF20 0.072 0.119 0.125 0.093 0.181 0.062

RF10 0.089 0.141 0.144 0.080 0.177 0.084

RF5 0.096 0.169 0.109 0.079 0.173 0.077

RF1 0.093 0.157 0.139 0.061 0.149 0.057

RF_ST20/RF_PA20 0.064 0.141 0.122 0.101 0.170 0.063

RF_ST10/RF_PA10 0.097 0.148 0.119 0.077 0.166 0.063

RF_ST5/RF_PA5 0.090 0.188 0.133 0.077 0.184 0.086

RF_ST1/RF_PA1 0.084 0.180 0.146 0.069 0.135 0.069

SVM20 0.052 0.106 0.086 0.043 0.131 0.078

SVM10 0.057 0.124 0.097 0.039 0.148 0.072

SVM5 0.061 0.115 0.106 0.032 0.161 0.089

SVM1 0.075 0.143 0.102 0.054 0.171 0.109

SVM_ST20/SVM_PA20 0.040 0.106 0.080 0.035 0.128 0.072

SVM_ST10/SVM_PA10 0.052 0.131 0.084 0.037 0.131 0.062

SVM_ST5/SVM_PA5 0.061 0.126 0.096 0.029 0.177 0.074

SVM_ST1/SVM_PA1 0.084 0.159 0.081 0.056 0.153 0.097

LM20 0.088 0.109 0.125 0.074 0.159 0.099

LM10 0.084 0.110 0.124 0.078 0.187 0.096

LM5 0.085 0.109 0.131 0.074 0.154 0.100

LM1 0.088 0.114 0.121 0.072 0.202 0.163

LM_ST20/LM_PA20 0.061 0.099 0.083 0.081 0.134 0.089

LM_ST10/LM_PA10 0.066 0.116 0.088 0.074 0.142 0.084

LM_ST5/LM_PA5 0.074 0.121 0.114 0.076 0.148 0.118

LM_ST1/LM_PA1 0.081 0.151 0.095 0.076 0.176 0.186

GBM20 0.078 0.137 0.104 0.054 0.162 0.080

GBM10 0.078 0.134 0.100 0.054 0.168 0.080

GBM5 0.081 0.136 0.119 0.063 0.167 0.078

GBM1 0.093 0.146 0.115 0.075 0.175 0.126

GBM_ST20/GBM_PA20 0.051 0.114 0.110 0.052 0.137 0.086

GBM_ST10/GBM_PA10 0.053 0.117 0.113 0.046 0.145 0.078

GBM_ST5/GBM_PA5 0.060 0.123 0.125 0.053 0.164 0.092

GBM_ST1/GBM_PA1 0.081 0.164 0.130 0.071 0.165 0.105

These represent the aggregate results of validation tests where the ensemble models are built on 80% of the data and tested on the remaining 20%.
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TABLE 3 | The SPR from ensemble models for P. argenteus and S. taty in the
Bohai Sea in 2019.

Ensemble Pampus argenteus Setipinna taty

Model average 0.383 0.510

RF 0.398 0.527

RF_PA 0.420

RF_ST 0.448

SVM 0.388 0.525

SVM_PA 0.399

SVM_ST 0.449

LM 0.431 0.511

LM_PA 0.459

LM_ST 0.451

GBM 0.389 0.510

GBM_PA 0.397

GBM_ST 0.491

in recruitment, keeping selectivity constant over time (Rudd
and Thorson, 2018). LB-SPR allowed selectivity to change
between years, but assumed recruitment was constant over time
(Hordyk et al., 2015). Combined with simulation testing, the
empirical examples provide a pathway for application of these
ensemble methods to more data-limited stock assessments of
Chinese fish species for which catch data are unavailable.

Application of the simulated dataset of known stock status
showed that the individual models had variable success at
estimating SPR in the last year of the data series, but with large
deviations. Simulation testing comparing the performance of
the LIME and LB-SPR methods in estimating SPR showed that
LIME and LB-SPR performed better for P. argenteus (maximum
age 6, asymptotic length (cm) 30.4, growth coefficient 0.25, and
Natural mortality 0.817) across a range of life history, fishing
mortality, and recruitment scenarios compared with that for
S. taty (Maximum age 4, asymptotic length (cm) 20, growth
coefficient 0.62, and Natural mortality 1.35). The results indicate
that LIME overestimates SPR and LB-SPR underestimates SPR,
thereby conferring poorer ability to estimate stock status for the
rapidly growing, short-lived, small Engraulidae fish. Therefore,
the conclusion of Rudd and Thorson (2018) that “with only
length data, LIME performs well for the shorter-lived fish” which
they inferred from studying only one species of short-lived fish
needs further study for verification.

Ensemble methods provide a useful approach to situations
where environmental resource management decisions must be
made on the basis of multiple, potentially contrasting estimates of
status (Anderson et al., 2017). Our results suggest that choosing a
support vector machine ensemble model that allows for nonlinear
relationships provides additional insight into individual model
behavior and generally performed the best among all the models
that we tested. However, not all ensemble models performed
at their best in a variety of situations. The number of models
included, and the structural forms of those individual component
models, can greatly influence the performance of ensemble
models (Ali and Pazzani, 1996; Dietterich, 2000; Tebaldi and
Knutti, 2007). Ensemble models can exploit the best predictive

performance of each of their individual component models which
perform well under different conditions (Anderson et al., 2017).
Whether the training dataset represents the dataset of interest will
affect the performance of ensemble models (Knutti et al., 2009;
Weigel et al., 2010), which is why we trained our ensemble models
by considering the datasets produced by the various scenarios
described in this paper. Inclusion of the dataset of interest
in our training dataset, which improved the objectivity of the
predictive performance of our models during their verification
(Hastie et al., 2009).

Ensemble methods do not require theoretical information,
or the further development of multi-model inference, because
they can combine different types of models and model
predictions via nonlinear functions that are tuned to known data
(Stewart and Martell, 2015; Anderson et al., 2017). The results
of our simulation testing illustrated that ensemble models can
improve population status estimates of fish species in situations
where catch data are unavailable. This is consistent with the
results from ensemble modeling when compared with catch-
based models worldwide (Anderson et al., 2017). The ensemble
approach can provide a framework to enable managers to
focus on decision-making rather than selecting from among
assessment models or assumptions within those models (Stewart
and Martell, 2015). The results also suggested that fundamentally
different stock assessment modeling paradigms, LIME and LB-
SPR, can be included in such an approach, and that it is more
robust and convenient for assessing the stock status of Chinese
fish species without catch data than attempting to select a
single best length-based model. The challenges associated with
diagnosing why different models (i.e., LIME and LB-SPR) yield
different results, and the implications of these differences on
management decisions is all the more reason for us to pursue
ensemble modeling.

Over the past 30 years, many scholars have focused on the
stock status of S. taty and P. argenteus in the Bohai Sea (for
example, Tang and Ye, 1990; Jin et al., 2005b, 2006). Based on
the composition data of the fork length of S. taty from 1983
to 1985, Tang and Ye (1990) used a cohort analysis (Jones,
1981) to estimate that the resource utilization rate of S. taty
in the Bohai and Yellow Seas is at an intermediary level of
utilization. Compared with the 1980s, the biomass of P. argenteus
and S. taty estimated from area-sweeping and acoustic survey
methods has greatly reduced during the early 21st century (Jin
et al., 2005b, 2006). The concomitant limited availability of data
has hindered the development of fish stock assessment and
fishery management for both species. A lack of catch records for
S. taty has limited the use of conventional assessment methods,
so that this species cannot be assessed quickly and accurately.
Recorded catches of P. argenteus have often included several
related species, thereby confounding previous evaluations of its
stock status (see Liu et al., 2013). Our application of ensemble
methods by combining length-based models provides a solution
which facilitates accurate evaluation of the state of stocks in which
mixing of species in catches or other deficiencies in reported
catches may occur. Through the application of survey data,
the results from the ensemble modeling indicated that neither
S. taty nor P. argenteus in the Bohai Sea was at an overfished
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level (of stock biomass) in 2019, but that the stock status of
P. argenteus at an SPR <40% indicated that this species deserves
special attention to ensure that it does not become more depleted.
However, Jin et al. (2005b, 2006) reported that the population
structures of P. argenteus and S. taty have been trending toward
younger cohorts of smaller fish during recent years (Jin et al.,
2005b, 2006). Results from the present study (SPR of 39% for
P. argenteus and 53% for S. taty) when considered in conjunction
with the previous work cited in this paper lend support to a
risk-averse argument that managers should take measures to
protect the stocks of both species to ensure their sustainable
use and their role in the ecosystem (i.e., to increase the SPR
of P. argenteus above 40% and maintain the SPR of S. taty
well above 40%).

The ensemble modeling based on individual length-based
models was initially used for the assessment of fishery species
for which catch data were unavailable, but there is certainly
ample scope for improvement. Ensemble models provide scope
to combine a larger number of length-based models with differing
structures and assumptions (Stewart and Martell, 2015) to
explore whether these combinations can further improve the
estimation performance of the ensemble.

Performance of ensemble models could be improved by
optimizing the estimation of their individual component models.
For LIME, this means collecting more years of length data;
taking more independent length measurements during each
year of length data collection; and conducting more surveys
to acquire monitoring index data from which to derive
estimates of variability in fishing mortality and recruitment.
Sampling costs can be weighed against model performance
to ascertain an appropriate number of fishery independent
length measurements.

The impact of mis-specifying parameters should also be
considered during future application of these models. A next
step for ensemble models would be to apply Bayesian priors
on biological parameters to more thoroughly represent the
uncertainties in population parameter estimates relevant to
management (e.g., from FishLife; Thorson et al., 2017). Sensitivity
tests and likelihood profiles should be conducted on different
levels of shaped selectivity to understand how SPR may become
biased if the model structure is mis-specified.
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