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Due to its small size, large specific surface area and hydrophobicity, microplastics,
and the adsorbed contaminants may together cause potential negative effects on
ecosystems and human beings. In this study, kinetics and size effects on adsorption
of Cu(II), Cr(III), and Pb(II) onto PE, PP and PET microplastic particles were explored.
Results indicated that the PE and PET microplastics have the higher adsorption capacity
for Cu(II), Cr(III), and Pb(II) than that for PP microplastic. The adsorption capacity was
affected by microplastic types and metal species. Among the three metals, Pb(II) had
the largest adsorption amount on microplastic particles, especially on PET particles.
Moreover, the adsorption capacities of microplastics increase with the decrease of
particle size. The metal adsorption capacity of <0.9 mm microplastics is greater than
that of 0.9–2 mm and 2–5 mm microplastics. The size effect on metal adsorption was
largest for PE microplastic. More attention should be paid in case of the coexistence of
heavy metals and tiny PE and PET microplastics in the environment.

Keywords: microplastics, kinetics, metal, adsorption, size effect

INTRODUCTION

Microplastics have already posed potentially risk for human health through transmission and
accumulation in food chain (Yang et al., 2015; Xu et al., 2019) as they have already been widely
detected in food (Liebezeit and Liebezeit, 2013, 2014; Yang et al., 2015). In the future, the
environmental exposure risk of microplastic may be elevated as the plastic production is expected
to increase to 318 million tons annually in 2050 (Neufeld et al., 2016). Furthermore, environmental
microplastics could be a carrier for heavy metals transport from river to sea due to its small size,
large specific surface area and hydrophobicity (Wang et al., 2017). As commonly detected pollutants
in the environment (Zhang et al., 2018), heavy metals such as Cu, Cr, and Pb were also frequently
detected in environmental microplastics (Selvam et al., 2021), and the metal concentration of
microplastics was even similar or higher than that of the sediment phase (Ashton et al., 2010). It
indicated that microplastics were able to enhance the mobility of heavy metal along river-coast-sea
system. Once the metal-contained microplastics are ingested by aquatic organisms, these metals
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may be released in the organism, causing further damage
to the function of the organism. Then threaten human
health via gradual accumulation in food chain (Fries et al.,
2013). Therefore, the potential risk of microplastics and the
heavy metal to freshwater-marine ecosystems would be both
intensified. Therefore, to investigate the affinity of heavy metals
to microplastics is essential to estimate the coexisting toxicity
of heavy metals and microplastics in aqueous environments
(Xu et al., 2018).

Although microplastics have ability to adsorb heavy metals
(Koelmans et al., 2016; Wang et al., 2019; Fu et al., 2021), the
adsorption capacity varies with the type of microplastics and
heavy metals because of the difference in physicochemical
properties of various microplastics and heavy metals. For
example, polystyrene and film microplastic have greater
adsorption capacity for Cu(II) than polyvinyl chloride,
polyethylene, fishing line fibers and bottle cap particles,
due to the conducive physicochemical properties of film
microplastic (Almeida et al., 2020; Gao et al., 2021a). Compared
with Cu and Cd, Pb showed the higher affinity to microplastics,
because it is more likely to efficiently bind to function group
on microplastics to promote the adsorption (Gao et al., 2019,
2021b). In addition, particle size is the generally essential factor
influencing adsorption. In the environments, microplastics will
be further fragmented into smaller part due to environmental
dynamics, thereby affecting the adsorption capacity of heavy
metals on microplastics (Gao et al., 2019; Zhang et al., 2020).

Therefore, it is important to investigate how microplastic size
and type affect the interaction with heavy metals, which heavy
metal has the most potential to be absorbed onto microplastics,
and how the interaction will change with time. Adsorption
kinetics are a conventional method to identify the temporal
change of adsorption process, and the model parameters would
attribute to reveal the possible adsorption mechanism (Almeida
et al., 2020; Purwiyanto et al., 2020). Here, polyethylene (PE),
polypropylene (PP) and polyethylene terephthalate (PET), which
are three mostly used and typical types of plastics in the world
(The Essential Chemical Industry (ECI), 2016a,b, 2017), are
selected to study the adsorption kinetics and size effect for the
three typical metal ions of Cu(II), Cr(III), and Pb(II) to test the
hypotheses: (a) different temporal change in metal adsorption
for different microplastics; and (b) larger metal adsorption for
smaller microplastic particles.

MATERIALS AND METHODS

Chemicals and Materials
Cu(NO3)2, Cr(NO3)3, and Pb(NO3)2 were purchased from
Aladdin Bio-Chem Technology Corporation (Shanghai,
China). HNO3 was purchased from Bohua Chemical Reagent
Corporation (Tianjin, China). All chemicals were analytical
grade or higher purity. PE, PP, and PET pellets with particle size
of 5mm were purchased from Yousuo Chemical Technology
Corporation (Shandong, China). Before use, the PE, PP, and PET
pellets were crushed using a high-speed crusher. The crushed
microplastic particles were then sequentially sieved through 20-,

10-, and 4- mesh screens in order to separate the particle sizes
2–5, 0.9–2, and <0.9 mm. The morphology of PE, PP, and PET
microplastics were observed with a scanning electron microscope
(Tescan Mira 4). To prevent contamination, all the lab materials
were soaked in 10% (v/v) HCl solution for at least 48h, rinsed at
least three times with deionized water (conductivity < 0.1 mS
cm−1) and dried in an oven at 50oC.

Adsorption Experiments
The first experiment was to investigate temporal change of
metal adsorption onto microplastics. Three microplastics (PE, PP,
and PET) with same particle size < 0.9 mm were mixed with
50 mL solutions of Cu(II) with concentration of 5 mg L−1 in
centrifuge tubes. The adsorption of Cr(III) and Pb(II) were also
conducted simultaneously at the same condition. The medium
is the deionized water. Samples were shaken at 150 r/min in
a constant temperature water bath shaker at room temperature
(∼25oC). Sub-samples after 1, 2, 4, 8, 24, 72, 120, 168, 240, 312,
and 384 h were taken, respectively.

The second experiment was to investigate the influence
of microplastic particle size on adsorption. PE, PP, and PET
microplastics with particle size 2–5, 0.9–2, and <0.9 mm were
used. A series of centrifuge tubes, respectively containing 0.5 g
microplastic with different size and 50 mL solutions of Cu(II)
with concentration of 5 mg L−1, were shaken for 240 h at 150
r/min in a constant temperature water bath shaker at room
temperature (∼25oC). At the same time, the adsorption of Cr(III)
and Pb(II) were also conducted at the same condition. The
medium is the deionized water.

At the terminal of shaking step, the mixture was immediately
filtered with filter paper with a pore size of 15 to 20 µm.
The trapped microplastics were collected, then were dried and
transferred to a series of 10 mL centrifuge tubes. Then, 5 mL
2% HNO3 was added to these tubes and ultrasound for 10 min
to extract metal ions from microplastics. Finally, the mixture
after ultrasonic was filtered with a syringe filter and the filtered
solution was transferred to a clean PP centrifuge tube for
quantification analysis. An inductively coupled plasma mass
spectrometry (ICP-MS, Elan DRC-e, PerkinElmer) was used to
analyze the heavy metal contents using the certified reference
material (CRM). The detection limits for the three metals are 1
ppt and the recoveries for all are above 90%. All the treatments
were in duplicate. The amount of heavy metal adsorbed by per
unit mass of microplastic (q) could be calculated by Eq. (1).

q =
VC
m

(1)

where, m (g) was the mass of microplastics used in adsorption,
V (L) was the volume of the added solution with 2% HNO3,
C (µg L−1) was the concentration of heavy metals after
ultrasonic, respectively.

Kinetic Models
Four kinetic models were used to describe the kinetic adsorption
of Cu(II), Cr(III), Pb(II) onto PE, PP, and PET microplastics.

Frontiers in Marine Science | www.frontiersin.org 2 December 2021 | Volume 8 | Article 785146

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-785146 December 21, 2021 Time: 15:9 # 3

Han et al. Metal Adsorption Onto Microplastics

FIGURE 1 | (A) The Cu(II), (B) Cr(III), and (C) Pb(II) adsorption of PE, PP, and PET microplastics with a particle size of <0.9 mm at different adsorption time.

FIGURE 2 | (A) The pseudo-second-order kinetic model for Cu(II), (B) Cr(III) adsorption on PE, PP, and PET microplastics, and (C) the intra-particle diffusion model
for Pb(II) adsorption on PE, PP and PET microplastics.

TABLE 1 | The fitting parameters of different models of Cu(II), Cr(III), and Pb(II) adsorbed onto PE, PP, and PET microplastics, respectively.

Cu(II) Cr(III) Pb(II)

PE PP PET PE PP PET PE PP PET

Pesudo-second-order model qe (µg g−1) 0.402 0.278 0.488 0.649 0.380 0.385 5.128 0.370 1.04
k2 (g/(µg·h)−1) 0.0025 0.0005 0.0081 0.0107 0.0034 0.0094 2.217 0.0009 0.0123

R2 0.94 0.78 0.98 0.95 0.96 0.99 0.88 0.67 0.52

Pesudo-first-order model qe (µg g−1) 0.303 0.287 0.147 1.71 0.267 0.151 6.97 0.542 1.21

k1 (h−1) 0.0072 0.0076 0.007 0.014 0.006 0.0076 0.015 0.0066 0.104

R2 0.69 0.67 0.61 0.82 0.71 0.82 0.76 0.48 0.60

Elovich model a (µg g−1) 21.8 32.3 16.5 15.7 27.4 29.8 1.09 26.7 7.63

B (µg g−1 h−1) 0.046 0.031 0.061 0.065 0.037 0.034 0.73 0.038 0.131

R2 0.80 0.60 0.93 0.79 0.88 0.94 0.84 0.39 0.59

Intraparticle diffusion model kp,1 (µg g−1 h−0.5) 0.111 0.015 0.019 0.022 0.0602 0.056 0.320 0.0464 0.014

C1 (µg g−1) 0.112 0.058 0.154 0.209 0.0727 0.120 0.0042 0.0252 0.078

R2 0.90 0.79 0.92 0.96 0.95 0.99 0.89 0.80 0.76

kp,2 (µg g−1 h−0.5) 0.0062 0.002 0.194 0.0018

C2 (µg g−1) 0.222 0.327 0.311 0.149

R2 0.95 0.95 0.98 0.83

kp,3 (µg g−1 h−0.5) 0.0276 0.0105 0.153 0.0727

C3 (µg g−1) −0.126 0.191 1.87 −0.925

R2 0.93 0.99 0.93 0.85
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FIGURE 3 | (a–i) The morphology of PE, PP and PET microplastics.

The pseudo-second-order kinetic model:

t
qt
=

(
1

k2q2
e

)
t
+
qe (2)

The pseudo-first-order kinetic model:

ln(qe−qt) = k1t + lnqe (3)

The Elovich kinetic model:

qt = blnt +
ln(ab)
b

(4)

The intra-particle diffusion model:

qt = kpt0.5
+ C (5)

where, qt (µg g−1) is the adsorption amount at the time of t
(h); qe (µg g−1) is the saturated adsorption capacity of heavy
metals at equilibrium; k1 (h −1) is the reaction rate constant of
pseudo-first-order equation at equilibrium; k2 (g µg−1 h −1) is
the reaction rate constant of the pseudo-second-order equation
at equilibrium; a (µg g−1) and b (µg g−1 h−1) are the parameters
of the Elovich equation; kp (µg g−1 h−0.5) is the constant of intra-
particle diffusion model, C (µg g−1) represents a conception

about the thickness of boundary layer, describing the influence
of thickness of boundary layer on adsorption.

RESULTS AND DISCUSSION

Metal Adsorption Kinetics
The kinetics experiments results were shown in Figure 1. The
maximum of Cu(II) and Cr(III), Pb(II) adsorption were 0.51,
0.64, and 4.78 mg g−1 for PET, PE and PE, respectively. For
all the three metals, the adsorption capacity on PP particles
was the lowest. The adsorption of PE, PP, and PET particles
increased rapidly in the initial 24 h, and then changed slowly. In
general, the adsorption rates and adsorption capacities followed
the orders of PET > PE > PP for Cu(II), and PE > PET > PP for
Cr(III) and Pb(II).

As shown in Figure 2, the kinetics of Cu(II) and Cr(III)
adsorption onto the PE, PP, and PET microplastics were well
regressed by the pseudo-second-order model (Table 1). The
derived equilibrium adsorption capacities (qe) of Cu(II) and
Cr(III) for PP microplastic were the lowest, which was the same
with the experimental results in Figure 1. It may be attributed
to no functional group on PP microplastic compared with PET
microplastic and the smoother surface of PP microplastic than
PE microplastic (Figure 3). The adsorption capacity of Cu(II)
for PET microplastic is greater than that for PE microplastic,
while the adsorption capacities of Cr(III) for PET microplastic is
smaller than that for PE microplastic. However, other researchers
found that sequence of adsorption capacity was PE > PP > PET
for both Cu(II) and Cr(III) (Godoy et al., 2019). The differences
may be because the microplastics they used were from daily
objects and may be aged. This may suggest that the adsorption
capacity of heavy metals on microplastic greatly varies with
the change of microplastics surface. In Table 1, the values of
k2 were lower than 0.01 g (µgh) −1 for Cu(II) and Cr(III)
adsorption. It did not only indicate that the adsorption rate
was proportional to the number of unoccupied sites (Fan
et al., 2021), but also revealed the adsorption of Cu(II) and
Cr(III) onto the microplastics were a slow process, especially
for the virgin microplastics with relatively homogeneous smooth
surface (Li et al., 2019; Oz et al., 2019; Wang et al., 2020).

FIGURE 4 | (A) The Cu(II), (B) Cr(III), and (C) Pb(II) adsorption capacities of PP, PE, and PET microplastics with different particle sizes in 240 h.
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Turner and Holmes (2015) and Wang et al. (2020) also found
that the interaction between metals and microplastics was a long-
term process even for the aged microplastics. It indicated that the
microplastics might continue to accumulate heavy metals when
the interaction time is long. However, further evidence is needed.

There was obvious discrepancy in Pb(II) adsorbed on PE, PP,
and PET microplastics (Figures 1, 2). The adsorption amount of
Pb(II) on PE microplastic was the highest, which may attribute
to the higher crystallinity, high pore volume and rough surfaces
of PE microplastic (Wang and Wang, 2018; Zou et al., 2020).
It indicated that the crystallinity of microplastic may be one of
the essential factors influencing Pb(II) adsorption, even more
important than function group for the virgin microplastics. The
kinetics of Pb(II) adsorption on PE, PP, and PET microplastics
were well fitted by the intra-particle diffusion model (R2

≥ 0.76
in Table 1), implying the inter-particle diffusion process was the
rate-controlling step. The negative influence of the boundary
layer on adsorption over time decreased to the lowest (C3 < 0)
explained the keep growing in amount of adsorbed Pb(II) on PET
microplastic. Although the order of C on PE microplastic was
C1 > C2 > C3, the adsorption amount continuously increased
with time. Turner and Holmes (2015) also found the same
trend when the added Pb(II) concentration was 5 mg L−1. It
implied that Pb(II) had strong prosperity of affinity and temporal
accumulation on PE microplastic. However, the adsorption can
quickly achieve the equilibrium at about 48h in the seawater
medium (Holmes et al., 2012), because the ions existence
would fasten the adsorption process and change the temporal
procedure of adsorption.

Size Effect on Metal Adsorption
The results shown in Figure 4 validated the heavy metal
absorption on microplastics decreased with increasing particle
size. With the decrease of microplastic size from 2–5 mm
to <0.9 mm, the adsorption amount increased about 1.8–2.2,
1.3–1.5, and 1.94–2.83 times for Cu(II), Cr(III), and Pb(II),
respectively. In addition, the amount of adsorbed Cr(III) varied
more slightly with the particle size. Namely, the effect of particle
size of PP microplastic on metal adsorption was relatively low.

The phenomenon may attribute to the more complex
morphology and higher specific area with decrease of particle
size (Figure 3), which can lead more unoccupied site for
adsorption. For Cu(II) and Pb(II), the observed adsorption
variations with particle size implied that the adsorption on
microplastic was considerably related to the porosity. Compared
with Cu(II) and Pb(II), the influence of particle size on Cr(III)
adsorption was relatively small, which is similar to the tendency
observed in other studies (e.g., Zhang et al., 2021). It may be
attributable to the insensitive response of Cr(III) adsorption
to the stratification variation of the microplastic surface. The

relatively low influence of particle size on PP microplastic
adsorption profitably emphasized the significance of crystallinity
and function group.

According to the experimental results above, it may be inferred
that the adsorption amount of microplastics to other metals may
also possibly increase with decrease of particle size. Namely,
microplastics with a smaller particle size in the environment
may cause higher environmental risks as a carrier of heavy
metals (Thompson et al., 2004; Zhang et al., 2020). With the
aging process of microplastics in natural environment, such
as UV-irradiation, acid and alkali corrosion, particle crushing,
biofouling, it would become more toxic to the environment.
This means the results in this study may be regarded as
the lowest metal amounts absorbed by microplastics in the
natural environment.

All the three heavy metals can be accumulated increasingly
with time onto the three microplastics. The PET microplastic
has the relatively rapid and strong ability to adsorb Cu(II) and
PE microplastic has the relatively rapid and strong ability to
adsorb Cr(III) and Pb(II). It means that the virgin microplastic
PE and PET can be a conducive carrier for heavy metal transport
in the environment and their environmental toxicity would be
magnified, especially for the combination of Pb(II) and PE. The
risk to environmental security would be further elevated due to
the aging process of PP and PET in the environment (Han et al.,
2021). Therefore, more attention should be paid to PE and PET
microplastics if metal contaminants exist in the aqueous system.
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