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Multisensor biologging provides a powerful tool for ecological research, enabling fine-
scale observation of animals to directly link physiology and movement to behavior
across ecological contexts. However, applied research into behavioral disturbance and
recovery following human interventions (e.g., capture and translocation) has mostly
relied on coarse location-based tracking or unidimensional approaches (e.g., dive
profiles and activity/energetic metrics) that may not resolve behaviors and recovery
processes. Biologging can improve insights into both disturbed and natural behavior,
which is critical for management and conservation initiatives, although challenges
remain in objectively identifying distinct behavioral modes from complex multisensor
datasets. Using white sharks (Carcharodon carcharias) released from a non-lethal catch-
and-release shark bite mitigation program, we explored how combining multisensor
biologging (video, depth, accelerometers, gyroscopes, and magnetometers), track
reconstruction and behavioral state modeling using hidden Markov models (HMMs) can
improve our understanding of behavioral processes and recovery. Biologging tags were
deployed on eight white sharks, recording their continuous behaviors, movements, and
environmental context (habitat, interactions with other organisms/objects) for periods
of 10–87 h post-release. Dive profiles and tailbeat analysis (as a standard, activity-
based method for assessing recovery) indicated an immediate “disturbed” period of
offshore movement, displaying rapid tailbeats and an average tailbeat-derived recovery
period of 9.7 h, with evidence of smaller individuals having longer recoveries. However,
further integrating magnetometer-derived headings, track reconstruction and HMM
modeling revealed a cryptic shift to diurnal clockwise-counterclockwise circling behavior,
which we argue represents compelling new evidence for hypothesized unihemispheric
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sleep amongst elasmobranchs. By simultaneously providing critical information toward
conservation-focused shark management and understudied aspects of shark behavior,
our study highlights how integrating multisensor information through HMMs can improve
our understanding of both post-release and natural behavior, especially in species that
are difficult to observe directly.

Keywords: Carcharodon carcharias, dead reckoning, hidden Markov model, multisensor biologging, post-release
behavior, shark behavior, SMART drumline, unihemispheric sleep

INTRODUCTION

Establishing how animal movement and behavior shifts across
ecological contexts is critical to understanding ecology, yet
examining this at relevant spatiotemporal scales in free-ranging
individuals presents a long-standing technical challenge
(Nathan et al., 2008). Traditionally, animal movements
have been recorded using biotelemetry (radio, acoustic,
or satellite tracking), but geolocation-based tracking alone
precludes detailed behavioral analysis beyond broader-
scale movement patterns (Hussey et al., 2015; Kays et al.,
2015). However, the recent advent of integrated, multisensor
biologging offers new means to directly measure behavioral
and physiological states, and link these to movement and the
ecological contexts in which they occur (Wilmers et al., 2015).
Crucially, biologging enables observation at unprecedently
fine scales, providing a vital tool for both pure and applied
ecology, especially in cryptic species (Bograd et al., 2010;
Wilmers et al., 2015).

For pure and applied objectives, a detailed understanding
of both natural behavior and responses to human intervention
is paramount. Pure biologging objectives usually focus on
examining natural behavior, but this requires accounting for
behavioral disturbances resulting from the tagging process,
including capture and handling which are often necessitated
for deployments on elusive or transient species, or due to
tag application requirements (e.g., rigid attachment/careful
alignment for accelerometers/magnetometers; Wilson
et al., 2008; Shillinger et al., 2012; but see Chapple et al.,
2015; Pearson et al., 2017). The magnitude, nature and
duration of post-release disturbance can vary between
individuals, species and contexts (e.g., capture behavior,
environmental conditions; Gallagher et al., 2014; Guida et al.,
2016; Whitney et al., 2016), yet these responses are often
excluded from detailed analysis as unwanted side-effects
to natural behavior (e.g., Coffey et al., 2020). Conversely,
understanding animals’ responses to and recovery from human
disturbance is a key aim of applied behavioral research,
for which comprehensive knowledge of natural behavior is
also required as a reference point (Walker, 1998; Wilson
et al., 2014). With increasing management and conservation
concerns regarding the sublethal effects of capture in wild
animals, establishing detailed insights into both natural
and disturbed behaviors through biologging should be
a priority where possible (Wilson et al., 2014). Careful
selection of the most appropriate sensors is critical to this
(Williams et al., 2020).

“Daily diary” tags represent the optimal standard for
fine-scale recording of combined movement, behavior and
environmental context (Wilson et al., 2008). Specifically, these
tags integrate a full triaxial inertial measurement unit (IMU,
accelerometer, gyroscope and magnetometer) with other sensors
(e.g., temperature, pressure, and video cameras) to enable
continuous three-dimensional reconstruction of movements
via dead reckoning, which can then be linked to specific
activities and environments (Wilson et al., 2008). This is
particularly advantageous in cryptic aquatic species which are
otherwise difficult or impossible to observe at fine scales,
although these tags can also reveal important behavioral details
beyond that of high-resolution GPS in terrestrial animals
(Bidder et al., 2015). So far, daily diary tags have been
used to reveal many aspects of aquatic animals’ natural
behaviors including foraging activities, cost-efficient movement
strategies, and habitat use (Shepard et al., 2011; Benoit-
Bird et al., 2013; Andrzejaczek et al., 2019a). By contrast,
applied behavioral research on disturbances following capture
in marine and terrestrial systems has mostly relied on
either traditional biotelemetry, pop-up time-depth archival
tags, or accelerometers (Afonso and Hazin, 2014; Rode et al.,
2014; Barnes et al., 2016; Becciolini et al., 2019; Bowlby
et al., 2021; Shuert et al., 2021). However, biotelemetry-
derived movements or depth profiles are often insufficient
for resolving cryptic behavioral processes (e.g., foraging and
resting) relevant to recovery, especially in aquatic systems
where telemetry data are particularly intermittent and coarse
(Andrzejaczek et al., 2018, 2019a). Accelerometers provide
more detailed activity records useful for quantifying recovery
periods (Brivio et al., 2015; Whitney et al., 2016), but complex
behavioral disturbances may persist beyond unidimensional
recovery thresholds estimated through accelerometry alone
(Bullock et al., 2015). Recent technological advancements and
increased availability of statistical methods such as hidden
Markov models (HMMs) offer new means to probe the
multidimensional information streams derived from multisensor
biologgers and reveal otherwise hidden behavioral dynamics
(Patterson et al., 2017; McClintock and Michelot, 2018;
Williams et al., 2020).

Hidden Markov models are uniquely structured for this
purpose because they allow time series of observations from
biologgers, capturing various biologically informative aspects of
behavior (e.g., body orientation, movement, and acceleration),
to be combined and related to a most likely sequence of
underlying (“hidden”) states which are themselves not directly
observable but assumed to be causally related to the observed
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behaviors (e.g., pre vs. post recovery states; Leos-Barajas et al.,
2017; McClintock et al., 2020). HMMs are thus advantageous
relative to other more conventional techniques (e.g., linear
or non-linear modeling) because they provide an objective,
data-driven approach to automatically classify behavioral states
using remotely collected sensor data and, importantly, can
predict how each state shifts through time in response to
intrinsic (e.g., biological) or extrinsic (e.g., environmental)
factors (Leos-Barajas et al., 2017). Behavioral applications of
HMMs have mostly focused on determining animals’ foraging
patterns and movements, revealing how these are shaped by
biological (e.g., age, sex; Grecian et al., 2018; Carter et al.,
2020), environmental (e.g., oceanographic features; Byrnes
et al., 2021; Lee et al., 2021) and anthropogenic factors (e.g.,
fishing activity, tourism operations; Towner et al., 2016; Mul
et al., 2020). Similarly, combining biologging and HMMs
offers a promising framework for better characterizing recovery
processes following capture, studying natural behavior and,
importantly, distinguishing between the two. Yet they are rarely
applied for this purpose.

This study combined multisensor biologging and behavioral
state modeling to provide new insights into the post-release
behavior of a cryptic marine apex predator, the white shark
(Carcharodon carcharias), a species that epitomizes both the
importance and challenges of fine-scale behavioral analysis
in the field. As threatened marine predators that fulfill key
ecological roles (Jorgensen et al., 2019; Rigby et al., 2019;
Shea et al., 2020), understanding their natural behavior is
important for species and ecosystem management. Additionally,
white sharks impose risks for human safety (Chapman and
McPhee, 2016), and effectively mitigating these risks is
complex, but important for societal dynamics as well as
shark conservation (McPhee et al., 2021; Simpfendorfer et al.,
2021). In New South Wales, Australia, white sharks are caught,
relocated ∼1 km offshore, and released through a non-lethal
mitigation approach using Shark-Management-Alert-in-
Real-Time (SMART) drumlines (Tate et al., 2021a), yet their
behavioral responses to capture, and hence the implications
of this strategy for both sharks and people, are unknown.
Although white sharks’ broad scale movements have been
the subject of several studies (Jorgensen et al., 2010; Skomal
et al., 2017; Spaet et al., 2020a,b; Lee et al., 2021), knowledge
of their fine scale behavior remains restricted to a few specific
contexts (e.g., foraging near seal colonies; Jewell et al., 2019;
Semmens et al., 2019; Watanabe et al., 2019a,b). A more
detailed understanding of both their post-capture responses
and natural behavior across ecological contexts is thus critical
to their management and conservation. Furthermore, given
the challenges of fine-scale behavioral observations in cryptic
predators generally, improved insights into the behavior
of any one species could provide valuable information for
understanding the behavioral ecology of predators more broadly
(Machovsky-Capuska et al., 2016).

The primary aim of our study was to use white sharks
to explore how combined multisensor biologging, track
reconstruction and behavioral state modeling (using HMMs
and conventional mixed models) can be applied to enhance

our understanding of post-capture and release behavioral
responses and distinguish pre- and post-recovery behaviors
in free-ranging animals. We modeled shifts in multiple
metrics (tailbeats, diving and track tortuosity) in response
to capture-associated, intrinsic individual (e.g., size and
energy use) and extrinsic (prey presence) factors to infer
recovery periods, underlying behavioral processes and
their drivers. We combined this information to derive
new insights into the broader behavioral ecology of these
predators in the wild.

MATERIALS AND METHODS

Shark Capture and Tagging
White sharks were captured during July and August in
2018 and 2019 on SMART drumlines (Guyomard et al.,
2019; Tate et al., 2021a) at Evans Head, New South Wales
(NSW), Australia (29.11◦S, 153.43◦E, Figure 1). SMART
drumlines were configured and set as described in Tate
et al. (2019). This fishing gear provides real-time alerts when
an animal is captured, enabling a rapid response to attend
the individual within <30 min. The animal is then tagged
and released approximately 1 km offshore as a strategy to
reduce the immediate chances of human-shark interactions
(McPhee et al., 2021).

Biologging tags (hereafter CATS cams) were designed and
manufactured by Customized Animal Tracking Solutions (CATS,
Australia1). CATS cams contained a video camera (1080p, 30
frames s−1, up to ∼20 h video), depth sensor and a triaxial
IMU including an accelerometer, gyroscope and magnetometer
within a custom-built housing [275 (L)× 80 (W)× 45 (H) mm].
Video cameras were configured to record between sunrise and
sunset (6 am to 6 pm) and data loggers recorded continuously at
20 Hz. During tagging, captured sharks were secured alongside
a research vessel using PVC-covered tail and belly ropes, and
inverted to induce tonic immobility. Sharks were sexed, measured
to the nearest centimeter (PCL, precaudal length; FL, fork length;
TL, total length) and CATS cams were attached to the middle of
the underside of the pectoral fin, aligned with the sharks’ body
axis, using a clamp and cradle system (Figure 2; Chapple et al.,
2015). This position mimics the attachment region of remora
fish (Echeneidae) and enabled a view of the mouth for assessing
potential foraging behaviors and prey capture (Figure 2 and
Supplementary Videos 1–3). CATS cams weighed 650 g [≤1.46%
estimated total body mass of tagged sharks using length-weight
relationship from Grainger et al. (2020)] and were designed to
be slightly positively buoyant, allowing the tag to float to the
surface once a galvanic release dissolved (∼17–30 h). For one
shark (s370w), the tag failed to release from the clamp cradle
until the second galvanic sleeve on the clamp frame corroded
(Supplementary Figure 1), resulting in a longer deployment for
this individual (∼136 h, Table 1). Floating tags were located
and recovered by boat using inbuilt SPOT6 satellite (Wildlife

1http://www.cats.is/
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FIGURE 1 | (A) Vectors indicating the net linear displacement bearing and distance moved by sharks between the location of release from SMART drumlines at
Evans Head and the detachment of the tag. (B) Long distance movement of shark s370w which had an extended deployment duration (∼136 h) relative to other
sharks. The coastline shapefile and bathymetric data were sourced from the GSHHG Database (Wessel and Smith, 1996; available from
https://www.ngdc.noaa.gov/mgg/shorelines/) and the GEBCO 2020 15 arc-second bathymetric grid (GEBCO Compilation Group, 2020; available from
https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2020/).

Computers Inc2) and VHF radio tags with a Yagi antenna
(Advanced Telemetry Systems3).

Data Processing
All data processing and statistical analyses were performed in
R v4.0.2 (R Core Team, 2020). To quantify general movements
after release, net linear displacement (NLD) distance, movement
rate and bearing between the initial (tagging) and final (tag
detachment) locations for each shark were computed using
the “TrackReconstruction” package (Battaile, 2019). Detachment
locations were adjusted for consistent, linear drift in prevailing
currents during the period between detachment from the shark
and receipt of the first satellite location (range 0–7 h) using linear
models of drift tracks (i.e., the predicted latitude/longitude at the
detachment time).

Depth Data and Vertical Velocity
Zero offsets (mean depth over ∼15 s while at the surface during
tagging) were applied to correct depth profiles for each shark
(ensure surface depth = 0), and depth data were then smoothed
using a 10 s rolling mean (Whitney et al., 2016). Vertical velocity

2https://wildlifecomputers.com/
3https://atstrack.com/

(VV, m s−1), an instantaneous measure of diving rate, was then
computed as the central difference of smoothed depths over a
rolling 1 s interval (Whitney et al., 2016).

Derivation of Static and Dynamic Acceleration, Pitch,
and Roll
Static (gravitational) acceleration (Astat), which is indicative
of body posture (pitch/roll), was derived from a 3 s rolling

FIGURE 2 | Deployment of a CATS cam tag on the pectoral fin of a juvenile
white shark (2.15 m fork length), mimicking the attachment of a remora fish
(Echeneidae).
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TABLE 1 | Information for CATS cam deployments on white sharks released from SMART drumlines.

Length (cm) Release time (d/m/y
and h:m:s)

Number of hours Net linear displacement

ID Sex TL FL PCL TOL (min) Capture
duration (min)

Attachment Diary data Video Bearing (◦) Distance
(km)

Rate (km
h−1)

s291w m 277 250 225 23 72 29/07/2018 and
13:05:53

46.3 46.3 14.1 136.5 27.7 0.6

s292w f 207 193 173 22 57 30/07/2018 and
09:10:32

9.7 9.7 6.8 152.6 15.0 1.5

s297w m 211 194 177 24 49 03/08/2018 and
11:24:19

26.3 26.3 11.3 155.2 43.8 1.7

s370w m 184 168 150 4 27 19/07/2019 and
15:58:11

136.2 87.4 15.3 187.1 195.2 1.4

s374w f 283 258 230 20 52 26/07/2019 and
08:41:49

12.9 12.9 7.3 112.3 9.4 0.7

s378w f 230 212 188 24 55 28/07/2019 and
14:38:04

22.0 22.0 7.0 179.6 15.4 0.7

s330w f 248 222 198 22 57 13/08/2019 and
10:17:45

34.3 34.3 14.7 171.4 27.8 0.8

s389w m 234 215 196 23 57 13/08/2019 and
14:46:02

20.0 20.0 5.0 78.0 27.4 1.4

m, male; f, female; TL, total length; FL, fork length; PCL, precaudal length; TOL, time on the line, time between the initial alert from drumline and securement of the shark
alongside the research vessel; capture duration, total time from the alert until the release of the shark after tagging; net linear displacement metrics, the linear bearing,
distance and rate of movement between the tagging and tag detachment locations.

average of raw (total) acceleration (Atotal) for each axis (Shepard
et al., 2008). Astat was then subtracted from Atotal to determine
dynamic acceleration (Adyn), a measure of the magnitude
of dynamic body movement (Shepard et al., 2008). Overall
dynamic body acceleration (ODBA, in g-force units) was then
computed as a proxy for energy expenditure at each time
point using the sum of absolute Adyn across all axes (Wilson
et al., 2006). Astat was calibrated (“calibrate.axis” function;
Farrell and Fuiman, 2013) using the minimum and maximum
Astat values from a series of calibration rotations (each axis
aligned with the gravity vector), and pitch and roll angles were
then computed from Astat using the “animalTrack” package
(Farrell and Fuiman, 2013).

Tailbeat Cycle
Tailbeat cycle length (TBC, in seconds) was determined through
continuous wavelet transformation (CWT, “WaveletComp”
package; Roesch and Schmidbauer, 2018) of lateral angular
velocity (gyroscope yaw) data, which produced the clearest
tailbeat signal. TBC was extracted using WaveletComp’s “ridge”
function, which identifies peaks across the time-frequency
wavelet power spectrum returned from the CWT (Figure 3).
The “ridge” function was modified to identify ridges whenever
power exceeded 0.2 because the default relative threshold (>10%
of maximum power) failed to identify normal tailbeats when they
were < 10% of the maximum power observed (e.g., when high
amplitude movements also occurred in the time series). This
fixed threshold correctly identified active swimming and gliding
evident in the raw gyroscope data across individuals (Figure 3).
The period of the ridge with the highest wavelet power (dominant
oscillation signal) was used as the TBC, with gliding (no tailbeat)
inferred when no ridge was identified.

Heading and Dead Reckoned Pseudo-Track
Computation
To visualize the fine-scale movements of sharks, pseudo-
tracks (fine-scale approximations of horizontal movements;
Andrzejaczek et al., 2018) were computed from magnetometer-
derived headings using the “animalTrack” package (Farrell and
Fuiman, 2013). Raw magnetometer data were calibrated for
magnetic distortions by subtracting a hard iron offset (to center
data on the origin), and multiplying by a soft iron rotation matrix
(to correct elliptical distortion), with these correction factors
determined using MIP Iron Calibration software (Parker-LORD
MicroStrain R© Sensing4) from a series of 360◦ calibration rotations
(also see Bidder et al., 2015). Pitch- and roll-corrected headings
(computed with the “tilt_compensate” function) were smoothed
with a 3 s running average to filter out tailbeat yaw and then used
to compute pseudo-tracks with the “dead_reckoning” function
using a fixed horizontal speed of 0.82 m s−1 (Andrzejaczek et al.,
2018; Colefax et al., 2020; tags did not include a speed sensor)
adjusted for depth changes over successive steps.

Video Analysis
Behavioral events were recorded from video footage using
BORIS software (Friard and Gamba, 2016). These included
habitat use/position in the water column (Supplementary
Figure 2 for classifications), the occurrence of fish and
other organisms/objects, and interactions with these (see
Supplementary Videos 2, 4 for highlights involving notable
interactions). Only observations between 7 am and 4 pm were
retained in subsequent analyses to avoid ambiguities in video
analysis during twilight hours.

4https://www.microstrain.com/software
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FIGURE 3 | Example data from shark s292w (193 cm fork length, female) illustrating the determination of tailbeat cycle length and gliding behavior (no tailbeats)
using continuous wavelet transformation of gyroscope data. (A) Raw gyroscope yaw (lateral angular velocity) data. (B) The corresponding time-frequency wavelet
power spectrum, determined through continuous wavelet transformation, showing the different oscillation periods present in the gyroscope yaw data. The gray line
overlayed on the spectrum is the output of the ridge determination procedure and indicates the period of the ridge with the highest power value (dominant oscillation
signal) at each time point. (C) The tailbeat cycle (TBC) extracted from the ridge determination procedure. (D) The depth profile of the shark. Gliding behavior (no
tailbeat) was determined when no ridge was identified. Gliding is evident with a lack of periodicity in the gyroscope data during a descent from the surface to ∼50 m
depth, after which tailbeats resumed.

Statistical Analysis
Prior to statistical analyses, data were thinned to a 1 s interval,
matching the temporal resolution at which relevant response
variables (e.g., TBC and VV) were calculated.

Tailbeat Cycle Recovery Period
Shifts in TBC after release were used as a proxy to quantify
behavioral recovery periods following Whitney et al. (2016)
and Andrzejaczek et al. (2019a). For each shark, mean TBC
was calculated over 15 min windows, and then related to time
since release (TSR) as the predictor. An exploratory generalized
additive mixed model (GAMM, “mgcv” package; Wood, 2011)
suggested an asymptotic relationship between these variables
(p < 0.001). Thus the effect of TSR on mean TBC was quantified
using a non-linear self-starting asymptotic mixed model (“nlme”
package; Pinheiro et al., 2020) with an individual random effect
on the asymptote (Asym), initial (R0) and natural log of rate
constant (lrc) coefficients to allow for individual variability
in recovery patterns (Whitney et al., 2016), and a first-order
autoregressive [AR(1)] correlation structure to accommodate
within-individual temporal autocorrelation. Model fit was
assessed via diagnostic plots (fitted vs. normalized residuals plots,

Q-Q plots and normalized residual autocorrelation plots). The
TBC recovery period was then calculated at the population
and individual level (using random effect coefficients) as the
time taken for the TBC to increase 80% of the difference
between its initial (R0) and predicted asymptotic (Asym) value
(Whitney et al., 2016).

To explore factors influencing TBC-derived recovery periods,
several candidate generalized linear models (GLM) were then
fit (“stats” package; R Core Team, 2020) with individual sharks’
recovery periods as the response variable, a gamma error
(recovery periods were non-negative, continuous, and positively
skewed) and inverse link, and varying combinations of sex, FL
and capture duration (total time from hooking until release of the
shark) as predictors. Models were compared to each other and a
null model (intercept only) using small sample corrected Akaike
information criterion (AICc, “MuMIn” package; Barton, 2020) to
determine the favored model (lowest AICc).

Shifts in Horizontal and Vertical Movement: Hidden
Markov Model
Hidden Markov models were used to further explore post-release
behavioral shifts and processes based on vertical (diving) and
horizontal (swimming tortuosity) movement patterns. HMMs
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are time series models explicitly suited to high resolution,
serially dependent, biologging data (Leos-Barajas et al., 2017).
Briefly, they allow partitioning of multidimensional time
series comprising m data streams (measured variables) into
n distinct states, each of which is described by its own
state-dependent probability distribution, from which inferences
on likely behaviors associated with each state can be made
(Zucchini et al., 2016; McClintock et al., 2020). Subsequently,
HMMs can be applied for behavioral classification (via global
decoding) based on complex, multifaceted time series, and to
explore effects of covariates on otherwise cryptic behavioral
dynamics (probabilities of occupying or switching between states;
McClintock and Michelot, 2018). Thus, we applied HMMs as an
intuitive and effective method for more holistically examining
shifts in fine-scale movements and behavioral processes after
release, and how these relate to biological and capture-
associated covariates.

Hidden Markov models were fit with the “momentuHMM”
package (McClintock and Michelot, 2018) using two data
streams; (1) absolute of mean VV (VVAM; m s−1), which
distinguished diving (VVAM � 0) from level (VVAM ≈ 0)
swimming, and (2) mean resultant length (R) of headings
(“circular” package; Agostinelli and Lund, 2017), which separated
linear (as R→ 1) and more tortuous (as R→ 0) behaviors.
VVAM and R were computed over non-overlapping 1 min
windows. This temporal resolution was chosen to maximize the
range of observed R, helping to distinguish tortuosity states,
whilst being sufficiently short enough to capture fine-scale, rapid
behavioral shifts evident in pseudo-tracks. Gamma and beta
probability distributions were assumed for VVAM (continuous,
non-negative, positively skewed), and R [continuous on interval
(0,1)], respectively (McClintock and Michelot, 2018).

A combination of model selection criteria (AIC), pseudo-
residual plots and visual validation from decoded behavioral
states overlaid onto pseudo-tracks (i.e., biological interpretability;
Conners et al., 2021) were used to determine the best-fit model
(number of states, inclusion of covariates) from a suite of
candidate models. Several baseline models (no covariates) were
first fit to determine the number of behavioral states included
(up to a maximum of 5). Models with 4 or 5 states were
then extended to incorporate covariates on state transition
probabilities, including all combinations of sex, FL, time of day
(TOD, 24 h cyclicity accommodated using the “cosinor” special
function), and TSR. A TOD∗TSR interaction was also included
because a diurnal diving pattern became apparent in some
individuals after release (see section “Results”). Capture duration
and time on the line (time from capture alert to securement at the
research vessel) both varied minimally among most individuals
and all but two sharks had capture durations within 8 min of each
other (49–57 min, Table 1). Given the small sample size (n = 8),
it was therefore unlikely reliable inference could be drawn based
mostly on the two sharks with shorter (s370w, 27 min) and longer
(s291w, 72 min) capture durations. Additionally, proportional
state use by these two individuals fell mostly within observed
values of other sharks (Supplementary Figure 5). Given these
considerations, capture duration (and time on the line) were not
included as covariates.

Use of discrete random effects has been suggested to account
for generic individual heterogeneity in transition probabilities
where longitudinal time series from multiple individuals (such
as in our dataset) are modeled with HMMs (Towner et al.,
2016). However, generic discrete random effects groupings are
sensitive to small sample sizes and difficult to interpret in
such circumstances (e.g., can produce false convergence or
erroneous inferences on covariates), and do not appreciably affect
state assignment (McClintock, 2021). Given our relatively small
sample (n = 8 time series), we did not include discrete random
effects in addition to existing informative individual-specific
covariates (e.g., FL; McClintock, 2021). Nonetheless, we note
that HMM results were corroborated by complementary GAMM
analyses that included an individual random effect (see section
“Results” below), providing additional support to our findings.

Fitted HMMs were re-optimized through 50 random
perturbations to initial parameter values to evaluate for the
global maximum of the likelihood (McClintock and Michelot,
2018). Global decoding (Viterbi algorithm) based on the best-fit
model was used to classify behavioral states corresponding
to each 1 min time window, and these were plotted over
pseudo-tracks to visually validate inferred behaviors. Marginal
stationary state probabilities were also computed for each
covariate individually (“plotStationary” function, holding other
covariates at their mean) to visualize their effects on state use
(McClintock and Michelot, 2018). Given only one individual
exceeded a deployment duration of 46.3 h, HMMs were also
re-fit using datasets clipped to ≤46.3 h post-release (ensuring
observations from ≥2 individuals at all modeled time points) to
evaluate any impacts on model outputs (e.g., Carter et al., 2020).
Model outputs were largely consistent between clipped and full
analyses for the period ≤ 46.3 h post-release (Supplementary
Figure 3A and section “Results”). We therefore retained the full
analysis with the caveat that modeled behaviors beyond 46.3 h
represented those of only a single individual.

Shifts in Horizontal and Vertical Movement:
Generalized Additive Mixed Models
Generalized additive mixed models were used complementarily
to HMMs to further investigate the relationship between TOD,
TSR and their interaction on path tortuosity, and to examine
whether diving and path tortuosity were related. A diving ratio
(DR, proportion of time assigned as diving states from global
decoding; modified from Andrzejaczek et al., 2019a) and R
of headings were used to quantify diving and path tortuosity,
respectively, over 15 min windows. The effects of smooths of
TOD (cyclic cubic regression spline), TSR (thin-plate regression
spline) and their tensor interaction on R was assessed using a
GAMM (beta error, logit link; “mgcv” package; Wood, 2011)
with an individual random effect and within-individual AR(1)
temporal correlation structure. The GAMM was also re-fit
using the clipped dataset (≤46.3 h post-release), as for HMMs
above. Modeled patterns from clipped and full analyses were
again mostly consistent (Supplementary Figure 3B and section
“Results”), so the full analysis was retained. The relationship
between DR (predictor) and R (response) was assessed using
a beta GAMM with individual random effects and correlation
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structures as above. Model fits were assessed using diagnostic
plots (as for TBC analysis above) and smoother significance was
set at p < 0.001 given that GAMM p values are approximate
(Zuur et al., 2014).

Exploring Drivers of Movement Shifts: Energy Use
Proxies (Tailbeat Cycle and Overall Dynamic Body
Acceleration)
To assess, relationships between diving (DR), path tortuosity (R)
and energy use, two energetic proxies were computed over 15 min
windows, as above; (1) mean TBC and (2) mean ODBA (which
incorporates other dynamic body movements not detected by
TBC analysis alone; Leos-Barajas et al., 2017). Candidate linear
mixed models (LMMs, “nlme” package; Pinheiro et al., 2020)
were then fit with either mean TBC or mean ODBA (natural
log transformed for normalization) as the response, R, DR
or DR + R as predictors, an individual random intercept,
or random intercept + slope (to accommodate any between-
individual variation in relationships; Schielzeth and Forstmeier,
2009) and a within-individual AR(1) correlation structure. AICc
was used to compare models to each other and a null (intercept
only) to determine the favored model (fixed and random effects
specifications). Predictor collinearity was assessed using variance
inflation factors (VIF; “performance” package; Lüdecke et al.,
2020) where necessary, which was negligible (VIF = 1.3). Model
diagnostic plots were checked as above.

Exploring Drivers of Movement Shifts: Fish Presence
To investigate the relationship between diving (DR), tortuosity
(R) and foraging opportunity, the proportion of time fish were
present in video (pfish, all species pooled due to rarity of
individual species, which included known or potential prey based
on stomach contents; Grainger et al., 2020; see Supplementary
Video 2) was quantified as a proxy for prey availability over
15 min windows. Several other non-prey/miscellaneous objects
were also observed (e.g., jellyfish, starfish, and detached kelp),
but excluded from analysis due to their rarity (absent in >90%
of summary windows for most individuals).

Relationships between R, DR and pfish were investigated
by fitting several candidate zero-inflated beta mixed models
(ZIBMM, accommodating zeros where fish were absent; Douma
and Weedon, 2019) using the “glmmTMB” package, with
R, DR or DR + R as predictors, an individual random
intercept or intercept + slope (as for LMMs above), and
an Ornstein-Uhlenbeck (OU) temporal correlation structure
(“ou” function) for irregularly spaced time series (night-time
hours between 4 pm and 7 am excluded from analysis;
Brooks et al., 2017). Fixed, random effects and correlation
structures were specified for both the conditional and zero-
inflated components of each model. The favored model was
determined using AICc comparisons as above. Convergence
failed in several models unless the OU correlation was removed
from the conditional and/or zero-inflated component, however
this produced correlated residuals and did not improve the
AICc. Thus, model selection only considered converged models
including the OU structure.

RESULTS

Overall Movements and Displacement
After Release
CATS cams were deployed on eight white sharks (4 males and 4
females, 168–258 cm FL) for 9.7–136.2 h, producing 258.8 h of
logger data (mean± SD = 32.4± 25.1 h, range = 9.7–87.4 h) and
81.6 h of video (mean ± SD = 10.2 ± 4.2 h, range = 5.0–15.3 h,
between 7 am and 4 pm daily; Table 1). All sharks moved offshore
after release (∼10–30 km from coastline) with a mean± SD NLD
distance from the tagging location of 45.2 ± 61.5 km and NLD
rate of 1.1 ± 0.4 km h−1 (Table 1 and Figure 1). Most sharks
moved south-east of the tagging location (mean ± SD NLD
bearing = 146.6 ± 36.7◦, Table 1 and Figure 1). This immediate
post-release movement was corroborated by video and the
oscillatory diving of sharks between the surface and seabed, with
the maximum depth of consecutive dives (approximating seabed
depth) increasing until the∼40–60 m depth contour (mean± SD
time to reach 40 m contour = 5.6 ± 3.4 h, range 2.3–11.3 h,
Figure 4). One shark with a longer deployment duration (s370w)
travelled 195.2 km southward in 5.7 days, with a similar NLD rate
to other individuals (Table 1 and Figure 1B). Tailbeat analyses
indicated instances of gliding (no tailbeat), mostly during diving
descents (Figures 3, 4 and Supplementary Video 1). Sharks
reached a mean ± SD maximum depth of 69.6 ± 25.2 m (range
41.5–118.4 m), and generally remained in waters > 40 m depth
after their initial offshore movement (Figure 4). Following an
initial diving phase, some individuals tended to swim level during
the day and dive more at night (Figure 4). However, shark s378w
exhibited a different pattern, remaining closer to shore (despite
a similar deployment length to other individuals, Figure 1 and
Table 1) and diving continuously (Figure 4). Video analysis
showed that sharks swam mostly at the seabed (mean ± SD,
39.8 ± 25.2% of time) or surface (37.1 ± 24.8%) and spent
less time in the middle of the water column (23.1 ± 15.6%).
Sand was the most common substratum (38.9 ± 26.0% of total
analyzed video), with low use of other habitats (Supplementary
Figures 2, 4).

Post-release Recovery Period and
Behavioral Shifts
Tailbeat Cycle Recovery Period
Tailbeats were significantly faster (lower mean TBC) after
release and gradually subsided to a more constant, slower rate
(higher mean TBC, predicted increase = 0.6 s), indicating an
average recovery time of 9.7 h (range 3.3–30.4 h, Table 2
and Figure 5A). Variation in individuals’ recovery periods
was best explained by their length (Supplementary Table 1),
with larger sharks exhibiting significantly shorter recoveries
(estFL ± SE = 0.0014 ± 0.0005, t = 2.67, p = 0.037, null deviance
explained = 50.8%, Figure 5B).

Shifts in Horizontal and Vertical Movement: Hidden
Markov Model
A five-state model was favored by AIC (Supplementary Table 2).
This included two diving states (state 1 = “diving slow/linear,”
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FIGURE 4 | Diving profiles for eight deployments of CATS cams on white sharks released from SMART drumlines (shark ID numbers indicated in bottom left of
panels). White and gray shading indicates day and night (sunset to sunrise), respectively. X-axis rug plots indicate instances of gliding behavior (no tailbeat)
determined through tailbeat analysis.

state 2 = “diving rapid/tortuous,” mean VVAM ≥ 0.046 m
s−1), and three level swimming states (mean VVAM ≤ 0.012
m s−1) with sequentially increasing tortuosity (smaller R,
state 3 = “level linear,” state 4 = “level meandering,” and
state 5 = “level highly tortuous/circular”; Figures 6A,B
and Supplementary Table 3). Inspection of pseudo-tracks
supported a five-state model which better separated linear,
meandering and highly tortuous behaviors (i.e., states 3–
5) compared to modeling with fewer states, and allowed
visual validation of classifications and shifts between states
(Figures 6C–F). For instance, representative pseudo-track and

dive profile data overlayed with decoded states indicated
transitions from level, highly linear swimming (state 3) at the
surface, followed a rapid descent to the sea floor (state 2), a
short, mostly linear (states 3, 4) bottom phase (∼2 min), then
a relatively slow ascent (state 1) and resumption of linear, level
swimming (state 3, Figures 6C,D). Furthermore, visualization
with pseudo-tracks allowed horizontal movement modes to
be readily distinguished, including shifts from meandering
to circling tortuous behavior (state 4 and 5, respectively,
Figure 6E), neither of which were discernable from depth data
alone (Figure 6F).
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TABLE 2 | Coefficients and significance for parameters from an asymptotic mixed
effects model predicting mean tailbeat cycle (TBC) by time since release.

Fixed effect Regression
parameter

Coefficient SE df t p

Time since release Asym 2.50 0.09 1022 29.32 <0.001

R0 1.92 0.07 1022 26.07 <0.001

lrc −1.79 0.32 1022 −5.61 <0.001

Significance is inferred at p < 0.05. Asym, horizontal asymptote parameter; R0,
initial response value at time since release = 0; lrc, natural log of rate constant.

The final HMM also included covariates FL, TSR, TOD,
and a TSR∗TOD interaction on state transition probabilities
(Supplementary Table 2). Although sex was also suggested as an
explanatory factor (Supplementary Table 2), this was excluded
due to the combination of small within-sex sample sizes (n = 4
per sex), and the differences being primarily driven by only two
females (high probabilities of state 5 behavior), with remaining
individuals being more similar (Supplementary Figure 5).
Longer sharks showed increased use (stationary state probability)
of level linear (state 3) and reduced level tortuous/circular (state
5) behavior (Figure 7A). Level tortuous/circular behavior also
peaked during the day (∼12 pm), whilst linear diving (state
1) predominated at night (Figure 7B). Level tortuous/circular
swimming (state 5) also increased and peaked at ∼24 h post-
release, which was preceded by a reduction in level linear
swimming (state 3) and followed by an increase in other states
(Figure 7C). Results from HMMs based on the full (Figure 7)
and clipped datasets (Supplementary Figure 3A) were generally
consistent for the period up to 46.3 h post-release, supporting the
observed patterns, although we note that model outputs beyond
this time are representative of the responses of the single shark
with a longer time-series.

Shifts in Horizontal and Vertical Movement:
Generalized Additive Mixed Models
A TSR∗TOD tensor interaction significantly influenced path
tortuosity (R, Table 3), with linear swimming (R ≈ 0.7–
0.8) following release (Figure 8A), consistent with an offshore
transit (Figures 8B,C), preceding a transition (∼12–24 h post-
release) to daytime tortuous behavior (R ≈ 0.3–0.4, Figure 8A).
GAMM modeling based on the clipped dataset supported this
pattern (Supplementary Figure 3B). A subsequent reduction
in tortuosity beyond ∼45 h post-release was exhibited by
the shark with the longer deployment (Figure 8A). These
results corroborated findings from HMMs. Pseudo-tracks
indicated highly tortuous periods were characterized by extended
durations (lasting from 20 min to 4.7 h continuously) where
sharks swam in circles, alternating between clockwise and
counterclockwise rotations (individual circles completed in∼1–2
min, Figures 8D,E and Supplementary Figure 6). Nonetheless,
we note that because conventional GAMM analysis predicts
a smooth continuum of responses (Figure 8A), this was less
objective for identifying patterns in circling behavior specifically,
compared to HMMs that explicitly separated dynamics in
circling (state 5) from those of other movement states (e.g.,
meandering, state 4; Figure 7). R was positively related to DR

FIGURE 5 | (A) Predicted population- (black) and individual-level (gray)
asymptotic relationships between mean tailbeat cycle length and time since
release for white sharks released from SMART drumlines. The X-axis rug plot
shows recovery periods (time at 80% of the difference between initial and
asymptotic tailbeat cycle values) for individual sharks, with the dashed vertical
line indicating the population-level recovery period. Note recovery times for
sharks s374w and s378w were similar and thus overlap on the rug plot.
(B) Predicted relationship between fork length and the tailbeat cycle-derived
recovery periods of sharks from a gamma generalized linear model.

(estimated df = 4.24, F = 86.19, p < 0.001, Figure 9A), with
tortuous swimming/circling occurring during level swimming
at the seabed or surface, and linear swimming occurring
more with diving (Figures 9B,C). We also noted instances
where sharks remained approximately stationary whilst circling
northward into a southward-flowing current in offshore waters
(Supplementary Video 3).
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FIGURE 6 | State-dependent probability distributions for (A) absolute of mean vertical velocity (VV) and (B) mean resultant length data streams from the final
selected five-state hidden Markov model. Total (black dashed line) indicates the overall pooled distribution for each data stream. Interpreted definitions
corresponding to modeled states are indicated in the key in panel (A). Representative 30 min pseudo-tracks and their corresponding depth profiles (indicated by
arrows) showing track sections assigned through global decoding (Viterbi algorithm) as either (C,D) state 1 (navy circles), 2 (purple squares) or 3 (crimson diamonds),
or (E,F) state 4 (orange triangle) and 5 (gold inverted triangle). Start and finish times (24 h time) are labeled to indicate track directionality. X- and Y-axes are scaled
equally in each pseudo-track plot. A 100 m scale bar is provided for comparison of the approximate relative spatial scale of movements across each plot, assuming
a fixed swimming speed (0.82 m s−1) for all sharks.

Exploring Drivers of Movement Shifts: Energy Use
Proxies (Tailbeat Cycle and Overall Dynamic Body
Acceleration)
Mean TBC increased (slower tailbeat) subtly albeit
significantly with increased tortuosity (lower R, predicted

mean difference = 0.2 s), but there was no significant
relationship with DR (Supplementary Table 4, Table 4,
and Figures 10A,B). Only DR was favored as a predictor
of log mean ODBA (Supplementary Table 4), indicating
little effect of R (Figure 10C). Log mean ODBA
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FIGURE 7 | Marginal stationary state probabilities (shading = 95% confidence intervals) for covariates (A) fork length (FL), (B) time of day (TOD), and (C) time since
release (TSR), included in the best-fit five-state hidden Markov model. Marginal stationary state probabilities were computed across the range of observed values for
each covariate individually while holding all other covariates at their mean values (indicated at the top of each plot). State 1 (navy/solid line) = diving slow/linear, state
2 (purple/long dash line) = diving rapid/tortuous, state 3 (crimson/dashed line) = level linear, state 4 (orange/dot-dash line) = level meandering, and state 5
(gold/dotted line) = level highly tortuous/circular.

decreased significantly as diving increased (Table 4
and Figure 10D).

Exploring Drivers of Movement Shifts: Fish Presence
Overall, encounters with other fish were rare (mean ± SD,
1.2 ± 1.5% of analyzed video footage, range = 0.1–4.7%). When
other fish were present in video footage, the most commonly
observed species (by time percentage) were silver trevally
(Pseudocaranx sp., 62.9%), unidentified teleosts (19.0%) and
scad (Trachurus sp., 16.3%), with mado sweep (Atypichthys
strigatus), leatherjackets (Monacanthidae), snapper (Chrysophrys
auratus), carcharhind sharks (Carcharhinidae), scombrids
(Scombridae), and flatheads (Platycephalidae) observed rarely
(<1.0%; Supplementary Video 2). Fish were mostly encountered
on the seabed (mean± SD, 71.6± 31.0% by time) or in the water
column (25.4 ± 26.0%), but rarely at the surface (3.0 ± 8.4%).
Although there were no confirmed feeding events, two active prey
pursuits were observed on a leatherjacket and small carcharhinid
shark (Supplementary Video 2). Sharks also investigated several
other “non-prey” objects including detached kelp, jellyfish, and
seabirds (Supplementary Video 2).

There was no strong relationship between tortuosity (R) and
pfish, with only DR favored as a predictor (Supplementary
Table 5 and Figure 11A). Indeed, highly tortuous

TABLE 3 | Coefficients and significance of smooth terms for time of day (TOD),
time since release (TSR), and their tensor interaction from a beta generalized
additive mixed model predicting mean resultant length.

Smoother Estimated df F p

Ti (TOD) 2.46 16.97 <0.001

Ti (TSR) 2.83 10.51 <0.001

Ti (TOD, TSR) 8.03 3.02 <0.001

Significance of smoothers is inferred at p < 0.001 (Zuur et al., 2014).

swimming/circling was mostly initiated and persisted despite
the absence of other fish/immediate foraging opportunity
(Supplementary Figure 6). Pfish increased marginally, yet
significantly during level swimming (low DR, conditional model
estDR ± SE =−1.17± 0.59, z = 1.98, p = 0.047, Figure 11B).

DISCUSSION

We combined video analysis, inertial measurement data, three-
dimensional track reconstruction and behavioral state modeling
through HMMs to perform an integrated analysis of post-release
recovery processes in white sharks, revealing new insights into
the nature and timing of cryptic post-release behavioral shifts,
and factors influencing these. Overall, post-release responses
included a period of offshore movement combined with more
rapid tailbeats, followed by a transition to a diel pattern of
daytime circling behavior with increased diving at night. Our
findings provide critical information for the management and
conservation of a threatened marine apex predator, but further
offer important new insights into underlying functional bases of
hidden aspects of animal movement and behavior. More broadly,
we show how multisensor biologging in combination with
HMMs and track reconstruction can improve our knowledge of
post-release recovery and natural behavior, alike, which is critical
for applied management (Wilson et al., 2014), and to address
methodological and ethical considerations in pure biologging
research (Williams et al., 2020).

Our results indicate a period of consistent, immediate offshore
dispersal in white sharks after release from capture, with most
individuals relocating into continental shelf waters (≥40–60
m depth, ∼10–30 km offshore) within ∼6 h and remaining
there for the duration of their deployments (up to 136.2 h).
Although some animals can exhibit disorientation and reduced
movement rates immediately following capture (e.g., Luschi et al.,
2020), rapid post-release offshore movements, similar to our
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FIGURE 8 | (A) Response surface showing predicted values for mean resultant length (R) based on a significant tensor smooth interaction of time of day (TOD) and
time since release (TSR) from a beta generalized additive mixed model. Heading variance (path tortuosity) decreases as R increases from 0 (tortuous swimming) to 1
(linear swimming). Points show the distribution of predictor values (TOD and TSR) for all individual sharks across the response surface. (B) One hour pseudo-track
and (C) corresponding turning angle data (computed at 1 s intervals), illustrating linear swimming during the middle of the day shortly (∼1 h) after release. (D) Two
hour pseudo-track and (E) corresponding turning angle data illustrating highly tortuous, clockwise, and counterclockwise circular swimming behavior during the
middle of the day, ∼24 h after release. The turning angle color legend is consistent across all turning angle and pseudo-track plots. X- and Y-axes are scaled equally
for pseudo-tracks. A 100 m scale bar is provided to indicate the approximate relative scale of movement, assuming a fixed swimming speed (0.82 m s−1) for each
shark.
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FIGURE 9 | (A) Predicted relationship (gray shading = 95% confidence intervals) between diving ratio (DR, proportion of time spent diving/in states 1 or 2) and mean
resultant length (R, 1 = low heading variance, 0 = high heading variance) from a beta generalized additive mixed model. DR and R were computed over 15 min
windows for each shark. Dive profiles and corresponding pseudo-track sections over relevant windowed periods (black rectangles) for sharks (B) s291w and (C)
s330w indicating representative examples of linear swimming during intensive diving periods and tortuous activity, including circling behavior, during level phases at
the seabed and the surface. The depth color scale is consistent among all plots. For pseudo-tracks, x- (pseudo-longitude) and Y-axes (pseudo-latitude) are scaled
equally, and north is toward the top of each plot. A 200 m scale bar is also indicated on each pseudo-track to indicate the approximate relative spatial scale of
movement, assuming a fixed swimming speed (0.82 m s−1) for all sharks.

observations in white sharks, have also been described across a
range of marine taxa (Gunn et al., 2003; Mangel et al., 2011;
Afonso and Hazin, 2014; Barnes et al., 2016), and have been
interpreted to be a “flight” response associated with capture
stress (Lear and Whitney, 2016). Supporting this explanation,
offshore dispersal of white sharks coincided with a period of
faster tailbeats (i.e., rapid movement), which gradually slowed
to a more constant average rate, indicating a population-level
recovery period (return to “baseline” tailbeat signature) of 9.7
h. This pattern and rate of TBC recovery is similar to that
identified for common blacktip sharks (Carcharhinus limbatus,
9 h; Whitney et al., 2016), but longer than for tiger sharks
(Galeocerdo cuvier, 4 h; Andrzejaczek et al., 2019a), potentially
suggesting lower sensitivity to capture in tiger sharks (consistent
with Gallagher et al., 2014). Activity level metrics such as TBC are
clearly useful for enabling standardized comparisons of recovery
rates both between and within species (Brivio et al., 2015;
Whitney et al., 2016; Shuert et al., 2021), yet such applications
amongst elasmobranchs remain rare or are limited by short
post-release monitoring periods (Bullock et al., 2015; Whitney
et al., 2018; Raoult et al., 2019). Despite a low sample size,
we also revealed that recovery times increased as shark length
decreased. Although physiological stress responses to capture

(e.g., lactate accumulation) are known to be magnified in smaller
individuals for some shark species, which can influence post-
release outcomes (Gallagher et al., 2014; Talwar et al., 2017;
Bowlby et al., 2021), white sharks across a range of sizes are
quite physiologically resilient to short captures (<75 min, as per
our study; Gallagher et al., 2019; Tate et al., 2019). Therefore,
other factors (e.g., size-specific personalities) may underlie the
10-fold variance in behavioral recovery (∼3–30 h) we observed
across sizes. Nevertheless, the relatively rapid tailbeat recoveries
overall (<16 h, excluding the smallest individual) combined with
offshore dispersal of released individuals holds important applied
management implications for white sharks, supporting SMART
drumlines as a promising non-lethal alternative approach to
shark bite mitigation via temporary offshore relocation of
potentially dangerous sharks (Tate et al., 2021a,b).

While activity level-based methods such as tailbeat analysis or
accelerometry can provide more accurate indications of recovery
compared to telemetry or dive profiles (Whitney et al., 2016),
these unidimensional approaches can still miss or only partly
resolve important behavioral dynamics (e.g., fine scale shifts
in movement patterns or habitat use; Bullock et al., 2015).
Our findings provide a prime example of this, highlighting the
importance of a multifaceted approach to assessing recovery. By
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TABLE 4 | Coefficients and significance for parameters from linear mixed models
evaluating relationships between mean resultant length (R), diving ratio (DR), mean
tailbeat cycle (TBC), and mean overall dynamic body acceleration (ODBA).

Response Fixed effect Coefficient SE df t p

Mean TBC Intercept 2.43 0.08 1022 30.75 0.000

R −0.16 0.06 1022 −2.89 0.004

DR 0.02 0.03 1022 0.79 0.428

Ln (mean ODBA) Intercept −2.75 0.08 1023 −35.33 0.000

DR −0.17 0.07 1023 −2.60 0.009

ODBA was natural log transformed prior to analysis. Significance is inferred at
p < 0.05.

also integrating video analysis, magnetometer, accelerometer and
depth data, track reconstruction and behavioral state modeling
with HMMs, we revealed a further behavioral shift, occurring
subsequent to the tailbeat-derived recovery period, involving
highly tortuous, alternating clockwise-counterclockwise circling

behaviors occurring over spatially restricted scales (10s of meters,
with rotations completed in ∼1–2 min). This finding represents
the first record of this behavior in white sharks, although it
has recently been identified in a few other species of sharks
and marine megafauna (Andrzejaczek et al., 2018; Narazaki
et al., 2021). These previous studies suggested that circling
may represent a prey search strategy, or assist in navigation
via geomagnetic alignment, although direct observations (e.g.,
video) linking to either of these explanations remain limited
(Andrzejaczek et al., 2018; Narazaki et al., 2021). However,
video analysis in our study indicated that this activity was
initiated and persisted during the day mostly in the absence
of prey. Concomitantly, fish presence was not significantly
related to white shark swimming tortuosity over the time
scales at which circling occurred (min to h), and most direct
foraging opportunities (e.g., presence of large snapper) passed
without interaction (Supplementary Video 2). These results
indicate that foraging is an unlikely explanation for the circling

FIGURE 10 | Relationships between mean tailbeat cycle length (A) mean resultant length (R) and (B) diving ratio (DR), and between mean overall dynamic body
acceleration (ODBA, natural log transformed) (C) R and (D) DR. Variables were computed over 15 min windows for each shark. Predicted relationships (gray
shading = 95% confidence intervals) from a linear mixed model are shown where there was a significant effect (p < 0.05).
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FIGURE 11 | Relationships between the proportion of time with fish visible in
video footage (pfish) and (A) mean resultant length and (B) diving ratio.
Variables were computed over 15 min windowed intervals for each shark.
Predicted relationships (gray shading = 95% confidence intervals) from a
zero-inflated beta mixed model are shown where a significant effect was
detected (p < 0.05).

activity documented in our study. We also report longer
circling durations (often for extended continuous periods, up
to a maximum 4.7 h) than previously identified (maximum
∼30–55 min; Narazaki et al., 2021), and it is unlikely that
such extensive circling would be required purely for obtaining
navigational information.

Rather, as a new explanation for consistent circling in
sharks, we suggest this activity may represent a behavioral
manifestation of unihemispheric sleep. Some seabirds, cetaceans
and pinnipeds have been documented to lateralize brain activity
to sleep unihemispherically whilst on the move, and this has also
been hypothesized in obligate ram ventilating elasmobranchs,

although it has not yet been physiologically proven or previously
linked to circling activity in sharks (Kelly et al., 2019). However,
seabirds circle in flight toward the side of the brain exhibiting
unihemispheric slow wave sleep (Rattenborg et al., 2016, 2019)
and we suggest a similar functional basis for the alternating
clockwise-counterclockwise circling we observed in white sharks.
The potential use of currents to maintain oxygenated water flow
over gills whilst minimizing swimming activity during sleep has
also been hypothesized for ram ventilators (Kukulya et al., 2016;
Kelly et al., 2019). Our observations of white sharks maintaining
an almost stationary position with slow tail beats whilst facing
into the current during these circular swimming patterns
supports the hypothesis that they are maximizing oxygen uptake
during apparent rest behavior (see Supplementary Video 3).
The observed diurnal peak in circling (similarly apparent in
tiger sharks; Narazaki et al., 2021) also implies that sleep
and coinciding reductions in energy consumption (e.g., slower
tailbeats) occur primarily during the day. Diurnally reduced
activity levels, responsiveness and so-called “milling” behavior
suggest similar patterns in several other buccal pumping and ram
ventilating species (Kelly et al., 2019, 2020; Byrnes et al., 2021).

Although surface swimming has previously been linked to
traveling in white sharks (Jorgensen et al., 2012), we found that
level swimming periods (with very low VVAM; Supplementary
Table 3) at the surface and seabed were also strongly associated
with circling events. Conversely, white shark diving and
swimming path linearity were positively related and increased
at night. These are critical insights for the interpretation of
dive profiles, which are widely analyzed among marine taxa,
although typically without complementary behavioral data (e.g.,
horizontal movements and energetic metrics) at appropriate
spatiotemporal scales necessary to link diving patterns to specific
behaviors (Andrzejaczek et al., 2019a,b). For instance, alternating
periods with nocturnal “rapid oscillatory diving” and diurnal
level swimming, punctuated by irregular, deep U-shaped dives,
similar to what we observed, have previously been recorded
for white sharks and other epipelagic fish, although a lack of
complementary fine scale behavioral data in many of these studies
limited inferences on the underlying behavioral motivations for
these diving patterns (Dewar et al., 2004; Weng et al., 2007;
Bruce and Bradford, 2012; Thums et al., 2013; Andrzejaczek
et al., 2019b). The increase in track linearity and reduction
in ODBA we detected during intensive diving offers empirical
support to suggestions that rapid oscillations represent a cost-
efficient transiting behavior, although this could also assist in
targeting vertically transient prey at night (Jorgensen et al., 2012;
Andrzejaczek et al., 2019b), or satisfy both of these objectives
simultaneously (e.g., Gleiss et al., 2011). Overall, our study
highlights the clear benefit of incorporating a combination of
magnetometers and accelerometers, which remain underutilized
in ecology, for unravelling functional correlations between
animal movement patterns and specific behavioral modes
(Williams et al., 2017; Gunner et al., 2020).

Hidden Markov models also presented an effective method
for integrating multisensor information to enable behavioral
inferences, and our study provides a first application combining
these approaches to explicitly evaluate post-release behaviors.

Frontiers in Marine Science | www.frontiersin.org 16 January 2022 | Volume 8 | Article 791185

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-791185 December 24, 2021 Time: 12:20 # 17

Grainger et al. Integrating Multisensor Information on Behavior

As a joint modeling method (sensu Leos-Barajas et al., 2017),
HMMs were advantageous in allowing us to: (1) probabilistically
and objectively relate our observations to distinct behavioral
states; and then (2) evaluate how capture- and individual-
specific covariates influenced complex behavioral dynamics.
Conventional analyses (i.e., GAMMs) of tortuosity and diving
patterns supported our HMM results and revealed similar overall
patterns. However, the classification approach of HMMs was
advantageous for teasing apart dynamics and shifts between
specific movement states, which were difficult to discern
objectively from conventional modeling approaches. The need
to more effectively quantify and predict sublethal impacts of
capture in animals is widely recognized, both for the ethical
considerations of ecological research, and to improve the success
of applied management objectives (e.g., threatened species
conservation, species rehabilitation, and relocation strategies;
Guy et al., 2013; Wilson et al., 2014; Williams et al., 2020). Whilst
metrics and sensors of interest may vary between applications
and study systems, generalized HMMs can flexibly incorporate
a broad array of data types (probability distributions) and
unlimited data streams (McClintock and Michelot, 2018). We see
this as a widely applicable and intuitive approach for obtaining
detailed information on post-capture and release responses.
Importantly, this can also yield insights into the broader ecology
of animals, as evidenced by the dynamics in circling activity
we uncovered and hypothesized to represent unihemispheric
sleep in white sharks. Extending movement-based HMMs (such
as those we used) to also include physiological data streams
(e.g., from heart rate or “neurologging” electroencephalogram
(EEG) sensors) would likely improve links between physiological,
behavioral and movement state variability and capture-associated
or environmental covariates. Although there are ethical and
technical hurdles for such technologies (Whitney et al., 2018;
Williams et al., 2020; but see Yu et al., 2021), they provide
dynamic indicators of internal state which could assist in
validating behavioral inferences. In our case, concurrent EEG
monitoring could confirm that circling activity in sharks is a
behavioral marker of unihemispheric sleep (as demonstrated
in seabirds; Rattenborg et al., 2016), although physiological
monitoring generally is likely to help clarify the motivations
(e.g., stress, fear, and physiological requirements) behind animals’
responses to external factors (Ditmer et al., 2015; Coffey et al.,
2020). Future improvements for understanding post-capture and
release behaviors could also be achieved through georeferenced
mapping of HMM-modeled behaviors to specific environmental
contexts, following implementation of variable speed estimates
and GPS/ARGOS-anchored dead reckoned reconstruction of
animals’ tracks (Battaile et al., 2015).

Our study illustrates the potential of multisensor biologging,
combined with HMMs for distinguishing post-capture recovery
phases and identifying cryptic behaviors in wild animals. In
the case of white sharks, we revealed two post-release phases;
(1) an offshore transit combined with rapid tailbeats and, (2) a
transition to diurnal circling behavior, which we suggest could be
an additional period linked to sleep and rest. Consequently, our
findings provide both critical information for the management
of human-wildlife conflict involving white sharks, and novel

insights into understudied aspects of shark behavior. With
increasing anthropogenic impacts on wild populations into
the future, such approaches, especially if combined with novel
physiological monitoring, will be important to help better inform
management and conservation strategies (Wilson et al., 2014) and
improve our understanding of the behavioral ecology of animals
across marine and terrestrial realms (Battaile et al., 2015; Bidder
et al., 2015).
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