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INTRODUCTION

Intertidal environments are those occurring between the highest and lowest tide marks along
marine shores and, thus, are found worldwide. Conditions for life differ markedly between high
tides, when the intertidal zone is submerged, and low tides, when the intertidal zone is exposed
to the air. Due to the exposure to aerial conditions, intertidal thermal extremes typically take place
during low tides. Thus, particularly in seasonal climates, the highest values of intertidal temperature
occur during summer low tides, while the lowest values occur during winter low tides (Lathlean
et al., 2014; Stickle et al., 2016; Umanzor et al., 2017).

On coasts with cold winters, air temperature in winter is often negative and can cause
physiological stress in intertidal organisms during low tides (Braby, 2007). However, when a stable
layer of ice develops on the intertidal substrate (known as the ice foot; Barnes, 1999), the intertidal
zone becomes insulated from extremes in air temperature even during low tides. This was shown,
for instance, by a study done in eastern Canada. The Gulf of St. Lawrence is a large body of water
located in this region. In winter, sea ice develops extensively across its surface (Saucier et al., 2003;
Galbraith et al., 2018). On the Nova Scotia coast of this gulf, a stable ice foot has been demonstrated
to cover intertidal habitats for weeks (Scrosati and Eckersley, 2007). In the winter of 2007 at a typical
location on this coast (Sea Spray Shore; Figure 1), the average of daily minimum air temperature
measured 2m above the ground in a terrestrial environment near the intertidal zone was −7.2◦C,
while the lowest value was −19.8◦C. However, intertidal temperature measured under the ice foot
ranged only between −2.4◦C and −1.1◦C during the weeks when this cover of ice was stable
(Scrosati and Eckersley, 2007).

About merely 100 km eastwards, on the open Atlantic coast of Nova Scotia (Figure 1), open
coastal waters do not freeze in winter (Canadian Ice Service, 2021). This difference with the
Gulf of St. Lawrence coast is remarkable because both coasts experience similarly cold winters
(Environment Canada, 2021). The open Atlantic coast thus provides an opportunity to evaluate
how the absence of an ice foot influences intertidal thermal extremes under these harsh winters.
This article addresses this question using temperature data collected at a typical location on the
open Atlantic coast of Nova Scotia.

MATERIALS AND METHODS

Temperature was quantified at Tor Bay Provincial Park (45◦11
′

N, 61◦21
′

W), on the open
Atlantic coast of Nova Scotia (Figure 1). On 30 November 2007, two submersible temperature
loggers (StowAway TidbiT model, Onset Computer, Bourne, MA, USA) were attached to the
rocky substrate at the middle intertidal zone (tidal amplitude is 1.8m on this coast). Both loggers
were attached to bedrock areas where macroalgal canopies were previously removed in a typical
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FIGURE 1 | Map showing the position of the two intertidal locations in Nova Scotia (Canada) mentioned in this article: Sea Spray Shore, on the Gulf of St. Lawrence

coast, and Tor Bay Provincial Park, on the open Atlantic coast.

wave-sheltered habitat. In these intertidal environments,
maximum water velocity (an indication of wave exposure)
measured in-situ during high tides ranges between 3 and 6m
s−1 (Scrosati and Heaven, 2007). In recent years, these sheltered
environments have supported studies on intertidal ecology
(Scrosati and Heaven, 2007; Scrosati et al., 2011; Scrosati and
Freeman, 2019). Both loggers were permanently attached to
the substrate using plastic cable ties secured to eye screws
placed in holes drilled into the substrate, allowing almost no
contact between the loggers and the substrate. These loggers
took hourly measurements of intertidal temperature, thus
spanning consecutive periods of high and low tides. As controls

to document air temperature exclusively in terrestrial habitats,
two other loggers were affixed at 2m above the ground to tree
branches that faced the ocean directly without obstructions and
were 30m away from the intertidal zone.

On 5 April 2008, the four loggers were collected.
Unfortunately, one intertidal logger malfunctioned (its case
was found cracked and there was seawater inside), so no
data were available from that logger. However, the hourly
temperature values were highly correlated between the two
terrestrial loggers (r = 0.98, P < 0.001, N = 3,024), indicating
the reliability of these loggers to properly measure temperature.
Thus, the data retrieved from the surviving intertidal logger
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were deemed to be representative of intertidal conditions.
From the data retrieved from this intertidal logger, the values
of daily minimum intertidal temperature recorded between

1 December 2007 and 4 April 2008 were extracted. To show

that the extreme negative values resulted from aerial exposure
at low tide, the values of daily sea surface temperature (SST)

were also extracted from this intertidal logger. Daily SST

values were considered as the intertidal temperature recorded
closest to the time of the highest tide of each day, when
the intertidal logger was fully submerged. The time of such
high tides was determined using information for the tide
reference station that is closest to Tor Bay Provincial Park

(Larry’s River, 45◦13
′

N, 61◦23
′

W; Tide and Current Predictor,
2021). To evaluate how daily temperature minima compared
between intertidal and terrestrial conditions, the values of
daily minimum temperature were also extracted from the
two terrestrial loggers. The data on intertidal and terrestrial
daily minimum temperature used for this article are freely

available from the figshare online repository (Scrosati, 2021a).
For completeness, the full sets of hourly temperature data
measured at Tor Bay Provincial Park (this study) and at Sea
Spray Shore (Scrosati and Eckersley, 2007) are also made
freely available through the figshare online repository (Scrosati,
2021b).

TEMPERATURE PATTERNS REVEALED BY
THE DATA

At the intertidal zone, daily minimum temperature was negative
in 110 of the 126 days of the study (Figure 2A). The coldest
period occurred during the second half of January, when
intertidal temperature reached its lowest value for the season
(−14.1◦C). In fact, the four lowest values of daily minimum
intertidal temperature occurred during that period. For the entire
study period, daily minimum intertidal temperature averaged
−4.2 ± 0.3◦C (mean ± SE, N = 126). Overall, the intertidal

FIGURE 2 | (A) Daily minimum intertidal temperature (solid line) and daily sea surface temperature (dashed line) and (B) daily minimum temperature (means of two

loggers) in a nearby terrestrial environment between 1 December 2007 and 4 April 2008 at Tor Bay Provincial Park, on the open Atlantic coast of Nova Scotia, Canada.
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zone experienced 11 days with temperatures lower than −10◦C,
50 days with temperatures lower than −5◦C, and 99 days with
temperatures lower than the lowest SST value recorded for the
season (−0.8◦C).

To summarize temperature patterns on land, the values of
daily minimum temperature from the two terrestrial loggers
were averaged for each day, given how highly their hourly
values were correlated. Based on these daily means, daily
minimum temperature at the nearby terrestrial environment was
negative in 112 of the 126 days of the study (Figure 2B). The
coldest period also occurred during the second half of January,
when air temperature reached its lowest absolute value for the
season (−19.1◦C). For the entire study period, daily minimum
temperature in the terrestrial environment averaged −6.2 ±

0.4◦C (mean ± SE, N = 126), which was lower than for the
intertidal environment (paired t-test, t= 9.9, P < 0.001). Overall,
however, daily temperature minima were temporally correlated
between the intertidal and terrestrial environments (r = 0.88, P
< 0.001, N = 126).

The hourly values of intertidal temperature and the hourly
values of terrestrial temperature (hourly means between both
terrestrial loggers) were also temporally correlated, although
more weakly (r = 0.51, P < 0.001, N = 3,024) because of
the decoupling of values between both environments during
high tides.

DISCUSSION AND ECOLOGICAL
IMPLICATIONS

The comparison of daily temperature minima in terrestrial
environments between the Gulf of St. Lawrence coast
(Scrosati and Eckersley, 2007) and the open Atlantic
coast (this study) of Nova Scotia confirms the known
similarity in climatic winter conditions across this region
(Environment Canada, 2021). Therefore, the present article
shows that, under the harsh conditions that characterize
eastern Canadian winters, the absence of an ice foot subjects
intertidal environments to markedly negative temperatures
that closely follow daily changes in air temperature minima.
While low, however, these daily intertidal extremes are
not always as low as in nearby terrestrial environments,
likely as a result of the moderating effects of high tides,
as SST is typically higher than air temperature during
the winter.

A recent study (Scrosati et al., 2020) provides additional
measures of intertidal temperature for the Nova Scotia coast,
although there are two relevant differences relative to this
study. On the one hand, that study measured temperature in
wave-exposed intertidal habitats, which are known to differ
in thermal properties from wave-sheltered habitats (where the
present study was done) because of wave splash. On the
other hand, the main objective of the present study can be
addressed thanks to the availability of temperature datameasured
simultaneously in intertidal and nearby terrestrial habitats,

which the above study did not do because it was driven by
different objectives.

The ecological implications of these findings are important.
Intertidal algae and invertebrates from cold-temperate shores
are adapted to surviving negative temperatures (Collén and
Davison, 1999; Waller et al., 2006; Storey et al., 2013; Rothäusler
et al., 2016). However, mortality occurs when temperature falls
below certain thresholds. For example, winter lethal temperatures
typically range between −10◦C and −15◦C for these organisms
(Crisp and Ritz, 1967; Williams, 1970; Bourget, 1983; Davison
et al., 1989; Loomis, 1995; Collén and Davison, 1999; Ansart and
Vernon, 2003; Davenport and Davenport, 2005; Stickle et al.,
2015; Chiba et al., 2016). Thus, in the absence of an ice foot,
intertidal organisms might often experience lethal thermal levels
in winter. Even the repeated exposure to sublethal thermal levels
may still cause mortality (Roland and Ring, 1977; Murphy and
Johnson, 1980; Bourget, 1983; Dudgeon et al., 1990). These
considerations may lead to counterintuitive predictions in light
of the ongoing global warming (Intergovernmental Panel on
Climate Change, 2021). On coasts that currently develop a winter
ice foot, the progressive disappearance of winter sea ice due
to climate warming will actually expose intertidal organisms
to markedly negative air temperatures in winter. Thus, the
resulting cold stress might cause widespread mortality at least
until thermal adaptation can take place after the permanent loss
of a winter ice foot.
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