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INTRODUCTION

Shrimp farming is growing worldwide, with a key driving factor being its high value in global
seafood markets. In 2018, the first-sale value of farmed crustaceans was 69,300 million USD, in
which Penaeus (Litopenaeus) vannamei was the most cultivated species with an annual growth
rate of 8.78% (FAO, 2020). As a result, the importance of farmed shrimp as a source of food,
employment, and economic development is indisputable. The increasing demand and shortage of
resources, such as land andwater, have pushed the industry toward intensifying shrimp farming (Xu
et al., 2021). However, conventional intensive farming practices with high water exchange rates can
lead to disease outbreaks and crop losses (Thitamadee et al., 2016). In this sense, the current trend
suggests an increased demand for more “controlled intensive systems” with increased efficiency
and biosecurity.

In large production areas (e.g., Asia and some Latin American countries), Biofloc Technology
(BFT) became an alternative to overcome these issues, providing increased predictability and
consistency (El-Sayed, 2021). The BFT contributes to nutrient optimization as studies reported that
bioflocs could contribute to ∼20% of the protein required by shrimp (Avnimelech, 2012). Burford
et al. (2004) suggested that up to 29% of daily nitrogen retention of the shrimp was sourced by the
natural biota (bioflocs). These microbial aggregates also provide vitamins, bioactive compounds,
and beneficial bacteria (probiotics) (Yu et al., 2021). Under suitable conditions, BFT improves feed
efficiency, stimulates growth, enhances the immune system (Hostins et al., 2019), and promotes a
better physiological status compared to shrimp farmed in traditional systems (Cardona et al., 2016).

Nowadays, after∼20 years of evolution, BFT has been adapted and adjusted to different regions,
locations, salinities, applied to one single-phase (nursery) or multiple phases, outdoor and indoor
conditions, and according to different farm infrastructure, operational and resources limitations.
The accumulated BFT knowledge has provided a baseline for the development of other related
microbial-based (e.g., Aquamimicry, synbiotics, and semi-biofloc; Zeng et al., 2020; El-Sayed, 2021;
Hussain et al., 2021), hybrid (e.g., BioRAS; Xu et al., 2020), and integrated (e.g., shrimp + fish)
systems (Wright, 2015), with at least nine different variations. However, regardless of the system
chosen and adopted, it is crucial to consider the local specificities (e.g., technological, social,
financial, and environmental), tailoring day-to-day management practices and ongoing production
strategies accordingly. In addition, considering the higher production costs compared to traditional
low-input systems, the commercialization and post-harvest aspects are crucial to guarantee the
resilience and competitiveness of BFT-based shrimp farms. In this opinionmanuscript, we describe
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some key BFT characteristics regarding its past and present,
while highlighting future challenges and opportunities aiming to
contribute to the sustainability of intensive shrimp farming.

BFT IN SHRIMP FARMING: PAST

The BFT system originated in the 1970s at the French Research
Institute for Exploitation of the Sea (IFREMER) located in
Tahiti, French Polynesia. It was later expanded to commercial
shrimp farms in partnership with private sector companies
from the U.S. In the 1990s and early-2000s, R&D efforts and
commercial adoption began in the U.S. and Central America
enabling further development of commercial large-scale shrimp
operations, including Asia and Latin America (Burford et al.,
2004; Ulloa-Walker et al., 2020).

However, by that time, the lack of understanding of
the different components (e.g., engineering, production
management, and aquatic microbiology) led to poor system
control. As a result, imbalance of the microbial population
and toxic N-compounds issues were commonly observed, as
well as the excessive concentration of suspended solids (Ray
et al., 2010), poor alkalinity (Furtado et al., 2015), and C:N
ratio management (Panigrahi et al., 2019). During the evolution
process, a wide variety of designs, conditions, strategies, and
equipment have been evaluated, including aeration systems (Lara
et al., 2017); clarification methods (Ray et al., 2010); water depths
(Krummenauer et al., 2016), indoor and outdoor conditions (Xu
et al., 2021), and stocking densities (Krummenauer et al., 2011;
Da Silveira et al., 2020). Several training courses were carried
out, and the trained human resources from the 1990s and more
recently from the 2000s, now spread globally, supported the
BFT expansion and the implementation of various commercial
operations worldwide (Ulloa-Walker et al., 2020).

BFT IN SHRIMP FARMING: PRESENT

In the past, BFT was mostly restricted to universities and research
centres. Nowadays, it has become consolidated as a production
system in many countries. Locations once considered unsuitable
for shrimp farming are now starting to produce in indoor
closed systems (e.g., Germany and Canada), mainly due to the
advances in technology over previous years in genetics, nutrition,
engineering, and management in particular (El-Sayed, 2021).
Currently, BFT has been applied in the nursery (especially in
the Americas and, more recently, Asia) and grow-out phases.
Stocking densities impact the shrimp harvest size (Krummenauer
et al., 2011) and may influence the operational risks (e.g., disease
outbreaks) and production costs. Large commercial operations
normally adopt conservative stocking densities, whereas small
indoor “boutique farms” tend to stock with higher densities
aiming to optimize resources/infrastructure (Figure 1). In terms
of shrimp performance, water quality parameters in optimal
levels, proper feed management, and desirable microbial profile
of the water are key points in BFT. Moreover, the use of
high-quality diets associated with automatic feeders (promoting
better spatial and temporal feed distribution) has improved

growth and uniformity. Similarly, water probiotics (Hostins
et al., 2019), and feed additives such as organic acids (Da Silva
et al., 2016), probiotics (Kesselring et al., 2019), prebiotics, and
immunostimulants (Zhou et al., 2020) have been contributing to
the improvement of shrimp health and diseases resistance.

Regarding water quality, new aeration systems are emerging
(Susanti et al., 2021) but still need validation at a larger
scale. Although vastly improved, issues with N-compounds and
management of suspended solids persist in some farms leading
to poor growth, low DO levels, pathogenic vibrio outbreaks,
and eventually mortalities. In terms of solids, some strategies
have been adopted in small operations, e.g., clarifiers (Ray et al.,
2010), RAS filtration systems and skimmers (Fleckenstein et al.,
2020); and in large-scale farms, the solids are concentrated and
removed through “shrimp toilets” by limited water exchanges
(Afroz and Alam, 2013). Regardless of the strategy, proper
waste management is a current challenge. Additionally, other
production strategies have been implemented and led to an
increase in actual production rates; for example, the maintenance
of alkalinity within optimal levels (Furtado et al., 2015), adoption
of partial harvests (Da Silveira et al., 2022), artificial substrates
(Legarda et al., 2018) and “bacterial-rich” inoculums from a
mature tank or pond (Ferreira et al., 2020). These processes
can optimize the use of resources, speed up and maintain the
nitrification process and improve the water quality parameters.
Unfortunately, not all these practices have been fully adopted at a
commercial level, mostly due to the lack of knowledge or logistics
issues scaling them up into large operations.

From an educational perspective, the farm technicians are
usually receptive to adopting new practices, but ongoing training
and incorporation of specialized personnel are often required.
An example of a lack of training was the “brown water”
nursery system in Ecuador. The “brown water” refers to BFT
heterotrophic-based (mostly using molasses and commercial
probiotics to control ammonia) operated in small indoor lined
concrete tanks. Stoichiometric calculations were poorly applied
in some cases, leading to N-compounds issues, and therefore
high water exchange rates were frequently observed. As a
result, several nursery facilities were abandoned, unsatisfactory
growth performance was observed, and most farmers switched to
“green water” earthen pond-based nurseries (Ching et al., 2020).
On the other hand, higher rates of BFT adoption (or similar
microbial-based approaches) have been observed in Brazil, Peru,
Guatemala, and Mexico, particularly during the nursery phase.
In Asia, Vietnamese intensive farms seem to be very adaptable to
new microbial-based protocols applied to nursery and grow-out
phases (Arnold et al., 2020; Boaventura et al., 2020).

DISCUSSION: FUTURE CHALLENGES AND
OPPORTUNITIES

Past and present are supporting the BFT future development.
Although such technique was conceived to close the gap toward
sustainable aquatic production, constraints such as high energy
costs and proper management of the residual solids remain
unsolved (Ray et al., 2010). For that, alternative processes
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FIGURE 1 | Different scales currently utilized in commercial biofloc-based shrimp farming: large-scale farm in Vietnam, Asia (left); and small-scale “boutique close to

market” farm in Brazil, Latin America (right).

TABLE 1 | Summary of BFT evolution over time with key characteristics by period.

Past Present Future/Opinion

Lack of understanding of different areas of

knowledge (e.g., engineering, production

management, and aquatic microbiology)

Poor system design (e.g., aeration

systems, drain system, etc.)

Poor control of water quality parameters

(e.g., levels of suspended solids,

N-compounds, alkalinity)

Poor C:N ratio management

Imbalance of the microbial population

Poor predictability and consistency

Sub-optimal performance and economics

Better understanding of the technology

Improved design and engineering

Higher control of water quality parameters

Better manipulation over the microbial

community

Adequate C:N ratio management

Improved predictability, consistency,

performance, and economics

Refined economic modellings and

improved system efficiency

Precision farming tools and automation

Circular economy

Applied “Omics”

Tailored feeds and breeding programs

and energy sources (Badiola et al., 2018), Integrated Multi-
trophic Aquaculture (IMTA) (Poli et al., 2019; Holanda et al.,
2020; Legarda et al., 2021), and new recycling options for the
wastes generated (solid and liquid fractions) could enhance the
circularity of BFT (Bauer et al., 2012), ultimately generating
“green-labelable” products and promoting the creation of
startups focused on sustainable solutions (Subasinghe et al.,
2009). Likewise, new sensor technologies and data management
& cloud systems coupled with machine learning, smart feeding
technologies (e.g., hydroacoustic), and management decision
support tools are examples of precision farming solutions that
could contribute to a more functional BFT system (Rahman
et al., 2021; Reis et al., 2022). Nevertheless, adoption at scale
and economics analysis will likely determine the feasibility of
such technologies.

Efficient microbial management is mandatory in BFT. In
this sense, biotechnology tools and particularly the “omics”
sciences will be required to identify and understand the
microbial properties forming bioflocs, including the microbiota,
mycobiota, and phytobiota. The biofouling process, the

interaction between the microbes, the quorum sensing, and
other communications processes are practical examples that
must be better understood (Dobretsov et al., 2009). Indeed,
the screening of microbial profiles could be connected
with management decision support tools and apps, and
help to control better and manipulate these communities
to achieve improved biofloc nutritional quality, pathogen
control, and production outcomes. In addition, information
about the effect of bioflocs on shrimp quality is still scarce.
Initial studies documented that biofloc consumption did
not impact the post-harvest sensorial attributes (Martinez-
Porchas et al., 2020). Moreover, tailored feeds, broader
access to postlarvae from BFT-tailored breeding programs
and BFT applied to other penaeid species are also expected.
An extensive review done by Ulloa-Walker et al. (2020)
described and highlighted promising results with non-L.
vannamei species in nursery, grow-out, and broodstock
conditions. However, few initiatives have been reported at
larger scales, and future adoptions are foreseen, especially in the
nursery phase.
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CONCLUSIONS/OPINION

Biofloc technology (hybrid and other microbial-based systems)
can widely contribute to the sustainable intensification of
shrimp production. The technique evolved from an experimental
system to become a large-scale production system applied
in many countries, particularly in the nursery phase. During
this journey, a better understanding of the system, including
engineering, roles of microbial communities, water quality, and
feed management, has allowed for a more comprehensive and
predictable environment (Table 1). In the future, scalability
and incorporating circular economy concepts might help
overcome some existing issues, reducing the carbon footprint and
environmental impacts. In addition, more examples of industry-
academia collaborations are needed and expected.

The COVID 19 pandemic forced shrimp farmers globally
to be much more efficient in managing production costs.
Biofloc technology still has a high production cost when
compared to traditional (earthen pond) systems. Especially in

medium-large operations, the adoption of economic modellings
and sensitivity analysis, precision farming technologies, holistic
health monitoring, and improved biosecurity protocols will help
identify opportunities to reduce costs and production-associated
risks, improving the system predictability, competitiveness,
and resilience.
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