'," frontiers

in Marine Science

PERSPECTIVE
published: 20 December 2021
doi: 10.3389/fmars.2021.788657

OPEN ACCESS

Edited by:
Felice D’Alessandro,
University of Milan, Italy

Reviewed by:

Ali Dastgheib,

IHE Delft Institute for Water Education,
Netherlands

Alessandro Romano,

Roma Tre University, Italy

*Correspondence:
Kristen D. Splinter
k.splinter@unsw.edu.au

Specialty section:

This article was submitted to
Coastal Ocean Processes,
a section of the journal
Frontiers in Marine Science

Received: 03 October 2021
Accepted: 29 November 2021
Published: 20 December 2021

Citation:

Splinter KD and Coco G (2021)
Challenges and Opportunities in
Coastal Shoreline Prediction.
Front. Mar. Sci. 8:788657.

doi: 10.3389/fmars.2021.788657

Check for
updates

Challenges and Opportunities in
Coastal Shoreline Prediction

Kristen D. Splinter ™ and Giovanni Coco?

" Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, Australia,
2School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand

Sandy beaches comprise approximately 31% of the world’s ice-free coasts. Sandy
coastlines around the world are continuously adjusting in response to changing waves
and water levels at both short (storm) and long (climate-driven, from EI-Nino Southern
Oscillation to sea level rise) timescales. Managing this critical zone requires robust,
advanced tools that represent our best understanding of how to abstract and integrate
coastal processes. However, this has been hindered by (1) a lack of long-term, large-scale
coastal monitoring of sandy beaches and (2) a robust understanding of the key physical
processes that drive shoreline change over multiple timescales. This perspectives article
aims to summarize the current state of shoreline modeling at the sub-century timescale
and provides an outlook on future challenges and opportunities ahead.
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1. INTRODUCTION

Beaches provide essential ecosystem services, including the natural buffering of inland areas
from the damaging impacts of waves and elevated water levels during storm events. The coastal
zone also provides major economic benefits. The challenge in many coastal areas is that, due
to historical planning decisions and perhaps a persistent lack of understanding of the complex
dynamic coastline, infrastructure has been inappropriately sited within the active coastal zone.
Hence, many new and on-going coastal management projects are needed to deal with the risks
associated with coastal erosion.

Coastal erosion can be episodic (storm-driven), show long-term patterns (from seasons to
decades) or be chronic (when a trend is established) as a result of both natural (due to changes
in water levels and wave characteristics) and anthropogenic causes. Extra-tropical and tropical
events can cause widespread and rapid erosion over large areas of the coastline in a matter of
hours to days (Castelle et al., 2015; Masselink et al., 2016b; Harley et al., 2017), whereas longer term
climate variability (e.g., E1-Nino Southern Oscillation, ENSO) can also cause enhanced erosion (or
accretion) on time scales of 2-7 years (e.g., Barnard et al., 2015). The issue of changes induced by
sea-level rise is also hotly debated (Vitousek et al., 2017a; Cooper et al., 2020; Vousdoukas et al.,
2020) because we still lack a clear modeling framework to deal with this even longer temporal scale.
For improved shoreline forecasting and coastal management in a dynamic and changing system
like the nearshore there is an outstanding need for both long-term, large-scale continuous data sets
and improved coastal shoreline prediction models.

2. DATA

Data is fundamental for expanding our understanding of the coastline. Importantly, data also
underpins all of our modeling efforts. This is particularly true for hybrid modeling approaches as
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described in section 3, that train specific predefined relationships
to data. High quality data is even more important for future
endeavors to develop predictive models entirely based on data
(e.g., machine learning algorithms).

2.1. Shorelines

Historically, a key challenge in our ability to fully understand
coastal change has been the lack of long-term, large-scale, high-
resolution (in time and space) coastal data sets (Turner et al.,
2016; Ludka et al., 2019; Castelle et al., 2020). The result is
that many studies on coastal shoreline dynamics have been
based on a select few sites and span specific timeframes, thus
limiting the universality of the findings. Despite the rather lack
of data, we have learned about general principles that control
shoreline behavior and the key drivers, including the effects of
changing sea-levels (e.g., Brunel and Sabatier, 2009), storminess
(e.g., Frazer et al., 2009), climate-driven responses (Barnard et al.,
2015), inter-annual variability (e.g., Pianca et al, 2015) and
embayment rotation (e.g., Harley et al., 2015).

Recently, the public release of satellite images has provided
significant new opportunities for large-scale coastal change
studies based on shoreline observations (Luijendijk et al., 2018;
Mentaschi et al., 2018; Vos et al., 2019a). Recent open-source
toolboxes, for example CoastSat (Vos et al., 2019b) or CASSIE
(Almeida et al., 2021), allow for high resolution (order 10
m) bi-weekly shoreline measurements to be obtained at most
sandy beaches around the world over the last 30 years. This
spatio-temporal resolution of data is a necessary component in
shoreline model development and calibration (Splinter et al.,
2013). Newer satellites are continuously being added to the data
stream providing higher spatial and temporal resolution into the
future. As such, satellite data will most likely play an increasing
and ongoing role in future, regional scale shoreline modeling
efforts via data assimilation (e.g., Vitousek et al., 2017a).

2.2. Waves and Water Levels
When looking at the past, data of the “drivers” of shoreline
change, for example waves and water levels, are often readily
available as direct observations or numerical hindcasts. A
recent paper outlining the priorities for wind-waves research
highlighted the need for enhanced buoy networks and high
quality bathymetry for nearshore wave predictions (Greenslade
et al., 2019). Topographic and bathymetric data collection was
also recently listed as a top priority by the Coastal Geosciences
community (Power et al., 2021) due to the importance of the links
between nearshore bathymetry and beach response, including
sediment exchange as well as wave transformation processes.
With respect to waves, some coastlines may be considered
quite data rich, such as the USA with the NOAA network of
buoys, while others rely entirely on global wave models. On
complex coastlines, more refined models are needed to capture
the complex wave transformation processes from offshore to
nearshore in the absence of nearshore buoy networks. These
models in turn, require high quality bathymetry data that is
expensive to acquire.

The problem becomes insurmountable when looking at the
future. Rates of sea-level rise over the next few decades are

unknown and available projections depend on global climate
models and therefore on the emission scenarios considered,
which are also deemed uncertain. Similarly, our ability to
predict the details of decadal oscillations in climate variability
is extremely limited. However, efforts are being made within
the shoreline community to address these (e.g., Antolinez et al.,
2016; Montafio et al., 2021). A specific challenge for shoreline
prediction is the need for continuous timeseries of forcing
conditions. While the wave climate can be derived from global
climate models, at present the projections of wave characteristics
provide only one temporal sequence of wave conditions. This
limits the possibility of assessing, for example, the effect of
clustering or chronology of storms on future beach erosion
that previous authors have shown to be important (e.g., Coco
et al., 2014; Karunarathna et al., 2014; Castelle et al., 2015;
Dissanayake et al., 2015; Masselink et al., 2016a,b; Splinter et al.,
2016; Angnuureng et al., 2017).

3. MODELS

Models may incorporate a variety of processes, such as those
described in Figure 1. While models can take on many forms,
here we focus on simple models used for daily to multi-
year shoreline prediction which form a subset of reduced
complexity models. These encompass the “microscale” problem
on understanding our coastline at engineering timescales of years
to decades and spatial scales of kilometers to tens of kilometers
(Wolinsky, 2009). More complex, process-based models, such as
XBeach or SBeach are well-suited for short-term (e.g., individual
storm response) scenarios but at present they are still not
capable of providing robust and reliable predictions of multi-
year shoreline change. This model typology, based on the
fundamental equations of momentum and mass conservation,
could eventually be used to model long-term coastal response,
but at present it requires significant computational resources,
making it almost impossible to assess how predictions are
affected by model uncertainties (in parameters and drivers, for
example). The more complex, process-based models also require
more calibration data and input data, including the bottom
boundary (i.e., bathymetry), tidal currents, and wave-driven
currents, making them unsuitable for large regional studies of
shoreline change. Here we categorize shoreline models used at
engineering timescales into three types: ones that focus on cross-
shore process; ones that focus on alongshore processes; and ones
that combine these.

3.1. Cross-Shore Models

The most common models used to predict and understand multi-
year shoreline change are semi-empirical models (Yates et al.,
2009; Davidson et al., 2013; Splinter et al., 2014) based around
the equilibrium assumption. The primary forcing component
that drives onshore/offshore shoreline movement is waves at the
timescales of days to decades. A generalized form of a model
considering cross-shore process may take the form:

Ax(D)waves = f(H(), T(1),0(2), x(1)) (1)
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- Sea-level rise

Waves

- Storms
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FIGURE 1 | Considerations relevant to shoreline modeling at a variety of timescales of interest. (1) Water levels; (2) Waves; (3) Sediment Supply; (4) Human Impact.
These may be considered separately, in a combination, or all of them depending on the circumstances. Models can also consider these processes as

m 1

]

Human impact

- Coastal squeeze

- Engineering

- Construction (sand mining)

where Ax(t) refers to the cross-shore change in shoreline position
(x) as a function of the time-dependant wave height (H(t)), wave
period (T(t)), wave direction (6(t)), and shoreline position (x(¢)).
Shoreline change at the timescales of hours to days is often
quite noisy, such that models are often trained on the resulting
time-integral of shoreline change [i.e., shoreline position x(t)].

Due to the simplicity of Equation (1), these models require
several years of high-resolution data to properly calibrate (Yates
et al., 2009; Splinter et al., 2013) and show reasonable skill at
predicting shoreline evolution on timescales of individual storms
to decades. A key aspect in these models is the inclusion of
hysteresis in the system, whereby shoreline change is a function of
the present shoreline position (or proxy) in relation to the present
wave forcing. The models also assume an unlimited sediment
supply is available, with the beach not obstructed by human
intervention or other geological features that might limit erosion
(e.g., Doria et al., 2016). Approaches to explicitly incorporate
the active profile and following the equilibrium principle have
also been proposed (e.g., Miller and Dean, 2004; Davidson,
2021). These particular models explicitly include the influence
of time-varying water levels, which may be important along
coastlines with large tidal variability, large storm surge, or at
longer timescales where changes in the mean water level may
be important.

At these longer timescales (50-100 year time frames), where
changes in mean sea-level may be considered the main driver
of shoreline evolution, approaches such as the Bruun Rule
(Bruun, 1962) are often employed. These models often consider
geomorphic descriptors of the beach profile, such as slope (8),

berm/dune height (B) relative to a water level (WL) and may take
the form:

A-x(t)WL :f(WL> IB’B) (2)

This overly simplistic approach, which only considers retreat
from rising water levels has been criticized by a number of
researchers (e.g., Cooper and Pilkey, 2004; Ranasinghe et al.,
2012). Alternative approaches to account for the cross-shore
movement of the shoreline due to changes in water levels have
also been discussed (e.g., Wolinsky and Murray, 2009; Gutierrez
et al., 2011; Rosati et al.,, 2013; D’Anna et al., 2021b; Davidson-
Arnott and Bauer, 2021; McCarroll et al., 2021).

3.2. Alongshore Models

One-line models provide a simplified representation of the
beachface and focus on shoreline change as a result of the
gradients in alongshore transport resulting from oblique wave
action (0) relative to the orientation of the coastline. These
models typically estimate alongshore transport based on breaking
waves using the CERC (USACE and Coastal Engineering
Research Center, 1984) or Kamphuis (Kamphuis, 1991) formulas
and take a simplified form similar to:

Ax(t,y)ay = f(H(t,y), T(8,),0(t, y), x(£, ) 3)

where both input and output variables are dependant on the
alongshore (y) location. However, it is widely accepted that
these equations offer an order of magnitude estimate, with local
calibration and tuning providing improved results (e.g., Smith
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etal, 2009; Ruggiero et al., 2010). These models are most suitable
for coastlines with significant gradients in alongshore transport,
which may be due to sediment supply, natural features (such
as headlands) or human impacts (such as harbors, breakwaters,
and groins). Given that gradients in alongshore transport are
often relatively small, these models are best suited for long-
term (decadal-scale and beyond) studies of shoreline change (e.g.,
Ruggiero et al., 2010; Anderson et al., 2018).

Other researchers have proposed equilibrium approaches to
model the planform of embayed beaches (e.g., Turki et al.,
2013; Jaramillo et al, 2021). Much like their sister cross-
shore equilibrium models described above, they rely on data to
develop simplified relationships between the existing alongshore
distribution of the shoreline and the prevailing wave forcing with
the underlying physical assumption that beaches will tend to align
with the prevailing wave climate direction.

3.3. Combined Approaches to Shoreline
Modeling

Building off of established models as described above, a number
of simple shoreline models have been proposed that encompass
the impacts of cross-shore and alongshore processes (e.g.,
Vitousek et al., 2017b; Robinet et al., 2018; Antolinez et al., 2019;
Roelvink et al., 2020; Alvarez-Cuesta et al., 2021). These models
are well-suited for complex coastlines, where the influences of
humans, sediment supply, and both alongshore and cross-shore
processes contribute to the observed shoreline change. They may
take the generalized form of:

Ax(t’y)total = Ax(V)waves + Ax(t»)’)dy + Ax(t)wr, (4)

As these models also encompass a variety of processes that act at
different timescales, these models have also been used for long-
term assessment of shoreline variability/change (e.g., Vitousek
et al., 2017a; Alvarez-Cuesta et al., 2021).

4. MODEL ADVANCES

4.1. Deterministic vs. Probabilistic

Approaches

Many of the above models were developed as deterministic
descriptors of shoreline change over time. However, it is critically
important to acknowledge that both inputs (i.e., forcing) and
model structure (i.e., equations) contain a certain level of error
and uncertainty that needs to be included in future shoreline
predictions (Ranasinghe, 2020). To that effect, there is a growing
body of literature related to predicting future shoreline change
that acknowledges the cascades of uncertainty and how these
effect long-term shoreline predictions (Le Cozannet et al., 2019;
D’Anna et al., 2020, 2021a; Kroon et al., 2020; Toimil et al., 2020,
2021).

To emphasize the importance of acknowledging the
uncertainty in wave forcing, Greenslade et al. (2019) listed
ensemble and probabilistic wave modeling and forecasting as
one of the top 5 priorities for wind-wave research at present.
As a start, over the past few decades wave emulators have been
developed to address this issue (Davidson et al., 2010, 2017;

Antolinez et al., 2016; Anderson et al., 2019; Cagigal et al., 2020).
Wave emulators allow for a probabilistic description of wave
conditions using techniques such as Monte Carlo sampling.
Also with the perspective of providing probabilistic estimates of
long-term shoreline change, D’Anna et al. (2021a) developed a
framework to address uncertainty related to the unknown future
changes in the mean sea level. We believe this is an area where
much more work needs to be done to allow for robust future
shoreline predictions in an uncertain future.

Uncertainty and error due to model structure has been
less well-studied, with the most common approach being an
equal-weight ensemble used to estimate the mean and spread
of a range of models for a given input scenario (Montafio
et al, 2020). While equally weighting all available models
provides improved estimates compared to a single model, it has
also been acknowledged that certain shoreline models perform
better under certain conditions (Montano et al., 2020; D’Anna
et al., 2021a) such that a more dynamic weighting approach to
ensemble model output may provide improved model results and
more robust estimates of uncertainty and should be considered in
future shoreline prediction efforts.

4.2. Timescales of Change

At present the most widely used coastal models assume stationary
processes when considering the timescales of days to multi-
decade, which by proxy assumes that the systems they model
vary within a constrained envelope based on past observations
(Yates et al., 2009) or that trends of the past will continue into
the future (Luijendijk et al., 2018; Vousdoukas et al., 2020).
These assumptions are likely challenged in the face of climate
change. Recently, a number of approaches to address non-
stationary forcing and model adaptation timescales have been
proposed, acknowledging that beaches may adapt over a variety
of timescales (e.g., Frazer et al., 2009; Splinter et al., 2016).
Many of these have been included acknowledging the simplistic
equilibrium-type shoreline models may not be suitable for long-
term shoreline prediction (Ranasinghe, 2020). For example,
Ibaceta et al. (2020) suggested an ensemble Kalman Filter
assimilation technique could track changes in model structure
due to changing wave-shoreline feedback. Montafio et al. (2021)
and Schepper et al. (2021) separately proposed two different
multi-scale model approaches. Montanio et al. (2021) used a
Complete Ensemble Empirical Mode Decomposition method
that linked different timescales of forcing to the corresponding
timescales in the shoreline change. In contrast, Schepper et al.
(2021) included upscaling, downscaling and direct forcing
methods to link forcing to various timescales of shoreline
evolution. These advances hint at ways forward to robustly
predict future shoreline changes in a changing and uncertain
climate using these simplified reduced complexity models.

5. FUTURE OPPORTUNITIES

Two recent priority setting exercises (Greenslade et al., 2019;
Power et al., 2021) found that a number of key priorities in
the coastal geosciences and engineering community were related
to the need to better understand our coasts now and in the
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future. Specifically, high quality temporal and spatial data of both
the forcing (waves) and coastlines, enhanced quantification of
shoreline change, and improved understanding of extreme events
and the quantification of future impacts of climate change on our
coasts were listed among the top priorities.

One of the biggest challenges in coastal shoreline
forecasting is the ability to predict how coasts may adapt
to a range of possible futures. At multiple timescales,
planning decisions—be it “do we need to evacuate that
house due to risk of an impending storm?” to—“will this
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Assimilation
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FIGURE 2 | A framework for future shoreline change modeling.
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stretch of coast become uninhabitable before the end
of the century?” require reliable and robust predictions

of shoreline position. To address this, over the last
20 years advancements into modeling of shoreline
change at timescales of individual storms to century

level predictions have been proposed. To develop more
accurate forecast tools for future coastal shoreline change,
we recommend the following (also summarized in
Figure 2):

1. Data is key

e A continued push for real-time, high frequency and high
quality in-situ coastal monitoring programs at relevant
temporal and spatial scales to better understand the
complex ocean/land boundary with a focus to capture the
shoreline and nearshore bathymetry.

e Improved spatial and temporal resolution of the necessary
metocean forcing (waves, water levels).

e Increasing  accessibility to  the
network of satellite missions and the
they provide.

e Benchmark data sets openly available for the community to
test their models against.

ever  growing

data

2. Advanced forecasts

e Reliable and robust forecasts of future wave conditions,
in the form of continuous timeseries mode, based on
the best climate projections that account for changes in
storminess and clustering of storms. This may include the
use of alternative approaches, such as surrogate models
and emulators.

e Improved and more frequent use of ensemble methods to
bring different forecasts together and address uncertainty
associated to model structure.

e Continue to seek local (traditional) knowledge, particularly
at sites that are data poor.

e Consider new ways of model calibration—based on the
ensemble, rather than individual models.

3. Collaboration beats competition

e A push for more diverse groups to work together
to advance the science—this may include engineers,
geomorphologists, oceanographers, climatologists, and
data scientists for example.

e An open source approach to improve both process-based
models and reduced complexity models on the timescales
of interest.

e Ensemble approaches
weighting techniques.

that use advanced

4. Learn from new data

e Acknowledging model structure error and including this in
the assimilation process.

e Incorporating new data streams as they become available.

e Models that adapt in time to changes in forcing.

Much like the advancements that have been made in climate
modeling and wave forecasting on a global scale, workshops
and working groups will help to foster the community spirit
and rapidly advance the science. We have seen evidence of
this already, such as the international ShoreShop (Montaiio
et al., 2020) and through various national-level programs such
as iCOASST (UK), and the National Assessment of Shoreline
Change (USA). These models will need to be open source
to maximize uptake and development of the community-
based efforts. Platforms, such as GitHub and the Community
Surface Dynamics Modeling system (https://csdms.colorado.
edu/) will become necessary for models to be integrated
and developed with proper version control. The community
models will ultimately include an “ensemble of ensembles” of
shoreline predictions with uncertainty bounds based on the
uncertainty of both the inputs (waves/water levels) and of the
individual models.

Today’s model predictions, no matter which shape or type of
model is considered, remain hampered by a variety of uncertainty
sources that in some cases can only be partially reduced (e.g., the
future wave climate and the large uncertainties associated with
the uncertainty in the various emission scenarios used to drive
the GCMs). As a result predictions of shoreline change will need
to be cast in a probabilistic framework and will require a joint
community effort.
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