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Hyperspectral images are a valuable tool for remotely sensing important

characteristics of a variety of landscapes, including water quality and the status

of marine disasters. However, hyperspectral data are rare or expensive to obtain,

which has spurred interest in low-cost, fast methods for reconstructing

hyperspectral data from much more common RGB images. We designed a novel

algorithm to achieve this goal using multi-scale atrous convolution residual

network (MACRN). The algorithm includes three parts: low-level feature

extraction, high-level feature extraction, and feature transformation. The high-

level feature extraction module is composed of cascading multi-scale atrous

convolution residual blocks (ACRB). It stacks multiple modules to form a depth

network for extracting high-level features from the RGB image used as an input.

The algorithm uses jump connection for residual learning, and the final high-level

feature combines the output of the low-level feature extraction module and the

output of the cascaded atrous convolution residual block element by element, so

as to prevent gradient dispersion and gradient explosion in the deep network.

Without adding too many parameters, the model can extract multi-scale features

under different receptive fields, make better use of the spatial information in RGB

images, and enrich the contextual information. As a proof of concept, we ran an

experiment using the algorithm to reconstruct hyperspectral Sentinel-2 satellite

data from the northern coast of Australia. The algorithm achieves hyperspectral

spectral reconstruction in 443nm-2190nm band with less computational cost, and

the results are stable. On the Realworld dataset, the reconstruction error MARE

index is less than 0.0645, and the reconstruction time is less than 9.24S. Therefore,

in the near infrared band, MACRN reconstruction accuracy is significantly better

than other spectral reconstruction algorithms. MACRN hyperspectral

reconstruction algorithm has the characteristics of low reconstruction cost and

high reconstruction accuracy, and its advantages in ocean spectral reconstruction

are more obvious.
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1 Introduction

RGB image is a color image composed of red, green and blue

channels. Hyperspectral image is an image composed of dozens or

hundreds of channels, which is divided in detail in the dimension of

spectrum, as shown in Figure 1A. Hyperspectral images not only

contain image information, but also can be expanded in the spectral

dimension. For a certain substance, different spectral wavelengths

may correspond to different values, and the spectral curve of the

substance can be obtained, as shown in Figure 1B. Therefore,

hyperspectral images provide richer spectral information than RGB

images. Targets with different components and attributes may have

similar appearances, but their spectral curves will be quite distinct.

This means hyperspectral images have unique advantages in

computer vision tasks such as target recognition and image

analysis, leading to the gradual application of hyperspectral image

analysis in various research fields such as remote sensing, agriculture,

medicine and ocean sciences. For the latter, hyperspectral data have

been used in the monitoring of marine water quality (such as total

suspended solids, chlorophyll, dissolved organic matter, etc.)

(Veronez et al., 2018; Peterson et al., 2020; Ying et al., 2021) and

marine disasters (such as red tide, oil spills, etc.) (Guga, 2020;

Qizhong et al., 2021).

However, hyperspectral images also bring significant capture

complexity, high costs (Geelen et al., 2014; Beletkaia and Pozo,

2020), or high light field requirements (Descour and Dereniak,

1995). As a result, reconstructing hyperspectral images from

ubiquitous RGB images at a low cost has become a hot research

topic. There is a complex correlation between the pixel values of RGB

images and hyperspectral images. However, compared with

hyperspectral images, RGB images provide less spectral

information, which makes it very difficult to reconstruct

hyperspectral images from RGB images. Therefore, reconstructing

hyperspectral images from RGB images is a very challenging task.

The existing methods of reconstructing hyperspectral images

from RGB images can be roughly divided into two categories: the

first is to design specific systems based on ordinary RGB cameras.

Goel (Goel et al., 2015) designed a hyperspectral camera using time-

division multiplexing illumination source to realize reconstruction,

which is a universal hyperspectral imaging system for visible light and

NIR wavelength. The camera has a frame rate of 150 FPS and a
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maximum resolution of 1280 × 1024. Wug (Oh et al., 2016) used

multiple color cameras for reconstruction, and used different spectral

sensitivities of different camera sensors to reconstruct the

hyperspectral images, with a resolution of 200x300 and an imaging

time of 2 minutes. However, these methods rely on strict

environmental conditions or additional equipment. The second

method is to directly model the mapping relationship between RGB

images and hyperspectral images of ordinary cameras by using the

correlation and a large volume of training data. Because this mapping

is highly nonlinear, machine learning methods are usually employed.

Some early work (Farnaz et al., 2008; Arad and Benshahar, 2016)

expressed this problem as a weighted combination of basis functions,

using principal component analysis to extract the basis function from

hyperspectral data sets. Other studies use sparse coding to reconstruct

hyperspectral data from RGB images (Antonio, 2015; Jia et al., 2017;

Aeschbacher et al., 2017). Nguyen et al. (2014) proposed to use radial

basis function networks to learn the mapping from RGB image to

hyperspectral image, reduce the impact of illumination on network

performance, and do white balance processing on the input image.

Arad et al. (Antonio, 2015) constructed a new hyperspectral dataset of

natural scenes and used it to build a sparse spectral dictionary and its

corresponding RGB projection to reconstruct hyperspectral images

from RGB images.

Recently, a number of studies have explored end-to-end mapping

of the relationship between RGB images and hyperspectral images

through neural networks (Shoeiby et al., 2018a; Shoeiby et al., 2018b;

Kaya et al., 2019). Galliani, Alvarez Gila, Liu et al. (Galliani et al., 2017;

Alvarezgila et al., 2017; Pengfei et al., 2020) applied convolutional

neural network and GAN to hyperspectral image reconstruction. By

using multi-scale feature pyramid module in GAN, the correlation

between local and global features is established. Good reconstruction

results have been achieved. Xiong et al. (2017) proposed an HSCNN

network for reconstructing hyperspectral images from RGB images and

compressed measurements. In order to simplify the sampling process. –

proposed an HSCNN-D network, which achieved good reconstruction

results. proposed a novel adaptive weighted attention network, which is

mainly composed of multiple double residual attention blocks with

long and short jump connections. Information on the spatial context is

captured through second-order nonlocal operations, and it has more

accurate reconstruction effect than HSCNN-Dmodel on noiseless RGB

images. proposed a 4-layer hierarchical regression network (HRnet)
BA

FIGURE 1

Hyperspectral 3D data from the Sentinel-2 satellite along the northern coast of Australia, (A) UTM zone 49S, (B) Spectral curves of different substances.
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with Pixelshuffle layer as the interaction between layers. It uses residual

dense blocks to extract features, and uses residual global blocks to build

attention, which achieves better reconstruction results on real RGB

images. Tao Huang et al. (2021) proposed a method to reconstruct a 3-

channel HIS spectral image from a single channel 2D compressed

image. This method is based on the maximum a posteriori (MAP)

estimation framework using a learned Gaussian Scale Mixture (GSM)

priori. It has good reconstruction results on both synthetic and real

datasets. Yuanhao Cai et al. (2022) proposed a new Multi stage Spectral

wise Transformer (MST++) efficient spectral reconstruction method

based on Transformer. The Spectral Wise Multi head Self identification

(S-MSA) with spatial sparsity and spectral self similarity is used to form

the Spectral Wise Attention Block (SAB). Then, SAB establishes a

single-stage spectral converter (SST), which is cascaded by several SSTs,

and gradually improves the reconstruction quality from coarse to fine.

Although these studies have found effective methods to convert RGB

images into hyperspectral data, they all have shortcomings such as low

reconstruction accuracy, complex network structure and high

computational cost. Hyperspectral reconstruction in marine

environment generally covers visible, near infrared, mid infrared wave

bands. However, the existing methods are aimed at the visible or near

infrared wave band. Therefore, we need to design a new hyperspectral

reconstruction algorithm suitable for the marine environment, make full

use of the spatial characteristics of the marine environment, and achieve

more accurate hyperspectral reconstruction.

Reconstructing hyperspectral images from RGB images can yield

hyperspectral data at a low cost, which is conducive to expanding

access to hyperspectral data, and giving full play to the unique

advantages of hyperspectral data in computer vision analysis tasks,

including in the marine sciences. Although the reconstruction

methods based on deep learning have achieved good results, they

make insufficient utilization of RGB image spatial features. To solve

this problem, we propose a novel multi-scale atrous convolution

residual network (MACRN) to reconstruct hyperspectral images from

RGB images. The model uses convolution layers with different atrous

rates to extract the features of the image at multiple scales and obtain

the feature representation of different granularity. We posit that the

feature representation of the fused feature map will be more precise

and accurate, enhancing the extraction of spatial features from the

image. On the basis of ensuring the integrity of local details, more

abundant context information will be added, reducing discrepancies

between the reconstructed hyperspectral image and the real data.
2 Methods and materials

2.1 Data collection

We used hyperspectral images from Sentinel-2 remote sensing

satellite to test our reconstruction algorithm. The original data

include remote sensing images of 12 spectral bands in the range of

443-2190nm, namely 443nm, 490nm, 560nm, 665nm, 705nm,

740nm, 783nm, 842nm, 945nm, 1375nm, 1610nm, and 2190nm.

The image size was 10800 × 10800 pixels. We generated RGB

images for training and testing from hyperspectral images of

Sentinel-2, including RGB images without noise (Clean data) and

RGB images with noise (Realworld data).
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We directly obtained Clean data from hyperspectral data and the

CIE spectral response function.

We derived Realworld data by adding noise (Gaussian noise) to

the RGB image synthesized by the unknown spectral response

function to better simulate the real world scenarios.

We generated 440 training, 10 verification, and 10 test images for

each dataset. Figure 2A shows the two types of RGB images in the

dataset, which show some differences in color representation.

Figure 2B shows the hyperspectral data for the 443 nm, 490 nm,

783 nm and 1375 nm bands.

During MACRN model training, the size of hyperspectral data

and RGB image sample pair is 64 × 64 pixels. Overlap area size is 32

pixels when clipping. We performed data enhancement operations

such as rotation and mirroring them. The enhancement processing is

to rotate within the range of 0° - 180°, the rotation angle is 45°, and

make a horizontal flip at each angle at the same time. After

enhancement, 1 group 482 × 512 sample pairs generated 3120

groups 64 × 64 sample pairs.
2.2 Problem description

Electromagnetic waves within a certain wavelength range

irradiate object surfaces. Because different objects have varying

reflectivity to electromagnetic waves of different wavelengths,

imaging devices capture the reflection spectra of those surfaces and

render images through the conversion of the imaging device. We can

express the formation process of the image with Eq. (2.1).

Ik = ∫WE lð ÞS lð ÞFk lð Þdl (2:1)

Where, Ik is the radiant energy recorded by the image sensor k, E(l)
is the spectral energy distribution of the illumination source, S(l) is
the spectral reflectance of the object surface, Fk(l) is the spectral

response function of sensor k at the incident wavelength, l is the

wavelength. If the value of l is an electromagnetic wavelength in

the visible light range of 400nm to 700nm, then k corresponds to

the image sensors in the R, G and B bands, and we get an

RGB image.

The spectral radiation value R(l) of the target can be obtained by

multiplying E(l) and S(l); Thus, Eq. (2.1) can be transformed into Eq.

(2.2).

Ik = ∫WR lð ÞFk lð Þdl (2:2)

Discretizing Eq. (2.2) yields:

Ik =onR lnð ÞFk lnð Þ (2:3)

Where, ln represents the sampled bands. In our study, n has a value of

12 and corresponds to the wavelength range of 443nm to 2190nm.

Therefore, when Ik is known, find R(ln). It is a highly uncertain

problem to reconstruct the hyperspectral radiation values of 12 bands

from RGB images.

We can see that there are huge challenges in how to reconstruct

high-precision hyperspectral images from RGB images. Particularly

tricky are the problems of insufficient utilization of spatial features of

the RGB images, and the unknown spectral response function of the

sample data.
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We propose a multi-scale atrous convolution residual network

(MACRN) model as a solution for obtaining more features of

different granularity without introducing too many parameters,

with the aim of reconstructing hyperspectral images with

greater accuracy.
2.3 Deep learning network

Multiscale network can extract features at different scales, but it

also has a high computing cost, and its requirements for computing

devices continue to improve. In order to solve this problem, we

replace the ordinary convolution kernel with the atrous convolution,

which balances the computational cost while extracting multi-

scale features.
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The overall structure of our multi-scale atrous convolution

residual network (MACRN) is shown in Figure 2C. MACRN

includes three main parts: low-level feature extraction, high-level

feature extraction, and feature transformation.

2.3.1 Low-level feature extraction
The module is composed of a 3 × 3 convolution layer, a PReLU

activation function and a 3 x 3 convolution layer. We use it to extract

low-level features from the input RGB images, and its expression is

shown in Eq. (2.4).

y = W2PReLU W1xð Þ (2:4)

where x is the input, y is the output of the low-level feature extraction,

W1,W2 is the weight matrix of the two convolution layers in the

module, and PReLU is the PReLU activation function.
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FIGURE 2

(A) A comparison of the two datasets used in this study ((a) ‘Clean’ and (b) ‘Realworld’) at three locations ((8600, 9300), (10000, 4500), (10300, 900) in
UTM zone 52S). (B) Single band hyperspectral data for the 443nm, 490nm,783nm,1375nmbands at (a) coordinates (8600, 9300) (b) (10000, 4500and (c)
(10300, 900), all in UTM zone 52S. (C) Overall Structure of MACRN. (D) Structure of the Multi-scale ACRB. (E) Seven kinds of ACRB, (a) C1, (b) C1C2, (c)
C1C2C3, (d) C1C2C3C4, (e) C1C2C3C4_S, (f) C1C2_S, (g) C1C2C3_S. (F) Effect of different a values on model reconstruction error.
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2.3.2 High-level feature extraction
The module is composed of multiple cascading atrous

convolution residual blocks (ACRB). The network is formed

through the stacking of multiple modules to extract the high-level

features of the input RGB image. The specific structure of the ACRB

will be described in detail in Section 2.3. The output of the low-level

feature extraction is connected by the global residual and added

element by element to the output of the cascaded ACRB to form the

final high-level feature set, which can prevent the phenomenon of

gradient dispersion and gradient explosion in the deep network

architecture. This process is expressed in Eq. (2.5).

z = y + f NACRB … f 1ACRB yð Þ� �� �
(2:5)

where, z is the output of the depth feature extraction module, fACRB(·)

is the atrous convolution residual block, and N is the number of

atrous convolution residual blocks.

2.3.3 Feature transformation
The composition of the feature transformation module is the

same as that of low-level feature extraction, which is also composed of

a 3 x 3 convolution layer, PReLU activation function and a 3 x 3

convolution layer. This module realizes feature transformation and

channel integration. The final reconstructed hyperspectral image is

formed, and its expression is shown in Eq. (2.6).

output = W4PReLU W3zð Þ (2:6)

where, output is the final output of the whole network, i.e., the

hyperspectral image reconstruction result. W3,W4 represents two

convolution layers respectively, and PReLU represents the PReLU

activation function.
2.4 Multi-scale atrous convolution
residual block

Currently, most methods for hyperspectral image reconstruction

using image blocks have a significant dependence on spatial features
[33]. When the spatial arrangement of the original image is broken, the

reconstruction error often increases greatly, which shows that spatial

features play a very important role in the process of hyperspectral

image reconstruction. Therefore, the hyperspectral reconstruction

error can be further reduced by improving the utilization of spatial

features in RGB images.

An important parameter in convolution layers is the size of the

convolution kernel, also known as the receptive field, which

determines the size of the local area that can be sampled during

each iteration. A too small convolution kernel can only extract small

local features, while a too large convolution kernel can greatly

increase the amount of required computation. Therefore, in order

to better extract the spatial features of the image without increasing

the computational cost of the network, we use the multi-scale ACRB,

which has multiple atrous convolution layers with different atrous

rates to control the receptive field. The module can extract the multi-

scale spatial features of the image, and then splice the feature maps at

different scales to form a multi-scale feature layer. Its structure is

shown in Figure 2D.
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First, the input characteristic map passes through three 3 x 3

convolution layers with different atrous rates (e.g. the atrous rates for

the layers are set to 1, 2 and 3 respectively) to obtain the characteristic

f1, f2, f3 at different scales. Then, f1, f2, f3 is spliced together in the

channel dimension and integrated through a 3 x 3 convolution layer.

Then, the fused multi-scale features are obtained by feature

transformation through a PReLU activation function and a 3 x 3

convolution layer. The expression is shown in Eq. (2.7)

u = W6 PReLU W5 concat f1, f2, f3½ �ð Þð Þð Þ (2:7)

where, u is the output of the multi-scale feature extraction module in

the atrous convolution residual block, W5,W6 represents two

convolution layers, PReLU represents the PReLU activation

function, and concat [,·], represents the channel dimension

splicing operation.

To prevent gradient dispersion and gradient explosion, we used a

jump connection in the atrous convolution residual block to add the

module input and the extracted multi-scale features element by

element. The model uses the network fitting residual instead of

directly learning the identity mapping function, and its expression

is shown in Eq. (2.8).

v nð Þ = PReLU u + v n−1ð Þ
� �

(2:8)

where, v(n) is the output of the nth ACRB.

To choose the appropriate multiscale module construction

strategy and verify the effectiveness of the results, we designed

seven ACRBs with different structures for experiments. We named

them C1, C1C2, C1C2C3, C1C2C3C4, C1C2C3_S, C1C2_S,

C1C2C3C4_S (Figure 2E).

Through experimental analysis, C1C2C3 proved to be the most

effective in our experimental analysis and was used as the basic

structure for the multi-scale feature extraction module.
2.5 Loss function

We divided RGB image samples into two sets according to their

spectral response functions. The first set was made up of RGB image

samples generated using the CIE color function as the spectral

response function. We called these images ‘Clean’ data because no

noise was added. The second type of data set is called Realworld data,

which uses other camera sensitivity functions as spectral response

functions and adds noise. The noise type is Gaussian noise, SNR is

30-40dB.

2.5.1 Realworld data
Since the spectral response function in the Realworld data is

unknown, the loss function only needs to consider the difference

between the reconstructed hyperspectral image and the real

hyperspectral image.

RMSE is generally used as the loss function when calculating the

error between the predicted image and the real image in the image

processing task, given that the image brightness levels of different

bands of hyperspectral images are usually quite varied. In the process

of calculating the root mean square error, the weight difference

between the high brightness region and the low brightness region
frontiersin.org
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of the image may be too large. To avoid this situation and balance the

deviation between different bands, we use Eq. (2.9) as the loss function

of our hyperspectral image reconstruction algorithm:

lH =
1
No

n

i=1
I(i)R − I(i)G

���
���=I(i)G

� �
(2:9)

where, N represents the total number of pixels, IR represents the

reconstructed spectral radiation value, and IG represents the spectral

radiation value of the actual hyperspectral image.

2.5.2 Clean data
Since the spectral response function Ф for the Clean data is the

CIE color function, the loss function needs to take into account the

difference between the reconstructed hyperspectral image and the real

hyperspectral image, as well as the difference between the RGB images

generated by mapping the two types of images to RGB space.

If the spectral response function Ф is known and the RGB image

does not contain noise, we can use the function Ф as a priori

information to project the reconstructed hyperspectral image into

RGB space according to the functionФ. We use Eq. (2.10) to calculate

the average absolute error between it and the input RGB image as the

loss function.

lR =
1
No

n

i=1
I(i)R − I(i)G

���
���

� �
(2:10)

where, I(i)R represents the RGB projection of the reconstructed

hyperspectral data by matrix multiplication with Ф and I(i)G
represents the RGB projection of real hyperspectral data by matrix

multiplication with Ф.

2.5.3 Overall loss function
The overall loss function of our hyperspectral reconstruction

model includes lH and lR, and its expression is shown in Eq. (2.11)

l = lH + a lR (2:11)

where a is a variable parameter.

We analyzed the influence of different values of a in the loss

function Eq. (2.11) of MACRN on the final reconstruction results. Set

the value of a to 0, 1, 5, 10 and 20 for experiments, and the results are

shown in Figure 2F. It can be seen from the figure that when a is 10,

the reconstruction error is the minimum. Therefore, we set the value

of a to 10.
3 Results

3.1 Model parameters

Both the low-level feature extraction module and the feature

conversion module of MACRN had 256 convolution cores in each

convolution layer, while the atrous convolution residual block had 128

in each convolution layer. The images output by the four atrous

convolution layers were spliced together to obtain the channel

number of the total characteristic image with 512 channels. Then, the
Frontiers in Marine Science 06
number of channels was condensed down to 256 through a convolution

layer with 256 convolution cores and a total of six stacked ACRBs.

The batch size for the model training was 16. An Adam optimizer

was used for training, with a first-order attenuation index of b1 = 0.9,

a second-order attenuation index of b2 = 0.9, and a fuzzy factor of e =
10-8. The learning rate was initialized to 0.0001, and the polynomial

function attenuation strategy was used to gradually reduce the

learning rate during the training process.
3.2 Quantitative analysis of ACRB

To determine how the number of atrous convolution residual

blocks (ACRB) affects the hyperspectral image reconstruction model,

we constructed five hyperspectral reconstruction networks with

different depths with the number of ACRB ranging from four to

eight, which were chosen considering the poor feature extraction

ability of the low-level network. The test results are shown

in Figure 3A.

In Figure 3A, MRAE (Mean Relative Absolute Error) is a commonly

used index to evaluate spectral reconstruction effect, and RMSE (Root

Mean Square Error) is used as an auxiliary evaluation standard.

The reconstructed MRAE error reached the minimum at seven

ACRB (Fig. 3.1). However, there was very little difference between six

and seven ACRBs, so in order to minimize the number of parameters

and reduce the complexity of the model, the number of stacks for the

ACRB is set to 6.
3.3 Clean data reconstruction

In order to evaluate how the MACRN model against to other

reconstruction algorithms, we compared it to HSCNN-R (Shi et al.,

2018), HSCNN-D (Shi et al., 2018), HRNet (Zhao et al., 2020),

AWAN (Li et al., 2020), MST++ (Cai et al., 2022). To ensure the

fairness of the experiment, all models were run under the same

experimental conditions, using the same training and test sets.

The MACRN model obtained the lowest error value on the Clean

data (Table 1). The HSCNN-R model had the shortest running time,

but a large error rate. The AWAN model had the second fastest

running time, but MACRN was almost as quick. In conclusion, the

MACRN performs well in spectral reconstruction of Clean data.

Figure 3B shows the a heat map (error image) of the hyperspectral

images reconstructed from the Clean data for the six models and the

real hyperspectral image (Ground truth) in the bands of 443 nm, 490

nm, 783nm and 1375nm.

The error of the reconstructed hyperspectral image in the bands

of 443 nm, 490 nm and 783nm was small, while the error in the 1375

nm band was large (Figure 3B). Overall, MACRN produced a high

quality reconstruction.

Figure 3C shows the spectral response curves drawn at two spatial

positions from the hyperspectral images reconstructed by Clean data

of five models. The reconstructed spectral curves of MACRN closely

matched the real spectral curves, demonstrating its accuracy in

spectral reconstruction relative to the other four models (Figure 3C).
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3.4 Realworld data reconstruction
From the Realworld data, MACRN exhibited the smallest errors

of the six models (Table 2). HSCNN-R again had the shortest running
Frontiers in Marine Science 07
time, but its reconstruction error was large. The running time of

MACRN was close to that of HRNet.

Figure 3D shows the spectral response curves drawn at two spatial

positions from the hyperspectral images reconstructed from

Realworld data of five models.
B
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FIGURE 3

(A) Reconstruction error of different ARCB numbers. (B) Error image (heat map) of hyperspectral image reconstructions and real hyperspectral images of
(from left to right) the 443 nm, 490 nm, 783 nm and 1375 nm bands by the (a) HSCNN-D, (b) HSCNN-R, (c) HRNet, (d) AWAN, (e) MACRN models run
on images from the Clean dataset, compared to (f) the true hyperspectral data of the same locations. (C) Spectral response curve from the HSCNN-D,
HSCNN-R, HRNet, AWAN, MACRN models run on Clean data and true observed data from Sentinel-2 (gt for ground truth) for two points from the
images shown in Figure 3.2, (a) coordinates (312, 315) and (b) (764, 494). (D) Spectral response curves from HSCNN-D, HSCNN-R, HRNet, AWAN,
MACRN run on Realworld data, and observed data (gt) from two points from Figure 3.2, (a) coordinates (312,315) and (b) (764,494).
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All models had higher error rates when run with

Realworld data than with Clean data (Fig. 3.4). Compared with

other methods, MACRN had the closest fit to the true

values (Figure 3D).

The MACRN realizes hyperspectral spectral reconstruction in

443nm - 2190nm band, with less computation and high

reconstruction accuracy. On the Realworld dataset, the reconstruction

error MARE index is less than 0.0645, the reconstruction error RMSE

index is less than 0.0164, and the reconstruction time is less than 9.24S.

On the Clean dataset, the reconstruction error MARE index is less than

0.0328, the reconstruction error RMSE index is less than 0.0114, and

the reconstruction time is less than 8.58S.

To sum up, for both Clean data and Realworld data sets, the

performance of MACRN hyperspectral reconstruction algorithm was

relatively stable, and offered good hyperspectral reconstruction

relative to other models.
4 Discussion

Tables 1 and 2 show that the calculation cost of MACRN

reconstruction algorithm is small. Figures 3C, D show that the

error between the reconstructed spectral curve of MACRN and the

actual spectral curve is small. In the visible light band, the MACRN

reconstruction error has no difference with MST++ (Cai et al., 2022)

and AWAN (Li et al., 2020), and is close to the true value. However, in

the near infrared band, the MACRN reconstruction accuracy is

significantly better than other spectral reconstruction algorithms.

Although MST++ (Cai et al., 2022) based on spatial sparsity and

spectral self similarity won the first in the RGB spectral reconstruction

challenge in 2022. However, MST++ ignored some spatial details and

did not consider the near-infrared and mid infrared band features.

Therefore, the hyperspectral reconstruction result of MST++ is

obviously inferior to those of MACRN in the near infrared and mid

infrared bands. This fully shows that ACRB of MACRN captures

more spatial details, and the loss function of MACRN is more

consistent with the characteristics of the near infrared and mid

infrared spectrum.

In the detection application of marine water quality (such as

chlorophyll-a, dissolved organic matter, solid suspended solids,

etc.), it is easier to find target differences in the near-infrared
Frontiers in Marine Science 08
band, and the reconstruction algorithm that can accurately

reconstruct the target’s near-infrared band spectrum has a

greater application prospect. For example, in marine oil

pollution detection (Guga, 2020), because hyperspectral images

can obtain a large amount of nearly continuous narrowband

spectral information in the visible, near infrared, mid infrared

and thermal infrared bands. The hyperspectral images can not

only effectively distinguish oil film and water, but also infer the

type and time of oil leakage from the different spectral absorption

characteristics of offshore oil film. We use the MACRN algorithm

to construct hyperspectral images, which can easily and quickly

detect and identify objects based on the spectral characteristics.

Therefore, the MACRN hyperspectral reconstruction algorithm

has the characteristics of low reconstruction cost and high

reconstruction accuracy, and its advantages in marine spectral

reconstruction are more obvious.
5 Conclusion

The reconstruction of high-precision hyperspectral images from

RGB images is important for expanding the use of hyperspectral

analysis in the marine sciences. Currently, most algorithms of

reconstructing hyperspectral images from RGB images use

convolution neural networks, which is problematic because the

receptive field of the convolution kernel is at a small, fixed scale,

and thus can only learn the features at a single scale, offers low

utilization of information from a global context, and lacks

global vision.

We designed a hyperspectral image reconstruction algorithm

based on a multi-scale atrous convolution residual network

(MACRN), which can better solve one of the problems. The

algorithm extracts multi-scale features under different receptive

fields, makes full use of the rich colors of RGB images and the

spatial structure associated with the colors, and adds richer contextual

information, ensuring the integrity of local details. Our hyperspectral

reconstruction experiment using Sentinel-2 satellite data from the

northern coast of Australia shows that the algorithm can effectively

reduce hyperspectral reconstruction errors and deliver hyperspectral

image reconstruction of high-precision RGB images with low

computational costs.
TABLE 1 Comparison of reconstruction results of various models run on
the Clean dataset.

Model MRAE RMSE Time (s)

HSCNN-R 0.0385 0.0152 3.16

HSCNN-D 0.0375 0.0136 14.39

HRNet 0.0358 0.0140 9.35

AWAN 0.0345 0.0121 7.51

MST++ 0.0347 0.0123 11.46

MACRN 0.0328 0.0114 8.58
The bold numbers represent the best value.
TABLE 2 Comparison of reconstruction results of various models run with
the Realworld dataset.

Model MRAE RMSE Time (s)

HSCNN-R 0.0713 0.0188 3.08

HSCNN-D 0.0691 0.0185 14.70

HRNet 0.0661 0.0176 9.16

AWAN 0.0666 0.0180 13.94

MST++ 0.0665 0.0182 12.73

MACRN 0.0645 0.0164 9.24
fro
The bold numbers represent the best value.
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