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Pearl oyster (Pinctada fucata martensii) is the main species cultured for marine pearls in

the world. A breeding program was carried out for desirable production traits, including

high growth rate, and a fast-growing selective strain of pearl oysters was established. In

the current study, we compared the growth characteristics between a selective strain and

a cultured population of P. f. martensii in Beihai, Guangxi Province, China. Large size (SL)

and small size (SS) individuals of the selective strain were selected, and the differences of

physiological and metabolic indexes, such as feeding, respiration, excretion, and enzyme

activities between SL and SS and cultured population (CL), were also compared. The

results showed that at the age of 6 months, pearl oysters of the selective strain were

14.61% larger than CL, and the proportion of SL (30–40mm) was 59%, which was two

times higher than CL (28%). SL with a rapid growth rate had a high clearance rate (CR),

and the CR of SL was about 1.8 times higher than that of CL and 5 times higher than that

of SS. In addition, the activities of digestive enzymes (amylase, pepsin, and lipase) and

growth-related carbonic anhydrase enzymes in SL were higher than those in the other

two groups (p< 0.05). SS with a slow growth rate had higher oxygen consumption (OCR)

and ammonia excretion (AER) rates than SL and CL (p < 0.05). Our results suggest that

the rapid growth of the selective strain P. f. martensii can be attributed to increased energy

intake and reduced energy consumption.

Keywords: pearl oyster, selective strain, physiological, feeding, metabolism

INTRODUCTION

The pearl oyster, Pinctada fucata martensii, belonging to the family Pteriidae (Pterioida, Bivalvia),
is naturally distributed in countries along the west coast of the Pacific Ocean, such as China, Japan,
Australia, and the Philippines (Wang et al., 2004). P. f. martensii is the primary species cultured
for marine pearls in China and Japan (Wang et al., 2011a). The pearl oyster industry has become
one of the most important mariculture industries in several southern provinces of China, including
Guangdong, Guangxi, and Hainan (Wang et al., 2004; Deng et al., 2009a, 2011; He et al., 2021; Xu
et al., 2021). However, the conditions are changing due to the slow growth and mass mortalities
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of oysters (Deng et al., 2011; Gu et al., 2011). Pearl production
dropped sharply in recent years, and the cultivate industry was
dealt a huge blow. A selective breeding program toward P. f.
martensii was carried out in 2000. A rapid growth selective
strain was obtained through hybrid breeding with the Indian
population as the male parent and the Chinese Sanya population
as the female parent (Wang et al., 2000, 2004). After seven
generations of selection, remarkable genetic gains for growth rate
and a high proportion of high-quality pearls were achieved in the
selected strain (Wang et al., 2011b).

Specific mechanisms associated with fast growth rate in
bivalves include the efficacies of processes of food acquisition
and metabolic rates in resting or active states (Bayne, 1999,
2000; Bayne et al., 1999; Tamayo et al., 2011, 2014, 2015).
Physiological processes related to these mechanisms include
clearance rate (CR), oxygen consumption rate (OCR), ammonia
excretion rate (AER), and enzyme activities. Therefore, ingestion
and energy metabolism of some commercial bivalve species have
received considerable attention (Ibarrola et al., 2017; Zhang
et al., 2018). Individuals might exhibit faster growth due to
increased energy acquisition and maintenance or growth costs
(Bayne et al., 1999; Meyer and Manahan, 2010; Tamayo et al.,
2011), and this explanation is applicable for other bivalve larval
stages (Pace et al., 2006; Tamayo et al., 2014). Furthermore,
in bivalves, the process of biological mineralization is closely
related to shell growth. Carbonic anhydrase is one of the most
important indicators of biological mineralization (Medaković,
2000; Cardoso et al., 2019).

Processes related to energy utilization and growth efficiency
of mollusks are largely controlled by genetics, such as in oysters
(Bayne et al., 1999; Parker et al., 2010; Zhao et al., 2019b), abalone
(Gonzalez et al., 2010), and green-lipped mussels (Ibarrola et al.,
2017). These theories provide a feasible scheme for improving
the growth characteristics of bivalves (Newkirk, 1980; Evans and
Langdon, 2006; Schöne et al., 2021). Numerous studies have
confirmed effective improvement in commercial traits of bivalve
species through selective experiments (Deng et al., 2009b; Gu
et al., 2011; Li et al., 2011; Zhang et al., 2018). Physiological
differences between improved selected and non-selected groups
were explored (Bayne et al., 1999; Zhang et al., 2018). However,
the relationship between fast-growth and physiological factors
of P. f. martensii has not been documented. Therefore, the
study aimed to figure out the physiological processes related
to fast-growth, including CR (energy acquisition), OCR and
AER (metabolic rate), and digestive enzyme and carbonic
anhydrase activities in P. f. martensii, determine the physiological
parameters leading to the existence of differences in the growth
potential of the selective strain, and explore the mechanism of
selected strain of fast-growing P. f. martensii from a physiological
point of view.

MATERIALS AND METHODS

Pearl Oyster Collection
On June 10, 2020, two different stocks, A and B, of P. f. martensii
were selected to conduct mass selection experiments at a shellfish
hatchery in Beihai, Guangxi Province, China. Stock A descended

from the fast-growing selective strain. Stock B was a cultured
population without artificial selection. For the two stocks, 50
individuals were selected as parents in each group, and the two
groups were inseminated to obtain progeny. Larval rearing was
similar to the process previously described by Zheng et al. (2004)
and Deng et al. (2011). After 30 d, juveniles from each group
were taken from the polyethylene bags and raised in coastal
areas suspended on a raft. The two groups were cultured in the
same area located at Beihai, China (21◦26′-21◦55′ N, 108◦50′-
109◦47′ E).

The polyethylene bags were cleaned periodically, and the
oyster shell height was measured monthly. On November 10,
2020, a total of 270 randomly selected individuals from each
group were taken to the laboratory and used in a physiological
experiment. Pearl oysters of the selected strain were divided into
two groups (SL, shell height 37.56 ± 9.01mm; SS, shell height
10.01 ± 0.31mm) based on shell height. Large-sized individuals
from the cultured population (CL, shell height 36.76± 9.88mm)
were selected to compare the physiological differences between
the populations (inter-population) (Table 1).

From December 10, 2020, the oyster shell height was
measured for 6 months. A total of 100 oysters of the selective
strain and cultured population were randomly selected to
determine the size-frequency distribution (Figure 1).

TABLE 1 | Biological data of P. f. martensii in the experiments.

Experimental

group

Shell

height/mm

Shell

length/mm

Wet

weight/g

Dry

weight/g

SL 37.56 ± 9.01a 40.56 ± 9.01a 3.20 ± 0.12a 0.18a

CL 36.76 ± 9.88a 39.76 ± 9.88a 3.16 ± 0.09a 0.17a

SS 10.01 ± 0.31b 11.01 ± 0.31b 0.82 ± 0.11b 0.06b

SL, selective strain pearl oyster with large size; CL, cultured population pearl oyster; SS,

selective strain of pearl oyster with small size.

Values sharing different superscripted letters are significantly different (p < 0.05).

FIGURE 1 | Growth of shell height of selective strain and cultured population

pearl oysters. *p < 0.05.
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Experimental Design
After 24 h of starvation, the SL, SS, and CL oysters were placed
in 100 L buckets, with 30 individuals per bucket. Each group was
replicated thrice and domesticated in the laboratory for 7 d. Pearl
oysters were fed twice a day with a microalgae diet of Isochrysis
galbana (3× 104 cells/mL). Water temperature and salinity were
maintained at 19± 0.5◦C and 30± 0.5‰, respectively. Seawater
was stored and aerated after precipitation and sand filtration
before each experiment.

Physiological Parameters Determination
CR
After a week of acclimation, 10 pearl oysters from each of the
three groups (SL, SS, and CL) were randomly collected and placed
in 1 L beakers. Each treatment was replicated thrice. One blank
beaker with no pearl oysters was set as the control group for each
treatment. Pearl oysters were fed with I. galbana (6 × 104 cells
mL−1). The experiment lasted for 3 h, and the concentration of
algae was calculated under a microscope by a hemocytometer.

CR (clearance rate) is defined as the volume of water cleared
of algal cells per hour. The value of CR (L/h) was estimated
following the equation (Zhang et al., 2018):

CR =
V × ln [

(

Ct − C0 × Sd
)

]

W × t
(1)

where V = volume (L) of beaker, t = duration of the
measurement (h), C0 = concentration of unicellular algae at
initial time, and Ct = concentration of unicellular algae at t time.
Cell concentrations were measured by direct counting with a
haemocytometer. Sd = variable coefficient of the control group
unicellular algae.W = dry weight of the pearl oyster soft tissues.

Metabolism Measurements
Closed-chamber respiration methods were employed to
determine oxygen consumption rate (OCR) and ammonia
excretion rate (AER). Six pearl oysters were placed in 3 L
glass respiration chamber at test SL, SS, and CL, which was
aerated for at least 1 h to reach oxygen saturation before the
measurement. Each group was replicated thrice and one blank
chamber with no oysters was used as the control. The experiment
lasted for 3 h. Water samples were collected by siphoning, and
dissolved oxygen (DO) was measured at the start and end of the
experiment. DO was measured by the YSI (5331) polarographic
electrode coupled with a micro-oxymeter (Yellow Springs,
OH, USA). Ammonia determination was done by the sodium
hypobromite method (Gu et al., 2020). The DO and ammonia
of blank seawater were carried out and then subtracted from the
experimental units to correct for autogenic trends. DO was not
<4.2 mg/L (more than 70% of total DO) in test vessels at the end
of the experiment. Ammonia accumulation did not exceed the
maximum values of ammonium concentration (0.04 mg/L).

OCR (mg/h) was calculated using the following equation:

OCR =
V × (DO0 − DOt)

W × t
(2)

The initial and final concentrations of DO are expressed as DO0

and DOt, t = duration of measurement (h), V = volume of the
chamber (L), andW= dry weight of soft tissues.

AER (mg/L) was measured using the following equation:

AER =
V × (Nt − N0)

W × t
(3)

The initial and final concentrations of AER are expressed as N0

and Nt, t = duration of measurement (h), V = volume of the
chamber (L), andW = dry weight of the soft tissues.

The oxygen: nitrogen (O/N) atomic ratio was used to estimate
the proportion of protein in relation to lipids or carbohydrates
for metabolism, which was calculated as follows:

O/N =
OCR/16

AER/14
(4)

Digestive Enzyme and Carbonic Anhydrase Activities
Before the experiment, three groups of pearl oysters were starved
for 1 d. Ten oysters were randomly selected from each group.
The visceral mass was removed from each oyster by vivisection
on a liquid nitrogen cold plate, rapidly frozen, and stored at
−80◦C. The visceral mass was shredded with a tissue mashing
instrument, and then the analytical balance was used to weigh
visceral mass (0.01 g), diluted 10 times with sterilized normal
saline, and centrifuged at 5,000 rpm for 10min. Then, each
supernatant was collected in an Eppendorf tube and stored at
4◦C. Amylase, lipase, pepsin, and carbon acid anhydride enzyme
activities were determined using commercial assay kits (Nanjing
Jian-cheng Institute, Nanjing, China).

Amylase activity was determined by the method described
by Vega-Villasante et al. (1993), using starch as a substrate.
The samples were read spectrophotometrically at 540 nm, and
results were expressed in units per milligram of protein (U/mg
protein). Lipase activity was determined by the method described
by Li et al. (2020), using β-naphthyl-caprylate as a substrate.
The activity was evaluated spectrophotometrically at 540 nm,
and the specific activity was expressed in units per milligram of
protein (U/mg protein). Pepsin activity was determined by the
method described by Li et al. (2020), using hydrolyzed proteins
to produce amino acids containing phenols as a substrate. The
samples were read spectrophotometrically at 660 nm, and results
were expressed in units per milligram of protein (U/mg protein).
Carbon acid anhydride enzyme activities were measured using
the classical phenol red method (Roy et al., 2012). The samples
were read spectrophotometrically at 450 nm, and results were
expressed in units per milligram of protein (U/g protein).

Statistical Analysis
The results are presented as mean ± standard deviation (S.D.).
The differences in physiological measurements among different
categories were analyzed with one-way analysis of variance
(ANOVA) to determine the significant differences among the
treatments at p < 0.05. If the main effects were significant,
Tukey’s multiple range test was used to compare the mean
values (p < 0.05) between individual treatments. Analysis was
conducted using SPSS statistics 20.0 software (IBM, Armonk,
NY, USA).
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RESULTS

Growth Rate Comparisons
In 6 months, selective breeding pearl oysters had a higher
phenotypic (shell height) mean than the cultured population
(Figure 1). At the age of 6 months, the average shell height was
3.9mm (14.61%), which was higher than the cultured population
(p < 0.05). The cultured population had a higher value of
phenotypic variation (CV) (Table 2). In the selective strain
(Figure 1), the proportion of large size (30–40mm) individuals
was higher (59%) than the control group (28%). The proportion
of 20–30mm pearl oysters was the highest among the cultured
population, accounting for 60% (Figure 2).

Differences in Physiological Performance
CR
CRs of pearl oysters of three groups are shown in Figure 3A. SL
had a higher CR than the other two groups (p < 0.05) (Table 3).
The value was about 1.8 times higher than CL and 5 times higher
than SS.

OCR and AER
There were significant differences in OCR and AER between
the SL and SS and CL (Figures 3B,C). ANOVA test showed
that weight traits were significantly correlated with the changes
of AER and OCR (p < 0.05) (Table 3). The AER and
OCR decreased as the dry weight of soft tissues increased,
and there was a negative correlation between them. The
AER and OCR of SS were significantly higher than that

TABLE 2 | Statistical description of shell height of two groups of 6-month old

pearl oysters.

Groups Max/mm Min/mm Mean/mm Median/mm SD/mm CV/% N

Selective

strain

37.51 10.11 30.64 31.52 5.12 17 100

Cultured

population

37.12 10.43 26.71 27.10 5.60 21 100

FIGURE 2 | Size distribution of selective strain and cultured population pearl

oysters at 6-month-old.

in SL (p < 0.05). Under the same specifications, the AER
and OCR in SL were significantly higher than that in
CL (p < 0.05).

Comparison of Enzyme Activities
Enzyme activities of the three groups are presented in Figure 4.
For the three digestive enzymes, the activities of SL were
significantly higher than those of SS and CL (p < 0.05). Amylase
activity of SL was about 10 times higher than that of SS
and 1.7 times higher than that of CL (Figure 4A). Although
the specifications of CL and SS differ greatly, there was no
significant difference in lipase activity between them (Figure 4B).
When comparing the pepsin activity, significant differences were
observed among three groups, and the activity in SL was about 3
times higher than that of SS (Figure 4C). For carbonic anhydrase,
the enzyme activity in SL and CL was significantly higher than
that in SS (p < 0.05) (Figure 4D).

DISCUSSION

In the present study, we compared the growth differences
between the selective strain of P. f. martensii and the control
group, and results showed that the growth rate of selective
strain was significantly improved (14.61%) (p < 0.05), which was
consistent with the previous study on 1-year-old selective strain
pearl oyster (15.31%) (Wang et al., 2011a). The proportion of
large-size (30–40mm) oysters in the selected strain was two times
higher than the cultured population. In addition, the median of
shell height of the selected strain was larger, and the coefficient
of variation was smaller, indicating that the cumulative multi-
generation selection breeding improved the growth rate and
reduced the phenotypic differences of the young generations
(Wang et al., 2011b).

The differences of growth rate or survival were mainly caused
by physiological variety, such as feeding, respiration, or enzyme
activities (Bayne, 2000; Tamayo et al., 2014; Zhang et al., 2018;
Zhao et al., 2019a, 2020). Feeding, respiration, and excretion are
the most important basic forms of metabolism in organisms.
In this study, we examined the difference of feeding and
metabolism between the selected strain and cultured population
of P. f. martensii and identified the mechanism responsible for
the improved growth performance in the selective breeding of
pearl oysters.

In this study,meanCR values in P. f. martensii ranged from 0.4
to 1.6 (L/g∗h), which were close to the values of Tapes decussatus
and banded carpet-shell clams Paphia rhomboïdes (Savina and
Pouvreau, 2004), but comparatively lower than the values of the
Indo-Pacific mytilid Brachidontes pharaonis (Sara et al., 2008)
and clams Ruditapes decussatus (Sobral and Widdows, 1997).
Inter-tidal species living in highly variable habitats should seize
an immediate advantage from every profitable environmental
situation allowing them to acquire energy to be allocated to
growth and reproduction (Wang et al., 2015a). Pearl oysters
showed a relatively low food acquisition speed, which explained
that the species lived in an invariable condition. This hypothesis
was proven by a study, which reported that ribbed mussel
(Geukensia demissa) under subtidal zone conditions exhibited
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FIGURE 3 | (A–D) The clearance rate, oxygen consumption rate, ammonia excretion rate, and O/N rate of P. f. martensii in SL, CL, and SS groups. Means ± S.D. are

presented. n = 3 replicate per treatment. Different letters represent significant differences (p < 0.05).

lower CR than intertidal conspecific (Charles and Newell, 1997).
P. f. martensii is a species distributed in the subtidal zone
(Wang et al., 2004). CR of the selected strain pearl oysters with
a highly homologous genetic basis was significantly different,
indicating that feeding rates were highly correlated with growth
within species (Vladimirova et al., 2003). In the comparison
between the selective strain and cultured population, CR values
of the same size were also significantly different, which showed
a reduced ecological footprint of the selective strain oysters
(Hall et al., 2020). The results were similar to Tamayo et al.
(2012), who found that the rapid growth of R. philippinarum
showed a significantly higher CR than slow-growing ones,
irrespective of temperature. Correlations between growth and
CR have been published in several marine bivalves (Sousa
et al., 2011; Tamayo et al., 2015; Zhang et al., 2018). The
individuals with rapid growth had relatively higher clearance
rate and absorption rate and lower metabolic cost (Hall et al.,
2020). Bivalves may maximize energy for growth through
rapid feeding. This hypothesis was supported by Bayne et al.
(1999), who reported that rapid growth in Sydney rock oysters
(Saccostrea commercialism) was positively related to increased
food acquisition.

OCR is a crucial physiological parameter that reflects the
energy metabolism level of aerobic respiration (Zhang et al.,
2018). AER is considered an index to evaluate the tolerance
of bivalves to environmental stress (Nie et al., 2017). In this
study, OCR values ranged from 0.45 to 2.30 (mg/g∗h), and
AER values ranged from 0.07 to 0.19 (mg/g∗h), which were
different from the results reported by Wang et al. (2009).
These differences may be caused by different temperatures,
as temperature is a fundamental factor influencing energy
metabolism in marine bivalves (Tamayo et al., 2015). Wang et al.
(2009) also confirmed that OCR and AER of P. f. martensii
were positively associated with temperature. The fast-growing
selective strain of pearl oysters was obtained through generations
of intensive mass selection. Therefore, the genetic basis was
highly homologous (Wang et al., 2011a). According to the
current study (showed in Figure 3), OCR and AER of SS pearl
oysters were comparatively higher than SL. Such metabolic
behavior was previously reported in R. philippinarum (Tamayo
et al., 2011, 2012) and oyster (C. gigas) (Zhang et al., 2018),
indicating that the size of an organism was closely associated
with the metabolic rate (Kang et al., 2010). Generally, metabolic
rate of the small specification was significantly faster than large
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TABLE 3 | Analysis of variance (ANOVA) test of clearance rate, oxygen

consumption rate, ammonia excretion rate, and O/N rate of P. f. martensii in the

three groups.

Factor DF SS MS F P

CR 2 3.52 1.76 42.14 0.001

OCR 2 5.549 2.73 318.43 0.001

AER 2 0.008 0.004 21.89 0.001

O/N 2 67.26 33.63 43.63 0.001

ones, including the larval stage (Beiras and Camacho, 1994;
Kang et al., 2010; Xu et al., 2020). Higher metabolic rate in
SS was associated with a smaller deficiency in heterozygote
frequencies, a genetic condition imposing raised metabolic
costs associated with elevated protein turnover rates (Hawkins
et al., 1989; Hawkins, 1995; Tremblay et al., 1998; Myrand
et al., 2002). As shown in Figure 3, both OCR and AER of
metabolism were significantly higher in SL and SS than CL
(p < 0.05). A similar metabolism behavior was reported in
the hard clam (Mercenaria mercenaria), where the selective
bred of hard clam showed a 33% increment in their standard
OCR compared to the wild individuals (Pernet et al., 2006). It
suggests that the differences in growth and metabolism of P.
f. martensii are caused by genetic variation, and the genes that
control growth are pleiotropic or closely linked to the genes
determining physiological traits (Wang et al., 2009; Zhang et al.,
2018).

O/N represents the ratio of protein to fat and carbohydrate
catabolism in organism (Mayzaud, 1976). If the energy is
completely supplied by protein, the O/N value is 7. If the energy
is supplied by protein and fat, the ratio is 24. If the energy
is completely supplied by fat or carbohydrate, the ratio will
become infinite (Mayzaud, 1976). For SL andCL, themain energy
supply was protein, followed by fat and carbohydrate, while the
proportion of protein oxidation energy supply decreased for SS
in this study. The results were consistent with R. philippinarum
(Nie et al., 2017).

For energy utilization during the metabolic process, various
complex organic compounds are hydrolyzed to monomeric
subunits, including glucose, fatty acid, and amino acids (Boetius
and Felbeck, 1995). Marine molluscs obtain multiple nutritional
requirements by utilizing various digestive enzymes, such as
amylase, lipase, trypsin, pepsin, and lysozyme, to catalyze and
decompose different types of substrates (Weel, 1961; Wang
et al., 2015b; Martínez-Montaño et al., 2018; Kong et al., 2019).
In this study, we observed three typical digestive enzymes
(amylase, lipase, and pepsin) in P. f. martensii. The types and
activities of enzymes were different from those reported byWang
et al. (2010), for example, the value of amylase activity was
comparatively lower than in their studies. The difference in the
type and level of digestive enzymatic activity may be due to
differences in diet (Fernández-Reiriz et al., 2001; Labarta et al.,
2002; Alberto et al., 2020). In the experiment, we found no
cellulase activity in any of the test tubes. During the experiment,
the enzyme activity was examined to reduce the types of error in

the feed. All groups were fed I. galbana for domestication, which
was considered common feed for bivalves (Cheng et al., 2020). I.
galbana has a naked cell without cell walls, but cellulase is related
to the digestion of cell walls (Cheng et al., 2020), indicating
the absence of cellulase in pearl oysters (P. f. martensii). In
addition, digestive enzyme activity was strongly correlated with
body size. A study on Aulacomya ater showed that increasing
body-size increased specific amylase activity (Ibarrola et al.,
2012). However, increasing body-size promoted a significant
reduction in protease activity in M. chilensis, chorus mussel
(Choromytilus chorus), and A. ater (Ibarrola et al., 2012). In
the current study, the activities of three digestive enzymes were
higher in large individuals (SL and CL) than SS, indicating a
relatively higher food processing capacity in the gut of fast-
growing pearl oysters (Tamayo et al., 2012). Metabonomics
and transcriptome studies have showed that fast-growing pearl
oysters (P. f. martensii) exhibited higher digestion, anabolic
ability, and osmotic regulation ability than the slow-growing
group (Hao et al., 2019).

The successive selection of fast-growing bivalves may have
positive effects on hydrolytic activities of gland tissues and
enzyme activities in digestive glands, which are closely correlated
with the digestive capacities of bivalves (Ibarrola et al., 2000;
Tamayo et al., 2015; Zhang et al., 2018). Studies on bivalves
had confirmed that a significant degree of genetic control
was exerted over parameters influencing energy utilization and
growth efficiency, including oysters (Bayne et al., 1999; Parker
et al., 2010) and green-lipped mussels (Ibarrola et al., 2017).
By comparing first-generation yellow shell color and cultivated
stocks of P. f. martensii, the digestive enzyme activity was
effectively increased through breeding (Wang et al., 2010). We
also obtained similar results for digestive enzyme activity.

Carbonic anhydrase, one of the major biocatalysts for carbon
capture and storage, is involved in shell formation processes
in bivalves. The activity of carbonic anhydrase in the mantle
tissue of European abalone (Haliotis tuberculate) was closely
related to the formation of shell structure (prismatic and
nacreous layers) (Roy et al., 2012). Carbonic anhydrase plays a
key role in regulating mineralized structures through calcium
carbonate crystal formation (Cardoso et al., 2019). In the
internal selected strain, SL had a higher carbonic anhydrase
activity than SS, indicating that larger pearl oysters had a
higher calcium carbonate formation and shell mineralization.
Studies on blue mussels (M. edulis) have confirmed that carbonic
anhydrase activity is essential for rapid shell development
(Medaković, 2000). Wilbur and Anderson (1950) also reported
that enzyme content might increase with the development
of shellfish.

CONCLUSION

In summary, pearl oysters (P. f. martensii) from the fast-
growing selective strain had more efficient food ingestion,
food digestion, and energy absorption compared to the
cultured population. In the inter selective strain, the OCR
of SS was nearly 3 times higher than that of SL, and the

Frontiers in Marine Science | www.frontiersin.org 6 November 2021 | Volume 8 | Article 770702

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Zhang et al. Metabolism Comparison of Pearl Oyster

FIGURE 4 | (A–D) Specific activities of amylase, pepsin, lipase, and carbonic anhydrase activities in the visceral mass of P. f. martensii. Means ± S.D. are presented.

n = 3 replicate per treatment. Different letters represent significant differences (p < 0.05).

AER of SS was 1.5 times higher than that of SL, which
proved that a combination of fast feeding and reduced
metabolic costs would enable SL to increase their growth
rate. In order to identify growth-related regulatory genes,
further investigation is required to compare gene expression in
contrasting physiological phenotypes.
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