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Reef-building corals form complex relationships with a wide range of microbial partners,
including symbiotic algae in the family Symbiodiniaceae and various bacteria. These
coral-associated communities can be shaped to varying degrees by environmental
context. Sedimentation can structure a coral’s microbial community by altering light
availability for symbiotic algae, triggering the coral’s stress response, or serving as a
reservoir for both pathogenic and essential bacterial and algal symbionts. To examine
the influence of sedimentation on a coral’s microbiome, we used 16S rDNA and ITS-2
amplicon sequencing to characterize the bacterial and algal communities associated
with the massive scleractinian coral Porites lobata across pairs of sites along a
naturally occurring sedimentation gradient in Fouha Bay, southern Guam. Additionally,
we investigate the influence of proximity to sediment on the coral colony scale, by
sampling from the edge and center of colonies as well as the nearby sediment. The
P. lobata colonies associated with several different genotypes of Cladocopium C15 algal
symbionts and often harbored different genotypes within a single colony. However, the
different Cladocopium genotypes showed no structuring according to colony position or
location along the sedimentation gradient. Bacterial communities were largely consistent
across the sedimentation gradient, however, some rarer taxa were differentially abundant
across sites. Planococcaceae shows higher abundance closer to the river mouth in
coral colonies in both the edge and center of colonies. Peredibacter also shows high
abundance near the river mouth but only in sediment and the edges of the colony. We
find sediment plays a larger role structuring bacterial communities at the colony scale
compared to a coral’s position along the sedimentation gradient. Edge communities
look more similar to the sediment compared to the center communities and are also
enriched in similar pathways such as those involved in nitrogen fixation. We also find
center samples to be dominated by Endozoicomonas compared to the edge, supporting
a role for this taxon in structuring bacterial communities and limiting bacterial diversity
in coral colonies. Together these results show the differential impact sedimentation can
have between sections of the coral colony microhabitat.

Keywords: coral, bacteria, intra-colony, sediment, Symbiodiniaceae

Frontiers in Marine Science | www.frontiersin.org 1 January 2022 | Volume 8 | Article 805202

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.805202
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.805202
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.805202&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/articles/10.3389/fmars.2021.805202/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-805202 January 24, 2022 Time: 14:22 # 2

Fifer et al. Coral Microbiome Sediment

INTRODUCTION

Reef-building corals form complex relationships with a wide
range of microbial partners, including symbiotic algae in
the family Symbiodiniaceae and a consortium of bacteria.
These relationships can be established vertically (transmission
from maternal colonies through egg provisioning), horizontally
(acquisition from the local environment) or a combination of
both (Byler et al., 2013). These transmission methods can lead
to different strategies for responding to changing environmental
conditions. For example, some horizontal transmitters replace
their dominant algal symbiont with another compatible symbiont
species that is more tolerant to a particular stressor (Huang
et al., 2020). Once the stressful event is over, the coral host
usually recovers its original symbiont species (Sampayo et al.,
2016). In comparison, vertical transmitters are limited to either
changing the relative abundances of their algal symbionts to alter
their community composition (Gates, 1990; Warner et al., 2002;
Berkelmans and van Oppen, 2006) or not changing at all (Goulet,
2006, 2007).

While transmission of the bacterial component of the coral
microbiome receives comparatively less attention than their
algal counterparts, bacterial transmission research has gained
recent traction following the revelation of the importance
of these partners. Bacteria can provide the coral with a
variety of benefits [reviewed in Bourne et al. (2016)] including
antibacterial compounds to protect against pathogens (Ritchie,
2006), ultraviolet light–absorbing pigments to reduce the
impact of high light conditions (Ravindran et al., 2013) and
provisioning important nutrients (Wild et al., 2004). Vertical
transmission of bacteria, likely through the mucus layer that
coats egg-sperm bundles (Damjanovic et al., 2020b) has been
observed for several coral species (Leite et al., 2017; Bernasconi
et al., 2019; Damjanovic et al., 2020b). Bacteria can also be
transmitted horizontally to the coral from a variety of sources
including sediment and the water column but also more
charismatic sources such as fireworms (Aeby and Santavy, 2006),
echinoderms (Chong-Seng et al., 2011), gastropods (Raymundo
et al., 2010; Nicolet et al., 2018), and bites from butterflyfish
(Aeby and Santavy, 2006; Raymundo et al., 2010; Chong-
Seng et al., 2011; Martin et al., 2018; Nicolet et al., 2018)
and parrotfish (Ezzat et al., 2020). While the main source of
bacteria in the early life history stages of corals is thought
to be the water column (Patten et al., 2008; Apprill et al.,
2009, 2012), sediment bacterial communities are among the
most taxonomically diverse within coral reef habitats (Schöttner
et al., 2012) and bacterial taxa in the coral mucus layer show
higher similarity with sediment than with surrounding seawater
(Carlos et al., 2013). The plethora of bacterial sources that
potentially interact with coral life stages makes understanding
bacterial establishment in corals complex, with the exact
role of reef sediment in these relationships remaining largely
underexplored.

High sediment loads in environments such as reefs near river
mouths can dramatically impact the health of a coral, directly
affecting coral host physiology and changes in the microbial
community. Sedimentation can contribute to compromised coral

health (Weber et al., 2012; Sheridan et al., 2014; Pollock et al.,
2016) coral species community structure can shift dramatically
with proximity to river mouths (West and Van Woesik, 2001).
Sediment can negatively impact the coral host directly by
removing sperm from seawater surface during reproduction
events (Ricardo et al., 2015) and forcing the coral to incur
energetic costs through sediment shedding, as the coral would
otherwise be smothered (Fabricius and Sea, 2005). Suspended
sediments can reduce light availability as silt and clay particles
block sunlight, thereby reducing photosynthesis in symbiotic
corals (Cortes and Risk, 1985; Fabricius and Wolanski, 2000;
Fabricius et al., 2003). Sedimentation further promotes low
oxygen environments (Li et al., 2014) and increases the
availability of organic material and nutrients on reefs (Haapkylä
et al., 2011). These environmental impacts can alter the coral
microbiome by changing abiotic conditions, some of which
facilitate the growth of harmful bacteria (Erftemeijer et al., 2012).
Sediment can also directly deliver harmful bacteria to the coral
host, as may be the case with most instances of stony coral
tissue loss disease (Rosales et al., 2020). Sediment thus can
have a multifold impact on the coral organism including via
restructuring of its microbial members.

Given the potential role of sediment as a major force in
structuring coral microbial communities, it is possible that
within a single colony, a coral polyp’s distance from the
boundary between the coral colony edge and the sediment
substrate might determine its microbial composition. Corals can
exhibit spatial intra-colony variation in their Symbiodiniaceae
communities (Rowan et al., 1997; Reimer et al., 2006) and
differences between sides of colonies (Garren et al., 2006) can
directly correspond to light exposure (van Oppen et al., 2001;
Ulstrup and Van Oppen, 2003; Kemp et al., 2015). These
spatial differences in Symbiodiniaceae communities can result in
within colony variation in bleaching during heat stress events
(Kemp et al., 2014). While relatively understudied compared to
Symbiodiniaceae, there is also evidence for intra-colony variation
in coral bacterial communities. Corals can host discrete bacterial
communities between compartments within a polyp (Engelen
et al., 2018), between the mucus, tissue and skeleton of a coral
(Sweet et al., 2011; Pollock et al., 2018), between different parts of
the colony within both the tissue and/or mucus (Rohwer et al.,
2002; Hansson et al., 2009; Daniels et al., 2011; Damjanovic
et al., 2020a) as well as the skeleton (Marcelino et al., 2018).
The ability for a single coral colony to harbor diverse microbial
communities suggests that differences in sediment exposure
across an individual colony may lead to intra-colony variation in
the microbiome and its associated functions.

Here, we tested whether shifts in coral-associated microbial
communities depend on proximity to sediment within a
coral colony, as well as between sites along an established
sedimentation gradient. We tested this hypothesis in Fouha
Bay, Guam using the ubiquitous massive scleractinian coral,
Porites lobata. In the absence of human activities, natural levels
of suspended sediments on reefs are usually less than 5 mg/l
(Larcombe et al., 1995; Kleypas, 1996), but on reefs adjacent to
degraded watersheds, suspended sediments can reach 1,000 mg/l
during periods of heavy rains, as is the case for Fouha Bay
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(Wolanski et al., 2003; Rongo, 2004). During 1988 a coastal
road was constructed within the watershed, which resulted in
high sediment loads into the bay and buried and killed many
corals from 1988 to 1990 (Richmond, 1993). Since then, roughly
10 major floods annually contribute to large sediment loads
which are largely retained within the bay; flushing occurs only
about 2–5 times per year by storm-driven swells (Wolanski
et al., 2003). There is an established gradient of sediment load
in the bay (Figure 1) with sediment loads decreasing with
distance from the river mouth (Rongo, 2004). Coral richness
declines exponentially with increasing sedimentation rate along
this channel (Minton, 2015). However, P. lobata exists at almost
all sites along this gradient. We sampled algal and bacterial
communities from individual P. lobata colonies across this
gradient to assess the role of sediment proximity in structuring
the coral microbiome between sites and within coral colonies. We
show that coral-associated microbial community composition
depends on proximity to sediment within a coral colony. In
addition, distance to the river mouth (site) has an effect on coral
microbiome community composition, but this is largely limited
to the rarer taxa living on the edge of the coral colony.

MATERIALS AND METHODS

Coral Colony and Environmental Data
Collection
Eight to ten P. lobata colonies were sampled at each of the six
locations in Fouha Bay, Guam (Figure 1) via hammer and chisel
in April 2019. These locations were further clustered into sites
(2–4) that reflect position along the sedimentation gradient as
described by Rongo (2004; Figure 1). Site 1 was excluded from
this study as it is virtually devoid of coral, with only a few
colonies of Leptastrea purpurea remaining. The site closest to the

river mouth (site 2) not only experiences higher sedimentation
but also lower average light and more frequent decreases in
salinity compared to the other two sites. All three sites experience
similar temperatures (Supplementary Figure 1). The La Sa Fua
River discharges into Fouha Bay through a small canyon cut
through the reef flat. This canyon is about 20–30 m wide with
depth varying between 0.5 m at the shore and about 7 m at
the reef edge. Corals grow along the walls of the canyon with
some additional coral outcrops scattered throughout the bay. All
specimens collected for this study were growing on the edges of
the canyon. All colonies (N = 52) were sampled in the center
of the colony, half (N = 23) were also sampled at the edge and
sediment (N = 18) was collected adjacent (<0.25 m) to the coral
colony. Samples were placed in collection bags and flash frozen
in liquid nitrogen upon collection and transferred to −80◦C
until DNA isolation.

Environmental data were sampled at 30 min intervals
over 8 months (April 19, 2018–January 19, 2019) that
spanned both dry and wet seasons. Temperature and
conductivity were sampled using a HOBO U24-002-C
(Onset Computer Corporation, Bourne, MA, United States)
saltwater temperature/conductivity logger; conductivity was
converted to salinity following calibration using a refractometer.
Illuminance was recorded using HOBO UA-002-08 pendant
temperature/light data logger.

To supplement the center versus edge intra-colony symbiont
structure hypothesis addressed herein, contributions from fifteen
P. lobata colonies collected during Klepac and Barshis (2020)
were also included. P. lobata is a dominant species of the backreef
lagoon pools on Ofu Island in American Samoa. Although
these colonies are not influenced by sedimentation, three well-
studied pools experience contrasting environmental regimes
(high variability, moderate variability, and low variability), which
could contribute to site-wide differences in Symbiodiniaceae

FIGURE 1 | Left panel: Map of Porites lobata coral collection locations (N = 6) in Fouha Bay on the island of Guam (inset). These locations are labeled based on their
northern (N) or southern (S) location within the bay and distance from river mouth (2 = closest to mouth, 4 = furthest from mouth), which is a proxy for sedimentation
(2 = highest sedimentation, 4 = lowest sedimentation). Right panel: Picture of a P. lobata colony showing the three sampled positions for each coral colony.
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composition. Five large colonies (6–10 m2) per site were sampled
using a core punch (1.27 cm) and rock hammer. From each
colony a core was taken from the top centroid and ∼0.5–1 m
down (depending on the size of the colony; N = 30 samples) from
the top sampling location to determine intra-colony differences
in Symbiodiniaceae.

ITS2 and 16S Metabarcoding
DNA was extracted using the DNeasy PowerSoil (Qiagen, Hilden,
Germany) kit at the University of Guam Marine Laboratory.
Tissue samples were first placed in a bead beater for 30 s
(with C1 solution), followed by centrifugation and transfer of
the resulting supernatant to a fresh 1.5 ml tube. DNA was
purified using a QIAcube automated liquid handler (Qiagen,
Hilden, Germany). Bacterial 16S (for center, edge, and sediment
samples) and algal ITS2 libraries (for center and edge only)
were prepared at Boston University. 16S preps also included
a negative control prepped with nuclease-free water. ITS2
libraries were generated following Baumann et al. (2017) and
16S libraries were generated by amplifying the V4/V5 region
using modified 515f (Parada et al., 2016) and modified 806r
(Apprill et al., 2015). These two library sets were then pooled in
1:2 ITS2:16S and sequenced on an Illumina MiSeqV2 (paired-
end 250 bp) at Tufts University Core Facility (TUCF). All
samples were prepared for 16S but sediment samples were
excluded from ITS2 analysis as P. lobata transmits symbionts
vertically (Richmond and Hunter, 1990). Colonies from Ofu
Island were prepped for ITS2 as described in Klepac and Barshis
(2020).

Symbiodiniaceae Community Analyses
Raw paired-end sequences for each sample were processed using
SymPortal (Hume et al., 2019) with default parameters. ITS2 type
profiles (representative of putative Symbiodiniaceae genotypes)
were predicted and characterized by specific sets of defining
intragenomic ITS2 sequence variants (DIVs). Pearson’s Chi-
Squared test was performed to compare differences in dominant
ITS2 type profiles between sites and intra-colony positions.
T-tests were used to compare bacterial beta diversity between
dominant ITS2 type profiles that were different between center
and edge versus colonies that showed the same profile.

Bacterial Community Analyses
16S Data were pre-processed in bbmap (Chaisson and Tesler,
2012) and cutadapt (Martin, 2013) removed primer sequences.
DADA2 (Callahan et al., 2016) truncated reads, calculated error
rates, de-duplicated reads, inferred sequence variants, merged
paired reads, and removed chimeras (98% not chimeras). In
total, 8,663 non-bimeric amplicon sequence variants (ASVs)
were assigned taxonomy using the Silva v132 dataset (Glöckner
et al., 2017) with a minimum bootstrap confidence of 50.
Using phyloseq (McMurdie and Holmes, 2013), ASVs assigning
to family “Mitochondria,” order “Chloroplast,” and any with
taxonomic designations defined as “Eukaryota” were removed.
Using the R package decontam (Davis et al., 2017), ASVs
that were determined to be contaminants through the use
of the negative control were also removed. ASVs were

then mapped against NCBI’s NT database using BLASTN (-
e value 1e-5 -max_target_seqs 10) and all ASVs belonging
to Eukaryota were removed. The resulting ASV table was
rarefied to 5,000 reads (Supplementary Figure 2) using vegan
(Oksanen et al., 2020). MCMC.OTU (Matz, 2016) trimmed
ASVs representing <0.1% of counts or only present in less
than 2% of samples, which retained 1,548 out of 7,654 ASVs.
MCMC.OTU also identified putative outlier samples (defined
as total counts falling below z-score cutoff of -2.5) and four
samples were removed from all downstream 16S analyses
(Supplementary Data).

To estimate bacterial diversity, Phyloseq (McMurdie and
Holmes, 2013) calculated three alpha diversity metrics on an
untrimmed, rarefied dataset: observed ASV richness, Shannon
index, and inverse Simpson’s index. Shapiro and Levene’s
tests were used to assess normality and heteroskedasticity,
respectively. ANOVA, Kruskal-Wallis, or Welch’s t-tests
measured significance across intra-colony positions and sites.
Beta diversities were compared using Bray-Curtis distances
on trimmed datasets transformed to relative abundances.
A PERMANOVA using the Adonis function in the vegan
package (Oksanen et al., 2020) was run with 1,000 permutations
to compare Bray-Curtis distances between intra-colony positions
and sites. Post hoc pairwise PERMANOVAs were run as needed.

Bacterial Indicator Species and Overrepresented
Pathways
The R package IndicSpecies with the command “multipatt” (De
Cáceres and Jansen, 2016) was used to identify bacterial genera
whose abundance was significantly associated with particular
intra-colony position and site along the sedimentation gradient
(p-value threshold = 0.05). PICRUSTV2 (Caicedo et al., 2020)
was used to look for overrepresented pathways along the
sedimentation gradient and across the coral colony. Copy
numbers of gene families were predicted using the EC number
database, which were then weighted by the relative abundance
of ASVs. MetaCyc pathway abundances were inferred based on
weighted EC number abundances and a generalized linear model
(GLM) was used to compare pathway enrichment between intra-
colony position and sites along the sedimentation gradient via the
R package aldex (Gloor et al., 2020).

RESULTS

Algal Communities Associated With
Porites lobata
ITS2 Metabarcoding data showed that samples were dominated
by Cladocopium C15, but several distinct ITS2 profiles
(commonly referred to as types; LaJeunesse, 2002) exist in
this population (Figure 2). Individual coral colonies can harbor
distinct C15 types between intra-colony positions, although
intra-colony position does not predict the Symbiodiniaceae
type (X-squared = 26.682, df = 22, p-value = 0.2235).
Similarly, colonies from Ofu Island also showed distinct
profiles within colonies but intra-colony position did not
predict Symbiodiniaceae type (X-squared = 5.5824, df = 6,
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FIGURE 2 | Top: Relative abundance of dominant ITS2 profiles across all Porites lobata colonies along the sedimentation gradient (2: site closest to river mouth - 4:
site furthest away from river mouth). Bottom: Relative abundance of dominant ITS2 type profiles across only P. lobata colonies where both edge and center were
sampled. Numbers on X-axis correspond to unique coral colonies sampled.

p-value = 0.4716; Supplementary Figure 3). Within Fouha
Bay, site did not predict Symbiodiniaceae type within both
center (X-squared = 26.682, df = 22, p-value = 0.2235) and
edge samples (X-squared = 15.754, df = 16, p-value = 0.4703).
Comparisons of 16S beta diversity between a center-edge pair for
a colony that showed intra-colony position-specific differences
in dominant ITS2 profiles were no different from the pairwise
beta diversity of a center-edge pair for colonies that maintained
the same ITS2 profile (t = −1.2871, df = 36, p-value = 0.2063;
Supplementary Figure 4).

Bacterial Communities Associated With
Porites lobata
16S Alpha diversity and beta diversity comparisons for
both center and edge communities revealed no significant
differences along the sedimentation gradient (Figures 3A,B
and Supplementary Figure 5). Alpha diversity for sediment

communities was also not significantly different across sites
(Supplementary Figure 5). However, beta diversity was
significantly different between site 2 (the site with the highest
sedimentation) and sites 3 and 4 (Figure 3C). Comparisons
of diversity between intra-colony positions revealed striking
differences, with edge, center and sediment communities
all exhibiting significant differences in both alpha and beta
diversity (Figure 4). Sediment bacterial communities were
more similar to edge communities than they were to center
communities (Supplementary Figure 6). Dominant bacterial
families from center samples included Endozoicomonadaceae
(mean 42.2% relative abundance), Xenococcaceae (6.3%)
and Amoebophilaceae (5%) (Supplementary Figure 7).
Dominant bacterial families from edge samples included
Endozoicomonadaceae (11.7%) and Amoebophilaceae (6.1%)
(Supplementary Figure 8). Dominant bacterial families from
sediment samples included Cyclobacteriaceae (5.4%) and
Rhodobacteraceae (5.3%) (Supplementary Figure 9).
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FIGURE 3 | Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarities of 16S bacterial communities across sites along a sedimentation gradient
(2 = high, 3 = moderate, 4 = low sediment load) for (A) center of coral colonies, (B) edge of coral colonies, and (C) in the reef sediment. Percentages on each axis
indicate the amount of variation explained by each axis. P-values indicate significant results of PERMANOVA tests for panels (A,B) and pairwise PERMANOVA for
panel (C).

FIGURE 4 | (A) Principal coordinates analysis based on Bray-Curtis dissimilarities of 16S bacterial communities across intra-colony positions regardless of site
location. Percentages on each axis indicate the amount of variation explained by each axis. p-values indicate significant results of the PERMANOVA test. (B) Alpha
diversity metrics for bacterial communities across intra-colony positions. The box represents the interquartile range (IQR) between the upper and lower quartile. The
whiskers maximally extend 1 time beyond the IQR. Letters denote significant (p < 0.001) differences between groups based on Tukey’s post hoc tests of honest
significant difference.

Indicator Species Between Bacterial
Communities
For edge samples, several ASVs were more abundant at site
2 (the site with the highest sedimentation) or more abundant
at sites 2 and 3 compared to site 4 (least sedimentation).
These included ASVs belonging to genera Catenococcus,
Cohaesibacter, Filomicrobium, Halioglobus, Peredibacter,
Pirellula, Rhodopirellula, Woeseia, and Kiloniellaceae
(Supplementary Figure 10). For samples collected from
the center of the coral colony, several ASVs belonging to the
genus Endozoicomonas were more abundant at sites 3 or 4
compared to 2 (i.e., associated with lower sedimentation). One
ASV, of the genus Burkholderiaceae, was more abundant at sites 2

and 3 compared to 4 (Supplementary Figure 10). Only one ASV,
which belonged to the genus Planococcaceae, was an indicator
species for both edge and center colonies across sites. This ASV
was most abundant for both intra-colony positions at site 2
(Figure 5A). Additionally, only 1 ASV, belonging to Peredibacter,
was an indicator species for both coral (edge only) and sediment
across sites. This ASV was also the most abundant for both
sample types at site 2 (Figure 5B).

Enrichment of Functional Pathways in
Bacterial Communities
Functional pathways significantly differentially enriched
when comparing colony edge and center, but not between
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A

B

FIGURE 5 | Relative abundance of overlapping indicator species ASVs for (A) overlap of P. lobata colony edge and center and (B) overlap of coral colony edge and
reef sediment. Stacked bins represent different ASVs from the same family/genera of bacteria. Bar colors correspond to sampling sites along the
sedimentation gradient.

colony edge and reef sediment, were examined to investigate
differences between the center and edge of colonies that
were likely mediated by bacteria available in nearby
sediment. All pathways that were overrepresented at the
edge and sediment compared to the center are involved
in cobalamin and amino acid synthesis (Supplementary
Figure 11).

Pathways that were significantly enriched when comparing
both coral colony edge and center as well as colony edge
and reef sediment communities were then examined to
investigate differences between the center and the edge of
the colony that were not necessarily due to uptake at the
edge from local sediment communities. There were many
more pathways enriched in this group compared to those
that had no differences between edge and sediment. This
comparison was further split into three groups. Pathways
that were most highly represented in the center, then
the edge, and then the sediment included carbohydrate

and amino acid degradation and TCA cycle pathways
(Supplementary Figure 12). Pathways that were most
highly represented in the sediment, then the edge, and
then the center involved denitrification and methanogenesis
(Supplementary Figure 13). Finally, pathways that were most
highly represented in the edge, then sediment, and then center
consisted of amino acid metabolism pathways (Supplementary
Figure 14).

DISCUSSION

Porites lobata Harbors Distinct
Cladocopium C15 Genotypes Within
Individual Colonies
We sampled a total of 52 P. lobata corals along a steep
sedimentation gradient in Fouha Bay, Guam, and characterized
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their Symbiodiniaceae algae (ITS2) and bacterial (16S)
microbiome communities across the center and edge of
coral colonies (ITS2, 16S) and immediately adjacent to sediment
(16S only). We observed that P. lobata in Fouha Bay almost
exclusively associated with algae in the genus Cladocopium and
harbors different putative C15 genotypes even within a single
colony. Colonies of P. lobata from Ofu Island also harbored
different genotypes of Cladocopium C15 genotypes within a
single colony. Massive Porites corals were historically considered
to have fixed and non-mixed Symbiodiniaceae associations (Fay
and Weber, 2012) with most populations of this coral being
associated with a single Cladocopium species, commonly referred
to as the C15 lineage (Lajeunesse et al., 2004; Thornhill et al.,
2006). These strict associations with a single algal lineage were
previously thought to be a result of the vertical transmission
during reproduction (Fay and Weber, 2012). However, it has
since been discovered that massive Porites corals can harbor
mixed Cladocopium and Durusdinium communities (Terraneo
et al., 2019; Tan et al., 2020) and application of the within-sample
informative intragenomic sequences used by SymPortal (Hume
et al., 2019) revealed different colonies within a population
of P. lobata can harbor different genotypes of Cladocopium
(Gardner et al., 2019; Ziegler et al., 2019; Camp et al., 2020).
This study adds to the literature providing evidence against
the fixed and non-mixed infection theories by demonstrating
intra-colony variation of dominant Cladocopium C15 genotypes
within a single colony of P. lobata across small (Fouha Bay)
and large (Guam and American Samoa) geographic locations.
There are two possible scenarios for explaining mixed genotypes
here and they are not mutually exclusive: (1) multiple genotypes
are inherited vertically and symbionts “shuffle” (Baker et al.,
2004; Berkelmans and van Oppen, 2006); (2) cryptic horizontal
transmission of Symbiodiniaceae (Quigley et al., 2018). Further
work sequencing ITS2 profiles of the water column, nearby
sediment, and P. lobata larvae is needed in order to test
these hypotheses.

There was neither a clear pattern of ITS2 profile structuring
according to intra-colony position nor a discernable pattern
of ITS2 profiles along the sedimentation gradient, suggesting
that the ITS2 community composition in P. lobata is not
directly driven by sedimentation. Massive Porites can harbor
different dominant ITS2 profiles across latitudinal gradients
(Terraneo et al., 2019), seasons (Ziegler et al., 2015), and
habitats [e.g., higher diversity of ITS2 profiles among colonies
in the open ocean compared to those in mangrove habitats;
(Camp et al., 2019)]. These previous studies suggest that ITS2
profile structuring for this genus of corals is determined by
the local environment. However, we do not observe such
structuring here, implying either differences in profiles are
random or due to differences in the microenvironment not
captured by this study. It is possible resampling following
the flooding events might reveal shifts in dominant profile-
types. Interestingly, there was a trend where 7/10 colonies that
showed differing profiles between the colony center and the
colony edge hosted C15.C15bn.C15 on the edge. Furthermore,
of these seven, six hosted C15.C15ev at the center. This suggests
colonies hosting certain Symbiodiniaceae taxa might be more

likely to host divergent populations between the center and
edge. However, a greater sample size will be needed to properly
investigate this pattern.

Porites lobata-Associated Bacterial
Communities Are Dominated by
Endozoicomonas
For P. lobata-associated bacterial communities, we observed
largely homogenous bacterial communities along the
sedimentation gradient. The majority of coral tissue samples
from the center of the colony show high homogeneity and
were dominated by ASVs belonging to the bacterial genus
Endozoicomonas (Proteobacteria: Oceanospirillales). The
ecological role of Endozoicomonas in the coral microbiome
remains unknown, albeit there are numerous theories, most
of which reflect a positive role in coral health [reviewed in
Neave et al. (2016)]. Previous work found that Endozoicomonas
increased in abundance across several species of coral in response
to heat stress and persisted 10 months after heat stress events
(Maher et al., 2020). It is therefore possible that the dominance of
Endozoicomonas observed here may be a result of the sediment-
induced stress associated with the riverine environment of Fouha
Bay. As Endozoicomonas abundance did not change across
sites within the bay, we theorize that “stress events”–in this
case acute large-scale flooding and associated sedimentation
events that occur several times a year affecting the entire bay
(Rongo, 2004)–play a stronger structuring role than the chronic
sedimentation gradient observed for most of the year.

Our results are particularly interesting in light of those
reported in Sweet et al. (2019), which found low abundance
of Endozoicomonas in massive P. lobata less than 30 km
from Fouha Bay. Given that the Guam site from Sweet et al.
(2019) experiences little to no sedimentation, it is tempting to
speculate that severely sedimented environments are associated
with the dominance of Endozoicomonas. Alternatively, given
massive Porites is a cryptic species complex (Forsman et al.,
2009, 2020), these differences might reflect microbial associations
correlating with discrete host lineages. The Fouha Bay P. lobata
population might show an absence of community changes along
the sedimentation gradient because it belongs to a lineage
with an inflexible bacterial microbiome, for which there is
also precedent in Endozoicomonas coral dominated colonies
(Pogoreutz et al., 2018). Regardless, future work investigating
host genetic structure as well as common garden experiments
exposing corals to different sediment loads would be the
next steps to understanding the forces that structure these
microbial communities.

Rarer Taxa Show Differential
Abundances in Porites
lobata-Associated Bacterial
Communities Along a Sedimentation
Gradient
Only the rarer bacterial taxa demonstrated abundance patterning
according to the site along the sedimentation gradient. The
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single ASV that was differentially abundant across sites
for both center and edge samples belongs to the family
Planococcaceae and was most abundant closest to the river
mouth, regardless of where on the colony we sampled. This
family contains many genera that exhibit diverse functions
(Shivaji et al., 2014) making it difficult to disentangle the
potential role these microbes are playing. However, this family
is well represented in coral samples worldwide (Rodríguez-
Gómez et al., 2021) and has also previously been reported to
change abundance based on proximity to different pollution
sources (Qin et al., 2020). Another ASV which belongs to
the genus Peredibacter was differentially abundant across the
sedimentation gradient for both edge and sediment samples.
This ASV was also more abundant closest to the river mouth
and is part of a genus classified as a predatory, Gram-
negative, bacteriovorus group ubiquitous in soil and sewage
(Davidov and Jurkevitch, 2004) that has previously been found
in association with Pocillopora coral hosts (Doering et al.,
2021). In edge samples, two other bacteriovorus ASVs–Pirellula
and Rhodopirellula–were also in their greatest abundance
at sites by the river mouth. The presence of these three
bacteriovores in greater abundance near the river mouth at the
edge of colonies might be significant as micropredators can
drive microbiome changes in corals even at low abundances
(Doering et al., 2021).

Two pathogenic bacteria, Catenococcus and Cohaesibacter
were also present in highest abundances at the edge of coral
colonies closer to the river mouth. Catenococcus is a member of
the Vibrionaceae family and has been described as a pathogen
in the seaweed Kappaphycus alvarezii in which infection by
Catenococcus thiocyli causes bleaching (Zheng et al., 2016), and
showed toxic activity in both sponges (Yoghiapiscessa et al.,
2016) and clams (Guibert et al., 2020), suggesting that edges of
coral colonies may be more susceptible to infection closer to the
river mouth. Cohaesibacter has been shown to be enriched in
corals exhibiting stony coral tissue loss disease (Rosales et al.,
2020; Becker et al., 2021) as well as in white plague-affected
corals (Sunagawa et al., 2009; Roder et al., 2014), providing
further evidence that colonies at the high sedimentation site
might be more at risk for coral disease. Two ASVs from
putative denitrifiers Filomicrobium (Asakura et al., 2014) and
Kiloniellaceae (Wiese et al., 2020) were also abundant closest
to the river mouth. These findings suggest the functions of
the bacterial communities are largely the same across sites,
consistent with the observed lack of pathway enrichment, but
differences in some of the rarer bacteria reflects the potential
for differential functional capabilities. Additionally, these site
differences in rare bacteria are only seen in edge samples
suggesting the edges of coral colonies are more vulnerable to
infection by potentially harmful bacteria compared to the center
of the coral colony.

We acknowledge that there are limitations with this study
in regard to the association between abundance of these rare
ASVs and sediment stress. There are other environmental
variables that we are unable to decouple across the sediment
gradient. For one, we note that the site closest to the river
experiences more extreme drops in salinity throughout the

year compared to the other two sites, likely due to the
freshwater influx during the rainy season. Previous research
on the impact of reduced salinity on coral microbiomes is
limited, but short-term salinity stress has been shown to increase
Vibrio infection of the coral Montipora capitata (Shore-Maggio
et al., 2018), suggesting hyposalinity can restructure bacterial
communities. The site closest to the river also experiences
lower light. While this is likely due to the presence of
sediment in the water column, it demonstrates the difficulty
of disentangling the exact mechanisms by which higher
sedimentation might be impacting microbial communities.
Finally, we acknowledge the possibility that the overlap between
sediment and coral bacterial communities for these few rare
taxa could be a result of coral expulsion of these taxa into
the sediment instead of pickup from the sediment into the
coral microbiome. Future work should include sampling along
a sediment gradient in areas without coral colonies as well
as ex situ experiments designed to parse apart the relative
impacts of sediment and salinity on the structuring of coral
bacterial communities.

Bacterial Communities of Porites lobata
Show Greater Structuring According to
Intra-colony Position Than Location
Along the Sedimentation Gradient
Contrary to the minimal differences in coral-associated bacterial
communities observed across the sites along the sedimentation
gradient, we find significant differences in bacterial diversity
between samples collected from the center and edge of colonies.
Similar variation in bacterial communities has previously been
shown for massive Porites across the skeleton (Marcelino
et al., 2018), but we describe discrete bacterial communities
based on intra-colony position within the tissue of massive
Porites. High diversity differences between positions of the
colony are likely due to proximity of the edge samples
to surrounding sediments. This is reflected in the greater
similarity between edge and sediment communities versus center
and sediment communities. Additionally, many ASVs that
were observed in greater abundance at the edge compared
to the center were not differentially abundant between the
edge and the sediment. One might have also expected to
observe higher overlap between edge and sediment communities
at sites with greater sedimentation, but this was not a
pattern observed in our dataset. However, this study only
sampled a single time point during the dry season, making
it possible that edge communities exhibit increased similarity
with sediment communities during large scale sedimentation
events during the rainy season. Additionally, we found that
colonies that hosted different Cladocopium genotypes between
intra-colony positions did not show any greater differences in
their bacterial communities, suggesting the forces structuring
microbial communities are different between the algal and
bacterial partners.

These differences in bacterial composition between colony
edge and center samples also corresponded to substantial
differences in functional profiles of the bacterial communities.
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Edge and sediment communities both showed functional
enrichment of pathways relating to cobalamin and amino
acid synthesis compared to center communities. Both
Symbiodiniaceae and coral cells lack the ability to synthesize
certain vitamins, including vitamin B12 (cobalamin), which
is important for nucleic acid biosynthesis (Wagle et al., 1958)
and is provided to them by bacterial symbionts (Hopkinson
and Morel, 2009; Agostini et al., 2012). Greater availability
of these important compounds at the edge might sustain
increased coral tissue growth rates at the leading edge compared
to the center of a coral colony. Edge communities were also
enriched for methanogenesis and denitrification pathways
compared to the center. As high sedimentation can produce
low oxygen environments (Li et al., 2014), enrichment of
methanogenesis at the edge might compensate for carbon
buildup by providing alternative mechanisms for carbohydrate
breakdown at the colony edge that do not require oxygen.
Higher denitrification at the edge might be a response to
a disruption in the N to P ratio as bacteria that mediate N
availability through denitrifying processes can strengthen host
tolerance to nutrient replete conditions and help maintain
a favorable N to P ratio (Tilstra et al., 2019). However,
given Fouha Bay’s proximity to a riverine environment, it
seems unlikely that these corals are living under nitrogen
limited conditions. Regardless, nitrogen availability impacts
the coral-algal symbiont relationship as this association is
largely maintained through provision and limitation of N
from host to symbiont (Falkowski et al., 1993; Beraud et al.,
2013; Tilstra et al., 2019). Intra-colony spatial differences in
nitrogen availability suggest possible differences in the stability
of this relationship across the colony. At the center, bacterial
communities showed greater enrichment in functions relating
to carbohydrate metabolism. This same pattern is exhibited
by bacterial communities in coral colonies that are more
resilient to heat stress (Ziegler et al., 2017). As heat stress can
modulate the relative abundance of different sugar compounds
in coral mucus (Lee et al., 2016), it is possible sediment
stress is acting similarly, resulting in niche differentiation
between the edge and center and ultimately discrete bacterial
communities that have different metabolic profiles. Further
research should investigate the concentration of these relevant
compounds across the colony and in coral tissue experiencing
different levels of sediment exposure to corroborate these
interpretations.

CONCLUSION

Our findings imply that thorough characterization of a
coral’s microbiome and its potential ecological roles requires
sampling across a coral colony to capture the variability
of its microbiome. More work is needed to elucidate if
bacterial communities associated with coral colony edges
have any significant bearing on the health of the rest of
the colony. The notion that bacterial structuring in corals
occurring within a colony can be much greater than structuring
between colonies, even across a steep environmental gradient,

suggests coral health and resilience at small spatial scales is
challenging to predict. Additionally, this study adds to the
literature describing Endozoicomonas-dominated coral colonies
contributing to a seemingly fixed microbiome. Endozoicomonas
species possess relatively large genomes, coding for diverse
metabolites that may contribute to coral resilience (Neave
et al., 2017). Characterizing the genome and metabolome of
Endozoicomonas strains in Fouha Bay will be necessary to
begin understanding their role in Porites lobata resilience
to sedimentation.
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