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Low-frequency noise has become a marine pollutant that cannot be ignored, but
most studies have focused on the behavioral and physiological effects on marine
vertebrates, with few studies in marine mollusks. Therefore, sea slug was used in this
study to investigate the effect of low-frequency noise on its physiological aspects. This
experiment was designed with different low-frequency noise (0, 100, 300, and 500 Hz)
and different stimulation times (0, 6, and 12 h) to measure superoxide dismutase (SOD),
malondialdehyde (MDA), and catalase (CAT) activities in hemolymph and transcriptomics
in the control (C) and 6 and 12 h groups (L1 and L2) with 500 Hz noise. The results
showed a positive correlation between antioxidant enzyme activity and low-frequency
noise frequency (P < 0.05) and no correlation with time (P > 0.05). In central nervous
system (CNS) transcriptomics, 2,460 and 3,268 genes had upregulated expression
and 2,765 and 2,783 genes had downregulated expression in the L1 and L2 groups,
respectively, compared to the C group. According to Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis, low-frequency noise mainly affects signaling pathways
such as cytokine-cytokine receptor interaction, the FoxO signaling pathway, natural killer
cell-mediated cytotoxicity, apoptosis immune-related pathways, and energy metabolic
pathways such as glycolysis, the TCA cycle, and glycerophospholipid metabolism,
as well as neurological pathways such as GABAergic synapses, the synaptic vesicle
cycle, amyotrophic lateral sclerosis (ALS) and other neurological pathways. This study
would provide valuable reference information on the potential response of mollusks to
low-frequency noise stress.

Keywords: Onchidium reevesii, low-frequency noise, transcriptome analysis, mollusk, immune response,
oxidative stress

INTRODUCTION

Since the 21st century, noise from marine activities such as ships, port construction, and wind farms
has continued to grow and has been a non-negligible source of pollution in the ocean (Dolman
et al., 2011; Simmonds et al., 2014). Compared with the high-frequency noise generated by sonar
and echosounders, the stable low-frequency noise generated by ships, wind turbines and offshore
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facilities travels farther and decays more slowly, causing more
damage to marine organisms and lasting longer (Codarin et al.,
2009). Ilyina et al. (2010) predicted that there will be a significant
increase in low-frequency noise by 60% in 2100 compared
to today. Therefore, elucidation of the biological effects of
low-frequency noise on marine animals can help us more
comprehensively understand marine noise pollution.

Studies have shown that low-frequency noise caused
physiological damage to auditory organs, auditory masking,
reduced metabolism and immunity, and restricted reproduction
and development in marine animals, resulting in significant
effects on communication, feeding, escape from enemies, and
population distribution (De Soto et al., 2013; Solé et al., 2013;
Wale et al., 2013; Ruiz-Ruiz et al., 2019). In recent years, marine
low-frequency noise has received attention from researchers, but
most studies have focused on vertebrates such as fish and marine
mammals, and few have focused on invertebrates (de Soto,
2016). Invertebrates are abundant and widespread in marine
ecosystems, and thus, they are often used as good bioindicators
of the effects of environmental change and more sensitive to
low-frequency sounds than vertebrates (Tidau and Briffa, 2016).
Therefore, it is particularly important to evaluate the impacts of
low-frequency noise on these organisms and the ecosystems in
which they live.

Sea slug (Onchidium reevesii) is a representative of the
aquatic to terrestrial evolution of mollusks, which lives in the
intertidal high tide zone, and it is considered an indicator species
for pollution monitoring (Zhang et al., 2019). Furthermore,
this organism is a low-fat, low-protein animal and rich in
essential amino acids and mineral elements, which has important
economic and medicinal value (Huang and Wang, 2008). We
has proved previously that low-frequency noise affects the
behavior and physiology of sea slugs. When exposed to low-
frequency noise, sea slugs move away from the noise source,
and the activity of antioxidant enzymes in hemolymph is
positively correlated with noise frequency. The nervous system
is the primary regulatory system in the body, by which the
organism generates rapid and accurate responses to internal
and external environmental stimuli (Van Damme et al., 2021).
The central nervous system (CNS) is the basis for adaptive
behavior in response to external environmental stimuli and is
important for the survival and reproduction of animals in their
environment (Gattoni and Bernocchi, 2019). In recent years,
stress response mechanisms regulated by the neuroendocrine
system have attracted more attentions. Much evidence has proven
that the neuroendocrine system is indispensable in responding to
various environmental stressors by regulating immune activity,
energy allocation, growth, and exercise (Lacoste et al., 2001;
Lubawy et al., 2020). Kight and Swaddle (2011) indicated
that the neuroendocrine response for noise is highly plastic.
Moreover, the central nervous system of mollusks is structurally
simple, easily separable, and highly conserved throughout their
evolutionary history. Therefore, the CNS is a suitable organ
for exploring the effect of low-frequency noise on sea slugs.
The hemolymph circulates continuously and flows through all
vital organs, which penetrates into all tissues, participates in
the body metabolism, regulates and maintains the balance of

functional activities. If the organism is under adversity, the
dynamic balance of reactive oxygen species (ROS) production
and scavenging is disrupted, leading to the accumulation of
ROS in the body. For survival, the animals form enzymatic
and non-enzymatic antioxidant defense systems to scavenge
excess reactive oxygen species. This change is conveyed by the
hemolymph, so checking the hemolymph index is the most
intuitive indicator of the body’s status.

Transcriptomic analysis evaluates genome-wide expression
and is a very powerful research tool for elucidating the
physiological response of animals to environmental changes.
RNA-seq sequencing has thus far been widely used to study the
physiological changes of invertebrates caused by environmental
stimuli such as cadmium exposure (Gu et al., 2019), light
stimulation (Li et al., 2020), and salinity changes (Chen et al.,
2019), but it has not been applied to the effects of low-frequency
noise on mollusks. Thus, sea slugs were exposed to low-frequency
noise in this study, and the potential molecular mechanism of the
stress response caused by low-frequency noise on sea slugs was
investigated by high-throughput sequencing of the central nerve,
which provides a theoretical basis for the study of marine noise
pollution in mollusks.

MATERIALS AND METHODS

Study Species
Sea slugs were collected from the East China Sea beach (Shanghai,
China), and were temporarily reared in the shellfish laboratory
of Shanghai Ocean University. The temporary rearing method
referred to the study of Heding et al. (2004). According to
the experimental design, 54 animals with a mean weight of
13.0± 1.5 g were selected for the study.

Experimental Setup and Protocol
The noise generator device is shown in Figure 1. The device
consisted of a frequency signal generator (SA-SG030), a power
amplifier (SA-PA010 100 W) and a noise amplifier (SA-JZ005).
The experiment was conducted in a 3-m-long, 0.6-m-wide,
and 0.5-m-high tank with a 15-cm-thick marine mud layer at
the bottom of the tank. The sound level meter was placed
on the wall of the tank to determine the decibel value of
the generated noise. According to our measurements of the
sound pressure level inside the tank before the experiment,
there was no significant difference in the sound pressure level
inside the tank with an error range of 3 dB. A thermometer
and hygrometer were placed on the wall of the chamber to
monitor the temperature and relative humidity (26◦C and 90%)
inside the chamber.

The animals were stimulated with sinusoidal waves at
frequencies of 100, 300, and 500 Hz (sound pressure levels of
80–107 dB) for 6 and 12 h. The groups were named L1 and L2.
Both the control and experimental groups were subjected to the
same conditions. Nine biological replicates were used for each
experimental group. All the procedures were strictly carried out
in accordance with the Regulations of the Experimental Animal
Ethics Committee of Shanghai Ocean University.
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FIGURE 1 | Schematic diagram of the experimental device. The sea slug is at the bottom of the tank. The noise amplifier is located on the right side of the tank. The
thermometer and hygrometer are placed on the wall of the tank. The signal generator and power amplifier are located outside the tank.

Measurement of Enzymatic Activity
Superoxide dismutase (SOD), malondialdehyde (MDA), and
catalase (CAT) in hemolymph were measured by following
the manufacturer’s instructions for commercial kits (Nanjing
Jiancheng Bioengineering Institute, China) and assessed on an
enzyme-labeled instrument (Synergy 2, United States).

Transcriptome Analysis of Sea Slugs
With Low-Frequency Noise Exposure
Based on the above results of immune-related enzyme activity,
three groups, e.g., the unexposed (C) and 500 Hz-exposed groups
(L1 and L2), were chosen for transcriptome analysis to further
illustrate the effect and related mechanism.

RNA Extraction, Library Construction, and
Sequencing
Total CNS RNA was extracted according to the mirVanaTM

miRNA Isolation Kit instructions (Thermo, Waltham, MA,
United States), and then, the OD260/280 value was tested for
total RNA integrity using a 1% agarose gel. The samples
with an RNA Integrity Number (RIN) ≥ 7 was subjected to
subsequent analysis. The libraries were constructed using the
TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San
Diego, CA, United States) according to the manufacturer’s
instructions. Then, these libraries were sequenced on the Illumina
sequencing platform (HiSeqTM 2500), and 125 bp/150 bp paired-
end reads were generated.

Quality Control and de novo Assembly
Transcriptome sequencing and analysis were conducted by OE
Biotech Co., Ltd. (Shanghai, China). Raw data (raw reads) were
processed using Trimmomatic. The reads containing poly-N and
the low-quality reads were removed to obtain clean reads. After
removal of adaptor and low-quality sequences, the clean reads
were assembled into expressed sequence tag clusters (contigs) and

de novo assembled into transcripts by using Trinity (version: 2.4)
in the paired-end method. The longest transcript was chosen as
a unigene based on the similarity and length of a sequence for
subsequent analysis.

Functional Annotation, Analysis of Differentially
Expressed Unigenes, Cluster Analysis, and Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) Enrichment Analysis
The function of the unigenes was annotated by alignment of
the unigenes with the NCBI non-redundant (NR), SwissProt,
and Clusters of Orthologous Groups for eukaryotic complete
genomes (KOG) databases using Blastx with a threshold E-value
of 10−5. The proteins with the highest hits to the unigenes were
used to assign functional annotations. Based on the SwissProt
annotation, Gene Ontology (GO) classification was performed
by mapping the relation between SwissProt and GO terms. The
unigenes were mapped to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database to annotate their potential
metabolic pathways.

FPKM and read count values of each unigene were calculated
using Bowtie2 and eXpress [7]. DEGs were identified using the
DESeq (2012) functions estimateSizeFactors and nbinomTest.
A P-value < 0.05 and fold change > 2 or fold change < 0.5
were set as the thresholds for significantly differential expression.
Hierarchical cluster analysis of DEGs was performed to explore
transcript expression patterns. GO enrichment and KEGG
pathway enrichment analyses of DEGs were performed using R
based on the hypergeometric distribution.

qRT-PCR Analysis
Sea slug CNS RNA was extracted with Total RNA Extraction
Reagent (Nanjing Novozymes Biotechnology Co., Ltd.), and
cDNA first strand synthesis was performed with a HiScript Q
RT SuperMix for qPCR (+gDNA wiper) kit (Nanjing Novozymes
Biotechnology Co., Ltd.) for cDNA first strand synthesis.
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TABLE 1 | Primer sequences used for qRT-PCR.

Usage Primer’s name Primer sequence (5′–3′)

qRT-PCR CASP7-F CAGCAGATGACCATGGAAAGA

CASP7-R GGGTTTGGCTCCACTGATATT

DRD2-F GGTGGTTCTCTCCCTTATGTATTC

DRD2-R CAGGTCAGAGGTCGAACAATC

FOXO3-F TGACCATTCACCTTCTGGATTAG

FOXO3-R GCTGCTGTTGTTGCTGTTTAG

GRB2-F GGTTAGCCATGATACAGAGGTC

GRB2-R CGCCACCAACTTTCATCAAC

GLNA-F GGCTCGAACTCTGACCTTTAC

GLNA-R CACGGGCTGTTTGTTGTATTT

VEFGC-F GCACGACAGGCGTTACTAAT

VEGFC-R CGTTAGCGGTGTTGCTGATA

18S-F TCCGCAGGAGTTGCTTCGAT

18S-R ATTAAGCCGCAGGCTCCACT

The ORF sequences of the genes were obtained from the CNS
transcriptome database, and fluorescent quantitative primers
were designed using Primer Premier 5 software. The 18S gene
was selected as the internal reference and is listed in Table 1.
The obtained cDNA was used as a template for fluorescence
quantification of the gene using the Cham Q TM SYBR R© qPCR
Master Mix kit (Nanjing Novozymes Biotechnology Co., Ltd.).

The relative expression of the target gene in the CNS was
calculated using the method of comparing CT values. The
difference between the CT value of the target gene and the
CT value of the internal reference gene was calculated as
1CT, and the difference between the CT value of the target
gene of the experimental group and the CT value of the
target gene of the control group was calculated as 1CT. Gene
expression levels were analyzed using the following equation:
2−11 CT = 2−[(CT,target−CT, 18S)experimental group − (CT,target −CT,

18S)control group]. Six biological replicates were used for qRT-PCR
analysis. The amount of change in gene expression in all samples
was relative to that of the control group.

Statistical Analysis
All data are expressed as the mean ± SD. Statistical analysis
was performed using SPSS 22.0 software. Two-way ANOVA and
Duncan’s multiple range test were used. P < 0.05 was considered
significant. Differences between the experimental and control
groups were compared using chi-squared tests.

RESULTS

Analysis of Enzyme Activity in
Hemolymph
As shown in Figure 2, the enzyme activities of SOD, CAT, and
MDA showed an increasing trend with increasing frequency;
the highest enzyme activity was observed at 500 Hz, and
the difference between the groups was significant (P < 0.05).
The SOD, CAT, and MDA activities were significantly higher
(P < 0.05) than those of the unexposed group at both frequencies,
except for 100 Hz. Two-way analysis of variance showed that
there is no significant interaction between low-frequency noise

frequency and time on the production of SOD, CAT, and MDA in
hemolymph (Supplementary Table 1).

Sequencing and Assembly of Transcripts
We have the transcriptome sequencing of 9 samples, and a total
of 59.97 G of clean data were obtained. The effective data volume
of each sample was 6.06–7.12 G, and the distribution of Q30
bases was 92.42–94.63%, with an average GC content of 40.18%
(Supplementary Table 2). Since genomic data were not available
for sea slug, de novo splicing was performed without relying on
the reference genome to produce 41,454 unigene entries with a
total length of 73,034,255 bp and an average length of 1,066.1 bp
(Supplementary Table 3).

Annotation of Transcripts
We used Diamond software to compare the annotations of
the NR, Swiss-Prot, KEGG, KOG, eggNOG, GO, and Pfam
databases and took the annotations with e < 1e−5 to filter
the proteins with the highest sequence similarity, resulting
in 17,325 (25.29%), 11,717 (17.10%), 8,688 (12.68%), 10,046
(14.66%), 12,769 (18.64%), 10,829 (15.81%), and 10, 636 (15.53%)
annotations, respectively (Supplementary Table 4).

In the KOG analysis, 41,454 unigenes were annotated to 25
categories, with the most enriched unigenes in general function
prediction only (R), followed in order by signal transduction
mechanisms (T), secondary metabolite biosynthesis, transport
and catabolism (O), function unknown (S), intracellular
trafficking, secretion, vesicular transport (U), translation,
ribosomal structure and biogenesis (J), transcription (K), and
cytoskeleton (Z) (Figure 3).

In the GO analysis, all unigenes were annotated to three
major categories, cellular component, molecular function and
biological process, and then subdivided into 55 subcategories.
In the biological processes category, cellular process, metabolic
process, biological regulation, regulation of biological process
and response to stimulus had the most enriched unigenes. In the
cellular component category, cell, cell part, organelle, organelle
part, and membrane were enriched in the largest proportion of
unigenes. In molecular function, binding, catalytic activity, and
transporter activity enriched in unigenes accounted for a larger
proportion (Supplementary Figure 1).

In the KEGG analysis, all unigenes were annotated to
the six major categories of cellular processes, environmental
information processing, metabolism, organismal systems and
human diseases, in which the number of genes in categories
such as signal transduction, translation, cancer, endocrine system,
folding, sorting and degradation, carbohydrate metabolism and
immune system was relatively large (Supplementary Figure 2).

Gene Ontology Enrichment Analysis of
Differentially Expressed Unigenes
Differential gene analysis of the sample genes showed that 2,460
genes were upregulated and 2,765 genes were downregulated in
Group L1, and 3,268 genes were upregulated and 2,783 genes
were downregulated in Group L2 when compared to those of
Group C (Figure 4). The statistics of the number of common
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FIGURE 2 | Changes in enzyme activities in the hemolymph of sea slugs exposed to different frequencies of low-frequency noise. SOD (A) superoxide dismutase;
CAT (B) catalase; MDA (C) malondialdehyde. Data are shown as the mean ± SE of n = 9. Lowercases indicate statistically significant differences between
experimental groups at the same time point (P < 0.05).

and unique differentially expressed genes between the L groups
are shown in Figure 5. There were 2,282 differentially expressed
genes in the L1 and L2 groups, 2,943 differentially expressed
genes unique to the L1 group and 3,769 differentially expressed
genes unique to the L2 group. After the differentially expressed
unigenes were obtained, GO enrichment analysis was performed
on the differentially expressed unigenes to characterize their
function, and the distribution of these genes and all genes at
GO level 2 was compared as follows (Supplementary Figure 3).
Compared to Group C, Groups L1 and L2 had the most
differentially expressed genes in biological regulation, cellular
process, and metabolic process in the biological process category.
In the cellular component category, the number of differentially
expressed genes in cells, cell parts, and organelles was relatively
large. In molecular function, differentially expressed genes in
binding and catalytic activity were the most abundant.

Kyoto Encyclopedia of Genes and
Genomes Enrichment Analysis of
Differentially Expressed Unigenes
In this study, compared to those in Group C, the L1 and L2
differentially expressed genes were enriched in 287 and 284

KEGG pathways, respectively. The upregulated differentially
expressed genes were enriched in 161 and 189 KEGG pathways,
respectively. The downregulated differentially expressed genes
were enriched in 274 and 280 KEGG pathways, respectively
(Supplementary Table 5). According to the functional
classification, the distribution of differentially expressed
genes and all genes at the KEGG level 2 were compared as
follows (Figure 6). Compared to Group C, Groups L1 and L2
had the most DEGs for signal transduction in environmental
information processing (104 and 151). In cellular processes,
transport and catabolism had the highest number of DEGS
(46 and 68). Most DEGs were involved in folding, sorting and
degradation (26 and 49) in genetic information processing.
In human diseases, infectious diseases had the most DEGs
(57 and 87). In metabolism, carbohydrate metabolism had
the highest number of DEGS (49 and 52). In organismal
systems, the endocrine system had the highest number of
DEGS (63 and 88).

We list here the top 15 most enriched up- and downregulated
pathways (Tables 2, 3). Compared to Group C, 10 of the most
enriched pathways in the L1 DEGs group were involved in
signaling, and 5 upregulated pathways were involved in the
immune system and apoptosis. The downregulated pathways
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FIGURE 3 | KOG functional classification diagram. The horizontal axis indicates the KOG functional classification, and the vertical axis indicates the number of genes.

were nine involved in metabolism, two in the immune
system, and one and three in signaling and the nervous
system, respectively.

FIGURE 4 | Histogram of differentially expressed gene statistics. The
horizontal axis is each comparison group; the vertical axis is the number of
differentially expressed genes in the comparison groups, where up is the
number of significant genes with upregulated expression and down is the
number of significant genes with downregulated expression.

Compared to the C group, the L2 group showed similar
enrichment pathways but with different ratios (Tables 2, 3). There
were seven pathways involved in signaling and four pathways
involved in the immune system among the upregulated pathways,
and two pathways were involved in the digestive system. Six of
the downregulated pathways were involved in metabolism, three
involved in signaling, and six involved in the nervous system.

Validation of the RNA-Seq Data by
qRT-PCR
Six genes related to signal transduction, immunity and
metabolism were validated by qRT-PCR (Table 1). After the

FIGURE 5 | Common and unique differentially expressed genes among
different comparison groups.
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FIGURE 6 | Comparison of the distribution of differentially expressed genes and all genes in KEGG level 2 in L1 (A) and L2 (B) groups compared to the C group. The
horizontal axis is the ratio (%) of the genes annotated to each level 2 pathway (differentially expressed genes) to the total number of all genes annotated to the KEGG
pathway (differentially expressed genes), the vertical axis indicates the name of the level 2 pathway, and the number on the right of the bar represents the number of
differentially expressed genes annotated to that level 2 pathway.

results were obtained with the 2−11CT algorithm, they were
compared with the RNA-seq expression profile (Figure 7). The
amplification efficiency of all primers was above 97%. The

results showed that the findings obtained by qRT-PCR were
consistent with the RNA-seq data, which confirmed the reliability
of the RNA-seq data.
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TABLE 2 | The top 15 upregulated KEGG pathways in the L groups.

Group ID Term p-value Enrichment
score

L1 ko04060 Cytokine-cytokine receptor
interaction

3.24E-08 13.33

ko04210 Apoptosis 3.32E-06 5.03

ko04650 Natural killer cell mediated
cytotoxicity

1.68E-05 8.89

ko04068 FoxO signaling pathway 5.76E-05 5.93

ko04064 NF-κB signaling pathway 1.59E-03 5.85

ko04142 Lysosome 1.83E-03 3.06

ko04071 Sphingolipid signaling pathway 1.80E-02 2.96

ko04520 Adherens junction 2.46E-02 2.70

ko04015 Rap1 signaling pathway 2.47E-02 2.21

ko05145 Toxoplasmosis 2.55E-02 2.67

ko04110 Cell cycle 2.74E-02 2.61

ko04080 Neuroactive ligand-receptor
interaction

4.15E-02 2.29

ko04910 Insulin signaling pathway 7.02E-02 1.92

ko04014 Ras signaling pathway 1.07E-01 1.66

ko04010 MAPK signaling pathway 1.39E-01 1.50

L2 ko04060 Cytokine-cytokine receptor
interaction

9.19E-12 11.61

ko04068 FoxO signaling pathway 4.93E-07 5.52

ko04210 Apoptosis 6.54E-06 3.58

ko04650 Natural killer cell mediated
cytotoxicity

1.09E-05 6.32

ko04974 Protein digestion and
absorption

7.16E-05 5.67

ko05144 Malaria 1.01E-04 11.08

ko04978 Mineral absorption 1.24E-04 7.74

ko04520 Adherens junction 1.44E-03 3.20

ko04612 Antigen processing and
presentation

1.71E-03 4.51

ko04514 Cell adhesion molecules
(CAMs)

2.34E-03 3.63

ko04064 NF-κB signaling pathway 3.08E-03 3.96

ko04010 MAPK signaling pathway 5.74E-03 2.29

ko04013 MAPK signaling pathway – fly 6.00E-03 2.74

ko05142 Chagas disease (American
trypanosomiasis)

8.61E-03 3.13

ko04115 p53 signaling pathway 9.17E-03 3.58

DISCUSSION

Effects of Low-Frequency Noise on the
Antioxidant Index of Sea Slug
Hemolymph
Hemolymph plays a vital role in the life activities of mollusks
and is the first line of antibacterial and antiviral defense for
mollusks. Under stress by the external environment, homeostasis
in mollusks can be altered or lost, affecting their growth and
activity (Haider et al., 2020). Proteins, carbohydrates, lipids and
enzymes in the hemolymph are essential components of mollusks
that regulate basic life activities such as osmotic pressure,
immune response, and metabolism in the body environment

TABLE 3 | The top 15 downregulated KEGG pathways in the L groups.

Group ID Term p-value Enrichment
score

L1 ko04727 GABAergic synapse 1.81E-06 4.04

ko04721 Synaptic vesicle cycle 2.36E-06 3.96

ko04080 Neuroactive ligand-receptor
interaction

8.70E-06 2.81

ko04640 Hematopoietic cell lineage 1.69E-05 11.64

ko00620 Pyruvate metabolism 3.54E-05 3.56

ko00450 Selenocompound metabolism 2.08E-04 5.17

ko00010 Glycolysis/gluconeogenesis 2.12E-04 3.00

ko04975 Fat digestion and absorption 5.75E-04 3.88

ko00601 Glycosphingolipid
biosynthesis – lacto and
neolacto series

5.85E-04 5.17

ko05143 African trypanosomiasis 5.85E-04 5.17

ko00030 Pentose phosphate pathway 7.56E-04 3.73

ko00020 Citrate cycle (TCA cycle) 1.15E-03 2.96

ko00100 Steroid biosynthesis 1.22E-03 3.88

ko05014 Amyotrophic lateral sclerosis
(ALS)

1.74E-03 2.64

ko03320 PPAR signaling pathway 2.67E-03 2.49

L2 ko04080 Neuroactive ligand-receptor
interaction

5.11E-08 3.00

ko04727 GABAergic synapse 2.13E-07 3.88

ko04721 Synaptic vesicle cycle 4.11E-05 3.09

ko00010 Glycolysis/gluconeogenesis 1.54E-04 2.76

ko04024 cAMP signaling pathway 2.69E-04 1.93

ko00620 Pyruvate metabolism 3.81E-04 2.78

ko04975 Fat digestion and absorption 4.53E-04 3.54

ko04910 Insulin signaling pathway 4.77E-04 2.04

ko04310 Wnt signaling pathway 5.34E-04 2.39

ko04720 Long-term potentiation 6.98E-04 2.20

ko04740 Olfactory transduction 8.17E-04 2.69

ko04728 Dopaminergic synapse 8.63E-04 1.99

ko00564 Glycerophospholipid
metabolism

9.80E-04 2.26

ko05014 Amyotrophic lateral sclerosis
(ALS)

9.99E-04 2.52

ko00900 Terpenoid backbone
biosynthesis

1.71E-03 3.57

(Bislimi et al., 2013; Lu et al., 2015). Physiologically, SOD, CAT,
and MDA are valuable indicators that are widely used to
determine the responses of invertebrates to external stressors
(Giarratano et al., 2014; Xu et al., 2018). Noise can lead to
oxidative stress and activate antioxidant systems in animals,
which eliminates excess reactive oxygen species (ROS) from
the body (Chang et al., 2018; Woo et al., 2021). Both SOD
and CAT are antioxidant defense enzymes that are involved in
regulating the antioxidant system, scavenging excess free radicals
and protecting cells from ROS damage (Li et al., 2021). MDA is an
indicator of the degree of lipid peroxidation in the cell membrane
(Xu et al., 2018). Exposure of mussels (Mytilus edulis) to
anthropogenic noise revealed lipid peroxidation in gill epithelial
cells and DNA damage in blood cells, indicating a negative
effect of anthropogenic noise on mussels (Wale et al., 2019). Total
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FIGURE 7 | Validation of central nervous system DEGs profiles by qRT-PCR. The x-axis indicates the different experimental groups. The left y-axis indicates the
FPKM value of RNA-seq (n = 3), and the right y-axis indicates the relative expression of 6 genes (n = 6) in Group L vs. Group C. All data are expressed as the
mean ± standard deviation. CASP7 (A), caspase 7; DRD2 (B), dopamine receptor D2; FOXO3 (C), forkhead box O3; GRB2 (D), growth factor receptor bound
protein 2; GLNA (E), glutamine synthetase; VEGFC (F), vascular endothelial growth factor C.

oxidant status (TOS) and total antioxidant capacity (TAC) levels
were increased in the blood of gilthead sea bream (Sparus aurata)
juveniles exposed to offshore culture noise. These results implied
that ROS was produced in juvenile fish under the influence of
noise, which caused a stress response in juvenile fish (Filiciotto
et al., 2017). In this study, the levels of SOD, CAT, and MDA
were significantly higher in the L1 and L2 groups than in the

C group, indicating that low-frequency noise can stimulate the
antioxidant system of the body. The changes in the SOD, CAT,
and MDA contents in the L group were positively correlated with
the frequency of low-frequency noise. These results indicated that
the higher the frequency is, the more ROS are produced in vivo,
the stronger the oxidative stress response, and the stronger the
stress response of sea slug to low-frequency noise. In our study,
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there was no significant difference in SOD, CAT, and MDA
contents between L1 and L2 groups, indicating that hemolymph
antioxidant indexes did not correlate with time. Despite the long-
term nature of environmental noise disturbances, animals may
adapt to stressors over time. This indicates habituation. Cortisol
levels rise during the first 30 min of noise exposure in Eurasian
perch (Perca fluviatilis), but cortisol in Eurasian perch exposed to
noise repeatedly over a long period of time was not significantly
different from the control group, indicating that repeat exposure
to noise causes the fish to become habituated (Johansson et al.,
2016). Exposure of European perch (Dicentrarchus labrax) to
noise revealed that the experimental group exhibited habituation
of swimming depth (Neo et al., 2018). At present, we do not
have further verification of this conjecture. It remains to be
seen whether sea slug will be found to have similar patterns of
habituation and adaptation in response to noise stress.

Effects of Low-Frequency Noise on the
Antioxidant Capacity
Environmental stresses such as osmotic imbalance and heat stress
can lead to excessive cellular production of ROS, which can cause
oxidative stress in organisms. ROS is considered as important
signaling molecules that regulate a wide range of signaling
pathways through interactions with key signaling molecules
to influence various cellular processes to adapt to changing
environments. Studies have shown that ROS play an important
role in regulating cell signaling pathways such as proliferation,
metabolism, differentiation and apoptosis (Choi et al., 2005; Fiol
and Kültz, 2007). To date, studies of ocean noise effects on
aquatic animals have mainly focused on behavior and physiology,
and information on the mechanisms of perceiving noise signals
and intracellular responses is lacking. In this study, we found
that the most enriched antioxidant-mediated pathways in the
L1 and L2 groups were cytokine-cytokine receptor interaction
(ko04060), FoxO signaling pathway (ko04068), and MAPK
signaling pathway (ko04010). Cytokines are key regulators of
adaptive immunity in animals that regulate cellular responses to
stress and are involved in immune, inflammatory, cellular growth
and cellular differentiation processes, resulting in restoration of
body homeostasis and repair of damage (Plata-Salamán, 1998).
Oxidative stress was shown to induce a variety of inflammatory
cytokines (Vlahopoulos et al., 1999). Vlahopoulos et al. (1999)
showed that ROS in U937 human histiocytoma lymphoma
cells lead to the production of IL-8 (interleukin-8) by TNFα

(tumor necrosis factor α) through activation of the NF-κB
pathway. In cells cultured with high glucose, ROS activate the
transcription factor NF-κB, which leads to an elevation of the
cytokine TNFα (Guha et al., 2000). The Asian clam (Corbicula
fluminea) showed upregulated expression of the cytokines IL-
1β (interleukin 1 beta), IL-8, IL-17 (interleukin 17) and TNF-
α associated with inflammatory responses in digestive glands
and gills after ammonia stress, indicating that the Asian clam
was stimulated by damage and that the organism cleared or
limited harmful substances through inflammatory responses
(Zhang et al., 2020). FOXO is a key growth factor and stress-
regulated transcription factor involved in physiological processes

such as apoptosis, cell proliferation, DNA damage and repair,
and resistance to oxidative stress (Dos Santos et al., 2020).
FOXOs are regulated not only by PKB, JNK, and AMPK but
also by post-translational modifications such as phosphorylation,
acetylation, methylation and ubiquitination (Farhan et al., 2017).
FOXO can enhance the expression of the antioxidant defense
enzyme SOD, which alleviates damage from oxidative stress
(Kops et al., 2002). The mRNA expression of Jnk, Foxo3a,
and Puma genes in gills was found to increase with time in
cadmium-treated carp. Moreover, the levels of oxidants such
as H2O2 and MDA in the gills increased, causing oxidative
stress in the gills. The results implied that cadmium-induced
oxidative stress caused apoptosis in gill cells (Chen et al., 2021).
The expression of the Foxo and Gadd45 genes in the liver of
grass carp was upregulated after exposure to high ammonia,
leading to an increase in their antioxidant enzyme activity and
the scavenging of ROS in vivo, thereby enhancing resistance to
oxidative stress (Jin et al., 2017). The MAPK pathway is a crucial
signal transducer widely present in eukaryotes and prokaryotes
that is involved in many physiological processes, such as
cell proliferation and differentiation, apoptosis, immunity, and
oxidative stress (Roux and Blenis, 2004). In invertebrates,
various environmental stimuli activate the MAPK pathway
and act as key stress response regulators (Qu et al., 2016;
Wang et al., 2016). The MAPK pathway is one of the many
pathways affected by ROS. ROS activate the MAPK pathway
by mediating cGMP-dependent protein kinase (PKG) (Hofmann
et al., 2006). The expression of p38-MAPK in the gills of purple
mussels (Mytilus galloprovincialis) was significantly increased
under cold stress, which indicated that p38-MAPK plays an
important role in the early stages of stress (Wang et al., 2018).
Exposure to microplastics increased the expression of p38 in
the hepatopancreas of Eriocheir sinensis, which indicated that
microplastics activated the expression of p38, leading to enhanced
cellular oxidative stress (Yu et al., 2018). In this study, the
L1 and L2 groups had the highest number of DEGs with
enhanced cytokines and FOXO and MAPK pathways. This result
indicated that low-frequency noise may have led to a change in
the balance between antioxidants and ROS in sea slug, which
generated oxidative stress. Cells must activate the expression of
a number of cytokines and transcription factors to reconstitute
redox homeostasis as a result of oxidative stress. These results
are also consistent with our measurements of SOD, CAT, and
MDA in hemolymph, where low-frequency noise led to oxidative
stress in sea slugs.

Effects of Low-Frequency Noise on the
Immune System
The immunity of animals is significantly negatively affected
under the stress of external environmental factors such as
temperature (Huang et al., 2011), heavy metals (Ali et al.,
2014), salinity (Lin et al., 2012), etc. It has been shown
that anthropogenic noise also poses a significant challenge on
shellfish immunity (Wale et al., 2016). However, shellfish do not
have specific immunity, and they rely on innate immunity to
defend themselves against pathogens. Innate immune defenses
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in shellfish play a pivotal role in normal physiological activity.
The importance of the intertidal zone to the material and
energy cycles of marine ecosystems is well known, especially
the importance and contribution of intertidal organisms to
communities, ecosystems and ecological processes. However,
the biomass of parasitoids in intertidal ecosystems may be
substantial, more than the biomass of top predators and major
free-living communities (Kuris et al., 2008). Thus, it is necessary
to assess the impact of parasites on these intertidal organisms.
Perkinsus, Haplosporidium, Marteilia, and Bonamia have all
been identified as major parasites responsible for significant
mortality in wild and farmed shellfish (Marquis et al., 2015).
Plasmodium spores were found in the digestive glands of mussels
in Sivuchya Bay. This phenomenon caused lysis of connective
tissue and necrosis of muscle fibers. The authors also found
that the rate of infection in mussels was related to the level
of pollution in the bay (Usheva et al., 2006). Masud et al.
(2020) found a significantly higher infection rate in the acute
noise group than in the control group by establishing a host-
parasite model (guppy-Gyrodactylus turnbull). The chronic noise
group had the lowest infection rate, but the mortality rate was
significantly higher than that of the acute noise group and the
control group. This finding indicates that noise can aggravate
the harmful effects of parasites on fish. In this study, DEGs
were significantly upregulated in parasite-associated pathways
(ko05145, ko05144, and ko05142) in the L1 and L2 groups,
indicating that low-frequency noise may have increased the
infection rate of sea slug parasites.

A study has shown that noise can reduce the immunity
of marine organisms (Celi et al., 2015; Vazzana et al., 2020).
The total number of blood cells decreased by 60% when
lobsters were exposed to seismic airgun noise, revealing that the
immunity of lobsters was affected by noise (Fitzgibbon et al.,
2017). In this study, the immune pathways with the highest
DEG enrichment in the L1 and L2 groups were natural killer
cell-mediated cytotoxicity (ko04650) and the NF-κB signaling
pathway (ko04064). Natural killer cells, also known as “natural
killers,” are critical non-specific immune lymphocytes that do not
need to be activated and can respond quickly to kill harmful
cells (Vivier et al., 2011). We found that the top gene with
upregulated expression of this pathway is TRAIL, which is
a ligand protein that induces apoptosis. TRAIL can induce
a cellular response to stress through JNK activation of the
transcription factors NF-κB and MAPK (Schaefer et al., 2007).
In our study, the trend of upregulation of the NF-κB pathway
and the MAPK pathway under the stress of low-frequency
noise was also evident. This result indicated that low-frequency
noise might upregulate the expression of the sea slug TRAIL
gene, which then activates the expression of these two pathways
to play a role in the immune response under low-frequency
noise stress. The NF-κB pathway plays an important role in
innate immunity because it is conserved in evolutionary history
(Hatada et al., 2000). Infection of healthy Cyclina sinensis with
pathogens resulted in higher NF-κB expression, indicating that
NF-κB may be involved in its innate immune pathway (Gao
et al., 2016). In addition, an enrichment of DEGs enhanced in
the apoptotic signaling pathway (ko04210) was also significant

in the study. Apoptosis is important for the function of the
molluscan immune system, which clears damaged, malignant and
infected cells when stress signals are received. When mollusks are
exposed to contaminants, both tissues and cells of the immune
system are affected. Cd2+ could induce apoptosis of oyster
blood cells, resulting in reduced disease resistance and increased
opportunistic infections (Sokolova et al., 2004). The exposure
of Pacific oysters (Crassostrea gigas) to Alexandrium catenella
resulted in a significant increase in the number of apoptotic cells
and a significant upregulation of the expression of proapoptotic
genes (Bax and Bax-like), indicating that toxic algae affected the
immune system of the oyster (Medhioub et al., 2013). A study
has shown that excess ROS can induce apoptosis (Buttke and
Sandstrom, 1994). Based on our results on SOD, CAT, and MDA
in hemolymph, excess ROS may also be produced in CNS cells
under the stress of low-frequency noise, which induced apoptosis
and challenged the immune system of sea slug.

Effects of Low-Frequency Noise on the
Central Nervous System
Intertidal marine organisms live in a complex and variable
environment that requires a very specific homeostatic system
to regulate internal metabolism. The central nervous system of
mollusks is relatively simple in structure. Moreover, it shares a
common strategy for processing information with the vertebrate
nervous system, which is structurally composed of neurons
and glial cells. Many studies have used mollusks, such as the
California sea hare (Aplysia californica) (Moroz et al., 2006)
and the sea cucumber (Holothuria glaberrima) (San Miguel-
Ruiz et al., 2009), as good models for neuroscience. In this
study, we found 9 of the top 15 most enriched pathways in the
L1 group regarding gluconeogenesis and lipid metabolism were
significantly downregulated, and 6 were found in the L2 group
(Table 3). Exposure of Sinonovacula constricta to anthropogenic
noise revealed that the expression of 10 genes involved in
glycolysis, fatty acid synthesis, tryptophan metabolism, and
tricarboxylic acid cycle pathways was inhibited at sound
intensities of ∼100 dB re 1 µPa, indicating that anthropogenic
noise negatively affects the metabolism of S. constricta (Peng
et al., 2016). Exposing mice to noise resulted in reduced
methylation of BDNF genes in the brain, and there was
a strong correlation between this phenomenon and reduced
body weight in mice, suggesting that noise may have had a
negative effect on metabolism in mice (Guo et al., 2017). In
addition, we found that 4 neurologically related pathways in
the top 15 were downregulated in the L1 group and 6 in the
L2 group (Table 3). The CNS is a heavily energy-dependent
tissue, and studies have found glucose metabolic disturbances
in neurological disorders such as Alzheimer’s disease (AD) and
amnestic mild cognitive impairment (aMCI) (Neth and Craft,
2017; Weise et al., 2018). However, low glucose utilization rates
lead to insufficient ATP production, which in turn leads to
oxidative damage. Oxidative damage can cause a decrease in the
activity of glucose-metabolizing enzymes (Butterfield and Boyd-
Kimball, 2018). When A. californica was used as a model to
explore whether aging was caused by neuronal damage, decreased
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expression of pathways involved in energy metabolism and the
nervous system and increased expression of stress pathways
suggested that cognitive impairment was caused by a decline in
neural metabolism (Kron et al., 2020). This finding is consistent
with our results. Based on previous results, upregulation of the
FOXO pathway and MAPK pathway alleviates oxidative stress.
Moreover, it has been shown that damage to the equilibrium
capsule occurs in Mediterranean squid (Illex coindetii) and
European squid (Loligo vulgaris) when exposed to anthropogenic
noise (Solé et al., 2013). Glucose metabolism and lipid metabolic
pathways were significantly downregulated, indicating that low-
frequency noise may have caused damage to the CNS in sea slug.
Whether the damage to the CNS of sea slug truly occurred under
the stimulation of low-frequency noise will be verified in more
depth in our subsequent study.

CONCLUSION

In this study, the results showed that low-frequency noise
induced oxidative stress in sea slugs by affecting the hemolymph
antioxidant enzyme index. Moreover, it is possible that cytokine-
cytokine receptor interactions, the FoxO signaling pathway,
the MAPK signaling pathway, natural killer cell-mediated
cytotoxicity, the NF-κB signaling pathway, glycolysis, the
citrate cycle (TCA cycle) and amyotrophic lateral sclerosis
(ALS) significantly affect sea slug oxidative stress, the immune
system, apoptosis, energy metabolism and the nervous system.
These results increased our knowledge of events at the
molecular level under low-frequency noise stress and revealed
the overall response mechanism of mollusks under low-
frequency noise stress.
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