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The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity
to be lost or deeply modified without even being known. As the climate and
anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge
integration is urgently required to evaluate and monitor marine ecosystems and to
support suitable responses to underpin a sustainable future. The Census of Marine Life
(CoML, 2000–2010) was the largest global research program on marine biodiversity.
A decade after, and coinciding with the steep increase of digitalization of our society, we
review existing findability, accessibility, interoperability, and reusability (FAIR) biodiversity
data coming from one of the most reliable online information systems: the Global
Biodiversity Information Facility (GBIF). We evaluate the completeness of available
datasets with respect to the CoML benchmark, along with progresses in understanding
spatial–temporal patterns of marine biodiversity in the European Seas in the last
decades. Overall, we observe severe biases in available biodiversity data toward the
north-western marine regions (particularly around the United Kingdom and the North
Sea), the most recent years (with a peak in the number of reported occurrences in
the 2010s) and the most conspicuous, abundant, and likely “appealing” taxa (e.g.,
crustaceans, echinoderms or fish). These biases may hamper research applications,
but also global-scale data needs and integrative assessments required to support cost-
effective progresses toward global biodiversity conservation. National to international
joint efforts aimed at enhancing data acquisition and mobilization from poorly known
regions, periods, and taxa are desirable if we aim to address these potential biases for
the effective monitoring of marine ecosystems and the evaluation of ongoing impacts
on biogeographic patterns and ecosystem functioning and services.

Keywords: biodiversity assessments, Census of Marine Life, completeness, European Seas, GBIF, open
biodiversity data, FAIR principles
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INTRODUCTION

There is increasing evidence that human activities over the
last decades/centuries have grown to become significant driving
forces of global processes. This has caused the Earth System
to depart from the comparatively stable conditions that
characterized the Holocene Epoch, when human societies have
flourished (Steffen et al., 2011; Whitmee et al., 2015; Zalasiewicz
et al., 2020). Accordingly, the term “Anthropocene” is being
increasingly used to refer to this new status quo, when large-
scale human effects are exerting impacts on the environment that
result in the contemporary biodiversity crisis and in the collapse
of many ecosystems (Rockström et al., 2009; Steffen et al., 2011;
Whitmee et al., 2015).

Among natural habitats, oceanic systems are of particular
concern since they are among the most important (in terms of
nature contributions to people), complex, poorly understood,
and likely most impacted of Earth’s biomes (Hoegh-Guldberg
and Bruno, 2010; IPCC, 2014; Halpern et al., 2015; Ramírez
et al., 2017). Ocean warming and pollution, marine habitat
degradation, and overexploitation of marine resources (among
others) are posing serious threats to marine biodiversity, much
of which could disappear without ever being known (Ramírez
et al., 2017; Cuyvers et al., 2018; Pinsky et al., 2018; FAO,
2020; Landrigan et al., 2020). As the climate and anthropogenic-
related impacts on marine systems accelerate (Burrows et al.,
2011; Coll et al., 2012; Micheli et al., 2013; Ramírez et al.,
2017; Boyce et al., 2020), biodiversity knowledge integration is
urgently required to evaluate and monitor marine ecosystem
health, and to support suitable responses to underpin a
sustainable future.

Reliable and systematic biodiversity assessments are
challenging in the vast and remote oceans. The first large-
scale, multidisciplinary, and multinational assessments on
marine biodiversity date back only to the 1990s, with the Census
of Marine Life (CoML) likely being the most extensive of all of
them (Costello et al., 2010). The CoML mobilized more than
2,700 scientists from more than 80 countries and ca. US$650
million, and spanned the 2000–2010 period (Costello et al.,
2010). A decade after, and coinciding with the steep increase of
digitalization of our society, digital data and online information
systems may offer a means for marine biodiversity assessments at
an unprecedented extent and spatial, temporal, and taxonomical
resolutions (Jarić et al., 2020b); while contributing to our
understanding of the processes, patterns, and mechanisms
underlying the ongoing contemporary biodiversity crisis (Meyer
et al., 2015; Ball-Damerow et al., 2019).

Recent efforts toward digitization of natural history collections
(Beaman and Cellinese, 2012), along with the development
of digital, open-access repositories (e.g., Global Biodiversity
Information Facility – GBIF) and online platforms for citizen
science (also known as citizen observatories; e.g., Sullivan et al.,
2014), have driven a steady accumulation of species occurrence
digitized records over the past decade. To date, online databases
sum up more than one billion records; they have unlocked
previously inaccessible data and expanded their availability to
researchers around the world (Ball-Damerow et al., 2019).

However, the biggest challenge for digitized biodiversity data
and for subsequent ecological/environmental applications is
obtaining records of sufficient quantity and quality for specific
region, period, and taxonomic group of interest (Ariño et al.,
2013; Meyer et al., 2015). Digital biodiversity databases are still in
the initial stages of development. For example, recent estimates
suggest that only 10% of biological collections are available
in digital form (Ariño, 2010; Page et al., 2015; Ball-Damerow
et al., 2019), and it would take many decades to completely
digitize estimated holdings at current rates (Ariño, 2018; Ball-
Damerow et al., 2019). As such, completeness of biodiversity
digitized data is likely biased; with remote regions, particular
periods, and “less common” taxa being under-sampled or
completely unrepresented (Boakes et al., 2010; Meyer et al., 2015,
2016b; Ruete, 2015). These biases directly influence opportunities
for inference and application of biodiversity digitized data
(Katsanevakis et al., 2015; Meyer et al., 2015, 2016b). While
continued digitization of available biodiversity databases is
desirable, efforts aimed at identifying and addressing these
potential biases (e.g., through targeted data mobilization, Hobern
et al., 2012) should be prioritized if we aim to use these data for
the effective monitoring of marine ecosystem, and the evaluation
of ongoing impacts on biogeographic patterns, and ecosystem
functioning and services (Levin et al., 2014; Meyer et al., 2015).

With a long-standing natural, cultural and economic
heritage, the European Seas has experienced a long history
of anthropogenic perturbations, and encompass some of the
most impacted marine systems on Earth (particularly in their
northern parts, Halpern et al., 2008; Ramírez et al., 2017). They
also contain some of the historically and presently best explored
and known marine areas of the world (e.g., Narayanaswamy
et al., 2010; Ojaveer et al., 2010; Costello and Wilson, 2011).
This knowledge builds up at multiple levels of ecological
complexity (from individuals to communities and ecosystems)
and bridges among contrasting sampling methodologies and
analytical techniques (Narayanaswamy et al., 2013). However,
there is a need of synthetic and integrative marine biodiversity
assessments, based on existing findable, accessible, interoperable,
and reusable (FAIR) biodiversity data, that may contribute
toward our comprehension of the “known, unknown and
unknowable” biodiversity, the monitoring of marine ecosystem,
and the sustainable management and conservation of marine
biodiversity (Narayanaswamy et al., 2013; Levin et al., 2014;
Katsanevakis et al., 2015).

In this work, we assessed existing FAIR biodiversity data
for the European Seas available on GBIF, one of the biggest
biodiversity information infrastructures. We evaluated the
“completeness” of these datasets with respect to the CoML
benchmark (Costello et al., 2010; Narayanaswamy et al., 2013),
along with progresses in understanding spatial–temporal patterns
of marine biodiversity in the region in the last decade. In
particular, we aimed at assessing how the observational effort
available in digitized datasets is currently distributed to maximize
the completeness of the three main informational dimensions of
species diversity: spatial, temporal, and taxonomical. We then
discuss how potential biases may affect future analytical efforts
toward building integrated marine assessments (e.g., species and
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FIGURE 1 | Study area. We considered a wide enough polygon (longitude: ∼ –50.2◦ to 62◦; latitude: ∼24.2◦ to 89.6◦) to include all relevant European Seas.
Following Costello et al. (2010) when analyzing biodiversity information from the Census of Marine Life, we distinguish among four basins: Atlantic EU, Baltic Sea,
Black Sea, and Mediterranean Sea. The Atlantic EU considered in Costello et al. (2010) was smaller than what we consider as the whole Atlantic EU area. This is
because we additionally include water masses around the Macaronesia (including Azores, Madeira, and Canary Islands), and the northernmost Atlantic waters. To
evaluate spatial patterns in the total number of occurrences and individual species, we consider a 1◦ × 1◦ grid map covering the whole study area.

biodiversity distribution and trends) and hamper prospects for
research and sustainable management applications.

MATERIALS AND METHODS

Data Mining
Based on data from GBIF, we evaluated spatial–temporal patterns
in the number of occurrences and individual species within
the European Seas, as proxies of “sampling effort” and species
richness, respectively. Following Costello et al. (2010) when
analyzing biodiversity information from CoML, we distinguished
among four basins within the study area: Atlantic EU, Baltic Sea,
Black Sea, and Mediterranean Sea (Figure 1). Occurrences and
species were also grouped following the categorization provided
by Costello et al. (2010): Protozoa, Crustacea, Pisces, Tunicata,
Mollusca, Annelida, Cnidaria, Platyhelminthes, Echinodermata,
Porifera, and Bryozoa. Because several groups in Costello et al.
(2010) were paraphyletic (e.g., Pisces), we first mapped the
correspondence between these groups and the appropriate taxa
in GBIF. Due to a large number of occurrences (>20 millions)
and for facilitating the analysis within R x64 4.1.0 software
(R Core Team, 2021), data were downloaded from GBIF web
portal1 through different queries (see Supplementary Table 1 for
details on each query, and associated DOIs). Through each query,

1www.gbif.org, accessed in June 2021.

we downloaded the total number of occurrences for selected
taxa within a wide enough polygon to include our study area
(longitude: ∼ −50.2◦ to 62◦; latitude: ∼24.2◦ to 89.6◦). We
considered “Present” as the occurrence status, as there is a wide
consensus that, in general, online biodiversity datasets should be
mainly regarded as “presence only” data (Graham et al., 2004).
Obtained datasets were then masked to remove occurrences
in the mainland.

Importantly, digitized biodiversity data are not exempt
from errors, with species identity and locality being the most
error-prone aspects of collection information (Graham et al.,
2004; Ball-Damerow et al., 2019). Given the large number of
occurrences we dealt with, and the broad and descriptive nature
of our objectives (i.e., evaluating the completeness of FAIR
biodiversity data available on GBIF), we did not check for
specific data quality, errors, and accuracy. Overall, erroneous and
inaccurate records primarily lead to overestimation of species
richness out of biodiversity hot spots (Maldonado et al., 2015).
However, the effects of inaccurate data are certainly diluted in
studies that include a large number of records, as it is our case
(Pyke and Ehrlich, 2010).

Spatial, Temporal, and Taxonomical
Completeness of Open Biodiversity Data
As a proxy to the spatial distribution of sampling effort, we
estimated the total number of occurrences per cell within a
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FIGURE 2 | Spatial distribution of total number of occurrences and total
number of species per cell in a 1◦ × 1◦ grid map.

1◦ × 1◦ grid map covering the whole study area. This represents a
“coarse”-enough resolution to be not excessively restrictive in our
spatial completeness assessments, while ensuring the capture of
relevant patterns of biodiversity distribution at the European Seas
level (see Meyer et al., 2015). Cells were categorized according
to the four-level basin category, i.e., Atlantic EU, Baltic Sea,
Black Sea, and Mediterranean Sea. To evaluate patterns in species
richness, we used a similar approach and estimated the total
number of unique species per 1◦ × 1◦ cell. Per-cell information
and non-linear least squares regressions were used to evaluate the
relationship between our proxies to sampling effort and species
richness. In particular, we used the Michaelis–Menten equation
[y − ax/(b + x)], which is one of the most used functions to
project species accumulation curves (Keating and Quinn, 1998;
Longino et al., 2002, see also Meyer et al., 2015). We manually
defined starting values for non-liner regression by visually
exploring plots and allowing the model to efficiently converge.

The Michaelis–Menten equation considers a decay curve with
a rapid initial increase in species richness as sampling effort
rises, and a gradual decrease in the slope while approaching to
a horizontal asymptote. This relationship can be interpreted as
an indicator of the sampling effort necessary to achieve a good
representation of the species richness for a given area (Costello
et al., 2013). We therefore calculated basin-specific thresholds at

which 75% of species were detected with respect to the asymptote
value. The thresholds were determined by predicting the number
of occurrences needed using the fitted functions of each basin. To
evaluate the data spatial completeness, we therefore considered
that those points over the threshold corresponded to areas (i.e.,
cells within the 1◦ × 1◦ grid map) showing an “adequate”
sampling effort.

Data temporal coverage and completeness was evaluated by
estimating the total number of occurrences per taxa, year, and
basin. To evaluate potential biases in the relative contribution
of particular taxa to the total number of occurrences reported
for a given year and basin (pi), we yearly estimated a basin-
specific Shannon index (H′=−

∑R
i=1 pilnpi). Assuming that

there have been no major local extinction events or appearances
of new species along the time-series, any deviation in the
Shannon index could be therefore interpreted as incomplete
taxonomic sampling.

Finally, we evaluated the data taxonomical completeness by
comparing the total number of species per taxa and basin, with
analogous results reported by Costello et al. (2010) and, hence,
for the CoML. As the Atlantic EU basin, we considered here a
wider area than the one used in Costello et al. (2010), in order
to incorporate marine waters around the Macaronesia (including
Azores, Madeira, and Canary Islands), and the northernmost
Atlantic waters. However, and for comparison purposes, we also
considered here what Costello et al. (2010) defined as Atlantic EU
(Figure 1). It is also worth noting that the Black Sea constitutes
an addition to the basins considered in Costello et al. (2010).

Data Contributors to Global Biodiversity
Information Facility
Overall, GBIF datasets have been provided by more than
2,000 different publishers.2 Here we wanted to identify the
main contributors of biodiversity data for all considered
marine basins. For that purpose, we estimated the total
number of occurrences per contributor/publisher and basin.
For representation purposes, we considered only the top 25
contributors on the list.

RESULTS

Data Completeness in the Spatial,
Temporal, and Taxonomical Dimensions
Our spatially explicit proxy to sampling effort (i.e., total number
of occurrences per cell) heterogeneously distributed spatially,
with the highest sampling effort occurring in the North Sea
and coastal areas around the Scandinavian Peninsula, the
United Kingdom, the Azores Archipelago, and the North-
western Mediterranean Sea. Analogously, our estimates of species
richness were heterogeneously distributed, with the highest
values largely occurring in those areas with the highest sampling
effort. However, other “biodiversity hotspots” with relatively high
values of species richness emerged in the northernmost areas of

2https://www.gbif.org/publisher/search
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Scandinavian Peninsula (near the Arctic Sea), the Macaronesia
(including Azores, Madeira, and Canary Islands), the coastal
areas around the Iberian Peninsula, and the northernmost areas
of the Western and the Central Mediterranean Sea (including
Balearic, Tyrrhenian, and Adriatic Seas; Figure 2).

When evaluating the relationship between our proxies to
sampling effort and species richness, we observed a highly
significant, non-linear effect of sampling effort on species
richness (Table 1). As expected for the Michaelis–Menten
equation, our data followed a decay curve, with an increasing
decay in the rate at which new species are reported for a
particular area (1◦ × 1◦ cell) as sampling effort rose (Figure 3).
These trends were consistent among basins, with the likely
exception of the Black Sea, where a near-linear relationship
was observed, suggesting that the relationship was far from
saturation. Accordingly, results for the Black Sea should be
taken with caution. Based on these relationships, and derived
thresholds informing on their saturation levels, we identify some
areas (1◦ × 1◦ cells) in the European Seas where sampling
effort was apparently suitable for achieving a good representation
of the species richness (Figure 3). Most of these areas (50
out of 65 cells) occurred in the Atlantic EU, and, particularly,
around the United Kingdom and the North Sea. However, they
represent only a small fraction of the Atlantic EU total area
(ca. 1.2% of cells within the Atlantic EU basin). Despite the
relatively large sampling effort in the Baltic Sea (Figure 2), only
2 out of 126 cells were categorized as suitable according to the
considered threshold. Nine out of 359 Mediterranean cells were
categorized as suitable and distributed along the North-western
Mediterranean Sea.

Regarding the temporal coverage of open biodiversity data
available on GBIF, we identified a common pattern among basins,
with a rapid increase in the number of reported occurrences in
the late 20th century, a peak around the 2010s, coinciding with
the end of CoML, and a decrease afterward. In the case of the
Mediterranean Sea, the pattern was similar but delayed in time,
with the steep increase in the number of occurrences befalling in
the mid/late 2010s, and peaking in the late 2020s. The Black Sea
was likely the only exception to this pattern, as the number of
reported occurrences was consistently low and largely oscillated
along the time series (Figure 4).

No or minor biases in the taxonomic sampling were observed
for Atlantic EU and the Baltic Sea since the 1990s, as revealed
by the relatively constant values in the basin-specific Shannon
index (H′). In the case of the Mediterranean Sea, the positive
trend in the Shannon index suggested an incomplete taxonomic
sampling likely due to the absence of Echinodermata, Porifera,
and Bryozoa reported before the beginning of the 2000s. In the
Black Sea, the unstable trend in the Shannon index suggested
that the taxonomic completeness of reported data is far from
complete (Figure 4).

The taxonomic completeness was also evaluated by comparing
the taxonomic detail of GBIF data with analogous results
reported by Costello et al. (2010) when analyzing biodiversity
information from the CoML (Figure 5 and Table 2). Overall, the
total number of species reported in GBIF for the Atlantic EU
and the Baltic Sea were higher than those previously reported in

Costello et al. (2010), with the exception of the less conspicuous
species; i.e., Protozoa and Annelida in the Atlantic EU, and
Protozoa and Platyhelminthes in the Baltic Sea. In the case of
Atlantic EU, this trend was consistent (except for Annelida)
for both the area considered as Atlantic EU in Costello et al.
(2010) and the area that we considered as the whole Atlantic
EU, which additionally included Macaronesia and the Arctic
Sea (Figure 1). The total number of species reported in GBIF
increased when considering these additional areas. However,
these differences varied among considered taxa, with Pisces and
Mollusca showing the highest relative increases (38 and 30%,
respectively), and Annelida and Platyhelminthes showing the
lowest relative increases (6 and 3%, respectively; Table 2).

For the Mediterranean Sea, we found a deficit in the number
of species reported in GBIF, except for Mollusca and Pisces
(Figure 5 and Table 2). The largest difference was found for
the less conspicuous Protozoa. In the case of the Black Sea, no
previous biodiversity information was reported in Costello et al.
(2010), thus preventing from a comparative analysis. However,
our results are still useful as an overview of the species richness
and taxonomic completeness of open biodiversity data available
on GBIF for this basin.

Top Contributors to Global Biodiversity
Information Facility Datasets
The number of contributors to GBIF data differs among basins.
However, the top 25 contributors represent ca. 90% of the total
reported occurrences in the Atlantic EU and the Mediterranean
Sea, and almost the 100% in the Baltic and the Black Seas (98
and 96%, respectively; Supplementary Table 2). The spectra for
these relative contributions also differ among basins (Figure 6).
For instance, the eight top contributors to reported occurrences
in the Atlantic EU account for >60% of total occurrences. In
contrast, the Swedish University of Agricultural Sciences (SLU)
contributes alone to ca. 62% of reported occurrences in the Baltic
Sea. In the Mediterranean Sea and the Black Sea, cumulative
occurrences >60% are reached by the top three and four
contributors, respectively (Figure 6 and Supplementary Table 2).

DISCUSSION

Recent estimates suggest that ca. 48,000 marine species may
exist in the European Seas, and that ca. 75% of them have been
already described (Costello and Wilson, 2011). The proportion
of species yet to be discovered here is, therefore, lower than
elsewhere. Furthermore, most of these species’ occurrences are
already publicly available in digital platforms such as GBIF
(as revealed by our comparison between CoML and GBIF
outputs), which may facilitate potential uses of online biodiversity
databases. However, while this statement may hold true when
considering the European Seas as a whole, we provide here
solid evidence highlighting that available FAIR biodiversity
data for the European Seas are not homogeneously distributed
spatially, temporally, and taxonomically. Our assessments on the
magnitudes and biases in different metrics of completeness of
digitized biodiversity data with regard to these three dimensions
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TABLE 1 | Results of the non-liner regressions for all basins and for each individual basin.

Basin N Correlation Estimate (a) Estimate (b)

All 4,586 0.91 1,319 (1,283–1,350)*** 9,617 (9,055–10,214)***

Mediterranean Sea 361 0.92 1,245 (1,158–1,335)*** 5,005 (4,281–5,871)***

Black Sea 79 0.93 214 (142–457)*** 449 (251–1,156)**

Atlantic EU 4,020 0.93 1,352 (1,322–1,382)*** 9,404 (8,917–9,919)***

Baltic Sea 126 0.81 2,336 (1,637–3,680)*** 85,949 (45,897–177,522)***

Correlation between observed and predicted values is showed as estimation of goodness of fit. Estimates of equation parameters (a and b) are showed together with
95% confidence intervals between brackets. **p-value < 0.01; ***p-value < 0.001.

FIGURE 3 | Relationship between the total number of occurrences and the total number of species per cell in a 1◦ × 1◦ grid map; basin-specific thresholds (vertical
dashed lines) and the spatial representations of those areas (black) with an adequate sampling effort to achieve a good representation of species richness.

are crucial for evaluating prospects for research and other
applications and for prioritizing and monitoring activities to
improve FAIR biodiversity datasets (Levin et al., 2014; Meyer
et al., 2015, 2016b; Ball-Damerow et al., 2019).

Overall, our assessments on marine biodiversity showed
a concentration of species in coastal waters, along with a
northwestern-to-southeastern gradient of species richness, with
most biodiversity hotspots occurring in the Atlantic basin

and particularly in the North Sea, the coastal areas around
the Scandinavian Peninsula and the United Kingdom. This
general spatial trend widely concurs with those for previous
biodiversity assessments (based on CoML) and may likely
respond to analogous trends in marine productivity (Coll et al.,
2010; Narayanaswamy et al., 2013). In agreement with previous
assessments for the Mediterranean Sea, certain areas in the
Alboran, Tyrrhenian, Adriatic, and Aegean Seas also emerged as
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FIGURE 4 | Stacked bar plot showing basin-specific trends in the total number of occurrences per taxa along the last decades for the Atlantic EU (A), Mediterranean
Sea (B), Black Sea (C), and Baltic Sea (D). Note that first occurrences date back to the XVII century, but here we just represent the 1950–2020 period. Different taxa
are represented in colors, and the year-specific Shannon Index (blue line), which considered the relative contribution of particular taxa to the total number of
occurrences reported for a given year and basin, was used as an indicator of the completeness in taxonomic sampling along the time-series.

important biodiversity hot spots likely due to the higher river
and nutrient input, and the larger number of endemic species
(Coll et al., 2010). Spatial patterns from GBIF biodiversity data
also agree with previous assessments for the Atlantic Ocean
showing that the northernmost and more productive Atlantic
waters support also the higher species richness (Narayanaswamy
et al., 2013). As an addition to these previous assessments, we
also highlight certain inshore areas in the Macaronesia (including
Azores, Madeira, and Canary Islands) as biodiversity hot spots.

Besides the ecological/environmental mechanisms underlying
the spatial gradients in marine biodiversity, observed patterns
may be also partially driven by the heterogeneous distribution
of available data (driven by heterogeneous sampling effort
and/or data mobilization) and the gaps in our knowledge of
the biota (or the lack of information mobilization) along the

southern and the eastern rims (Coll et al., 2010; Narayanaswamy
et al., 2013; Levin et al., 2014). Indeed, our estimators on the
sampling effort necessary to achieve a good representation of
the species richness for a given area suggest that only a little
proportion of the European Seas is well represented/studied,
and that these well-studied areas concentrate in the North Sea,
around United Kingdom and the North-westernmost areas of the
Mediterranean Sea.

Socio-economic factors, such as proximity to research
institutions, country participation in data-sharing networks,
international cooperation, and financial resources (among
others) may be driving detection, recording, or mobilization of
biodiversity data into data-sharing networks (Meyer et al., 2015).
Accordingly, most of the top contributors to marine biodiversity
data for the European Seas are mainly based in high-income

Frontiers in Marine Science | www.frontiersin.org 7 January 2022 | Volume 8 | Article 802235

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-802235 January 22, 2022 Time: 15:4 # 8

Ramírez et al. Assessing FAIR Marine Biodiversity Data

FIGURE 5 | Bar plot showing the difference between the total number of species per taxa reported in GBIF with respect to analogous results from Costello et al.
(2010). Comparisons have been made for the Atlantic EU (A), Mediterranean Sea (B), Black Sea (C), and Baltic Sea (D). Positive values indicate a higher number of
species reported in GBIF. What we consider here as Atlantic EU (whole area) differs from Costello et al. (2010) in that we also include marine waters around the
Macaronesia (including Azores, Madeira, and Canary Islands), and the northernmost Atlantic waters (see Figure 1). For comparative purposes, we also consider the
same Atlantic EU area as Costello et al. (2010). Note also that Costello et al. (2010) did not report biodiversity data for the Black Sea.

countries from North-western Europe. Hence, biodiversity data
acquisition and mobilization are biased regionally, reflecting
sparse efforts along the southern and easternmost marine areas.

Despite the spatial heterogeneity and the observed differences
in the distribution of sampling effort and species richness, we
observed a similar temporal trend in the reported number of
occurrences among basins (with the exception of the Baltic
Sea, for which the number of occurrences was consistently low
throughout the last decades). In particular, we observed a steep
increase in the number of reported occurrences from 1990s
to 2000s coinciding with the digitalization of our society, the
increase in Internet data traffic and the broad development of
digital data-sharing platforms such as GBIF (note that GBIF
was officially established in 20013). Overall, these increasing
trends peaked in the earlies 2010s matching with the end of
the CoML, and thus pointing to a massive mobilization of
biodiversity data acquired during this multinational biodiversity

3https://www.gbif.org/document/80661/gbif-memorandum-of-understanding

assessment project. In the case of the Mediterranean Sea, a
second, even larger peak occurred a few years later. After
these peaks, the number of reported occurrences has been
decreasing to date, with current numbers being similar to
those reported in the 2000s. This could potentially weaken
prospects for GBIF-based research and applications to marine
conservation and monitoring of marine ecosystems. Indeed,
monitoring biodiversity trends requires more than a single
snapshot of the status and distribution of species (Boakes et al.,
2010). Accordingly, high temporal coverage, i.e., continuous
recording of species through time, is essential for monitoring
species’ responses to environmental change, evaluating changes
in biodiversity and to providing historical baselines (Whittaker
et al., 2005; Boakes et al., 2010; Meyer et al., 2016b).

According to our proxy to the long-term taxonomical
completeness (yearly and basin-specific Shannon index, H′),
minor taxonomical biases should be expected for Atlantic EU
and the Baltic Sea since the 1990s, matching with the steep
increase in the number of recorded occurrences. However, while
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TABLE 2 | Number of species per basin and taxa reported in GBIG and Costello et al. (2010) when analyzing biodiversity information from the Census of
Marine Life (CoML).

Atlantic EU Baltic Sea Mediterranean Sea Black Sea

GBIF CoML GBIF CoML GBIF CoML GBIF CoML

Whole area Costello et al. (2010)

Annelida 1,661 1,566 (6%) 1,595 732 411 804 1,179 112

Bryozoa 524 486 (8%) 368 133 59 288 337 0

Cnidaria 1,179 966 (22%) 491 221 117 447 674 15

Crustacea 2,883 2,581 (12%) 2,209 607 587 1,246 2,190 34

Echinodermata 679 590 (15%) 245 117 59 166 168 3

Mollusca 3,853 2,975 (30%) 1,350 865 293 2,589 2,190 93

Pisces 1,673 1,214 (38%) 1,104 249 176 961 674 135

Platyhelminthes 391 380 (3%) 245 156 293 113 1,011 9

Porifera 725 641 (13%) 491 142 0 271 674 2

Protozoa 462 430 (7%) 491 329 1,173 280 4,044 30

Tunicata 223 206 (8%) 123 44 0 112 168 0

For the Atlantic EU, we include the number of species reported for the area considered in Costello et al. (2010) as well as for the whole area that includes water masses
around the Macaronesia and the Arctic Sea (see Figure 1). The relative differences between these two datasets are given within parentheses. Note that there is a lack of
biodiversity data in the CoML for the Black Sea.

this statement may hold true for the whole basins, reported
geographical biases may imply taxonomical biases at those areas
or marine regions where sampling effort was relatively low. In the
case of the Mediterranean Sea, we observed a gradual increase in
H′ as a likely result of the inclusion of several taxa in GBIF records
since the 2000s (i.e., Echinodermata, Porifera, and Bryozoa).
This suggests an early taxonomical bias that may prevent from
putting the status of the present-day biota into a proper historical
context (Willis et al., 2007; Boakes et al., 2010). In the case of the
Baltic Sea, the chaotic trend in H′ values suggests an unbalanced
taxonomic sampling.

Taxonomical biases can prevent from biodiversity
comparisons among areas and periods, and imply that
completeness pattern of a single-taxon is a poor predictor
for un-assessed taxa and highlights the need to identify taxon-
specific information gaps (Vale and Jenkins, 2012; Meyer et al.,
2015). These biases may be caused by species traits that affect
detection and collection probabilities. For instance, more records
might be available for early-described species, those that are
more conspicuous and show higher abundances, or those that
attract more scientific or public interest (Meyer et al., 2016a,
and the references therein). Accordingly, previous assessments
(based on CoML) revealed that the most conspicuous, abundant,
and likely more “appealing” or “charismatic” species of mollusks,
crustaceans, bryozoans, echinoderms, fish, and other vertebrates
were the most well known in the European Seas (Narayanaswamy
et al., 2013). Overall, these groups were also better represented
in GBIF with respect to the CoML benchmark and the less
conspicuous protozoans, annelids, and platyhelminths. However,
this pattern contrasted for the worse sampled Mediterranean
basin, where the number of species reported in GBIF was lower
than those reported in CoML for most clades (particularly for
the less conspicuous protozoans), with the only exceptions of
mollusks and fish.

If we are to achieve a complete representation of our current
ecosystems, biodiversity information must be comprehensive and
not just focus on the most conspicuous or charismatic species,
or those of greatest conservation concern (Boakes et al., 2010).
In this regard is worth noting that very few institutions account
for most of the occurrences available in GBIF. This is particularly
true in the case of the Baltic Sea, where a single institution
(SLU) contributes to more than 60% of reported occurrences.
Biases by these top-contributing institutions toward particular
taxa (e.g., research or conservation interest for target groups
or species) may result, therefore, in GBIF taxonomical biases.
Enlarging the number of contributors to GBIF and balancing
their contributions may help to prevent taxonomical biases and
increase completeness.

Information on species distributions in space and time is a
central aspect of biodiversity knowledge that is needed for the
effective management of biodiversity and associated ecosystem
services in a rapidly changing world (Whittaker et al., 2005;
Butchart et al., 2010; Levin et al., 2014). FAIR biodiversity data
available in GBIF provide vital information about where and
when species occur and are widely used in ecology, evolution,
and conservation research (Ball-Damerow et al., 2019). This
information has the potential to contribute and inform actions
toward multiple research questions and conservation targets
at the global level. This can be the case for the Sustainable
Developed Goals adopted by all United Nations Member States
and the Convention on Biological Diversity (CBD4) that call for
a reduction in the rate of biodiversity loss and claim for the
development of an advanced and shared biodiversity knowledge
base. At the European level, open biodiversity data may also
contribute to achieving the objectives of the Marine Strategy
Framework Directive, as biological diversity is the first of the

4https://www.cbd.int
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FIGURE 6 | Bar plot showing the total number of occurrences reported by single Institutions for the basins considered in the study. Information on main contributors
is provided for the Atlantic EU (A), Mediterranean Sea (B), Black Sea (C), and Baltic Sea (D). We focused on the top 25 contributors for visualization purposes.
However, these top contributors account for most of the reported occurrences (ca. 90% in the Atlantic EU and the Mediterranean Sea, and almost 100% in the
Baltic and the Black Seas, see Supplementary Table 2).

11 descriptors of Good Environmental Status (GES) of the
European marine waters. Examples of open biodiversity data
uses toward these conservation targets may include marine
spatial planning applications to minimize biodiversity loss
through the improvement of networks of marine protected areas,
safeguarding threatened species, and mapping and securing
associated ecosystem services (Levin et al., 2014).

While acknowledging the potential of open biodiversity
data, our assessments suggest that severe spatial, temporal,
and taxonomical gaps and biases exist in FAIR biodiversity
information, even for the comparatively well-known European
Seas (see also Boakes et al., 2010; Jetz et al., 2012; Meyer
et al., 2015); and these require careful consideration when
developing conservation research and applications (Levin et al.,
2014; Meyer et al., 2015; Ball-Damerow et al., 2019). For
instance, the pervasive lack of biodiversity data for the
south-easternmost marine areas (including the Black Sea)

indicates that there are not sufficient occurrence (available)
data to facilitate modeling approaches. Temporal biases in
species occurrences toward the most recent decades may
hamper our ability to monitor species’ and biodiversity’s
responses to human impacts and environmental changes;
whereas taxonomic biases toward the most conspicuous species
may impede biodiversity comparisons across sites and periods.
National to international join efforts aimed at generating
and mobilizing biodiversity data should focus on data-
deficient areas, periods, and taxa. These same recommendations
could be extended to other, less studied marine regions in
the world for which we should expect exacerbated spatial,
temporal, and taxonomical biases in available FAIR biodiversity
information. This will contribute to future modeling efforts
toward building reliable and integrated marine assessments
and digital twins of the oceans in general, and the European
Seas, in particular.
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Understanding the key driving factors of bias is important
to prioritize activities in biodiversity data acquisition and
mobilization. For instance, spatial distance to data-contributing
institutions has been previously highlighted as one of the
key drivers of spatial biases (Meyer et al., 2015). Together
with the higher financial support to research in the northern,
higher-income countries, this may contribute to explaining the
northwestern-to-southeastern gradient in sampling effort and
species richness in the European Seas. Overall, this may result
in high levels of informational redundancy concentrated in a
few northern places, often at the expenses of other, poorly
known areas in the southern and eastern rims. While this
extensive data availability may benefit local conservation efforts
in the northern marine regions as well as many purely scientific
endeavors, this can also trade off against global-scale data needs
and integrative assessments required to support cost-effective
progresses toward global biodiversity conservation (Meyer et al.,
2015). An effective strategy for addressing these spatial gaps
in FAIR biodiversity data may therefore lie in supporting
international programs and cooperation, aimed at enhancing
data acquisition and mobilization efforts in institutions nearby
identified data gaps, and supporting participation in international
data-sharing programs through direct partnerships or capacity
building assistance (Meyer et al., 2015).

Further initiatives should also focus on preventing temporal
biases by maintaining the necessary local and long-term logistics
of field sampling, specimen processing (e.g., identification), and
incorporation of data on global biodiversity information systems.
Initiatives aimed at enhancing the identification and digitation
of specimens in museum collections could also contribute to
minimizing these biases in available FAIR biodiversity data
(Ariño, 2010; Page et al., 2015; Ball-Damerow et al., 2019).
In this regard, taxonomic work and support to taxonomists
should remain also a priority, especially in the relatively poorly
sampled non-vertebrates, because the utility of data-basing
collections rests on the accuracy of the identifications and their
taxonomical completeness (Graham et al., 2004). There is also
much room for several large emerging economies including
Russia or Turkey for addressing gaps in biodiversity data in
poorly known areas for the eastern Mediterranean and the Black
Sea. Success in building an adequate information basis for global
biodiversity conservation and thus globally informed policies for
environmental sustainability will depend on their support and
may be determined by political rather than economic factors
(Meyer et al., 2015).

In addition to these geographical, social, economic, and
political factors limiting or biasing the availability and
accessibility of biodiversity data, limitations inherent to
ongoing research/academic systems may also add to the critical
caveat of applying digitized data in research and conservation.
Research funding usually leading to peer-reviewed publications
is not improving the ability to address biodiversity information
gaps and biases as greatly as direct support for data mobilization
programs (Meyer et al., 2015). This suggests that most of the
strongest limiting factors of completeness affect digitization and
mobilization of existing data rather than the actual collection
of new records in the field. In part, this is because current
data-archiving policies and academic reward systems do not

favor data-sharing activities (Whitlock, 2011; Enke et al., 2012;
Meyer et al., 2015). The recent expansion of data journals
(Chavan and Penev, 2011), online platforms for reporting species
occurrence observations (Pimm et al., 2015), and efforts over
the past decade to digitize specimen records (Page et al., 2015),
have resulted in a steep increase in the number of data papers
and papers describing a new database over time (Ball-Damerow
et al., 2019). However, there is still a long way to go for this
type of scientific activity to be recognized in a similar way
to “classic” research work when it comes to obtaining the
necessary merits and academics rewards to be competitive
in scholarships, job positions, and calls for funding research.
Improved reward systems, new data publishing mechanisms,
and journal and public funding agencies’ requirements aimed at
making biodiversity data publicly available can incentivize both
individual scientists and larger project teams to openly share
biodiversity records (Whitlock, 2011; Enke et al., 2012; Meyer
et al., 2015).

While biodiversity assessments led by trained field biologists
will continue to play an important role in long-term monitoring
of marine biodiversity as well as the creation of primary
information for under-surveyed areas, novel approaches using
digital data in active (e.g., citizen science; Chandler et al., 2017)
or passive (iEcology and conservation culturomics; Ladle et al.,
2016; Jarić et al., 2020a) ways are already providing increasingly
valuable records for certain taxa at comparatively low cost
(Hochachka et al., 2012; Jarić et al., 2020b).
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