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Acoustic methods improve the
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African manatee
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The African manatee (Trichechus senegalensis) is an elusive, data-deficient,

and endangered species which inhabits marine and freshwater systems

throughout Western and Central Africa. A major challenge in understanding

the species ecology and distribution is the difficulty in detecting it using

traditional visual surveys. The recent invasion of Giant Salvinia (Salvinia

molesta) at the most important site for the species in Cameroon further

limits their detectability and may restrict their movements and habitat use. To

investigate methods’ effectiveness in detecting African manatees, we

conducted monthly vessel surveys from which visual point scans, 360° sonar

scans, and passive acoustic monitoring were conducted simultaneously at ten

locations and over 12 months in Lake Ossa, Cameroon. Manatee detection

frequency was calculated for each method and the influence of some

environmental conditions on the methods’ effectiveness and manatee

detection likelihood was assessed by fitting a binary logistic regression to our

data. Detection frequencies were significantly different between methods (p <

0.01) with passive acoustics being the most successful (24.17%; n = 120),

followed by the 360° sonar scan (11.67%; n = 120), and the visual point scan

(3.33%; n = 120). The likelihood of detecting manatees in Lake Ossa was

significantly influenced by water depth (p = 0.02) and transparency (p <

0.01). It was more likely to detect manatees in shallower water depths and

higher water transparency. Passive acoustic detections were more effective in

uninvaded areas of the Lake. We recommend using passive acoustics to

enhance African manatee detections in future surveys.
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1 Introduction

Sirenians (Order Sirenia) include four species now living,

which are distributed within two families: the Dugongid

(Dugongs - Dugong dugon) and the Trichechids (the West

Indian manatee - Trichechus manatus; the Amazonian

manatee - Trichechus inunguis and the African manatee -

Trichechus senegalensis). Among sirenians, the African

manatee is the least studied species and moreover, the least

studied large mammal in Africa (Trimble and Van Aarde, 2010).

Similar to the other sirenians, African manatees are classified as

Vulnerable in the IUCN Red-List and in Appendix I of both the

Convention on the International Trade of Endangered Species of

Wild Fauna and Flora and the Convention on Migratory Species

(Convention on the Conservation of Migratory Species, 2009;

Convention on International Trade of Endangered Species,

2013; Keith Diagne, 2015). Their distribution spans 21

countries, including 18 along the African Atlantic coast (from

southern Mauritania to central Angola) and three inland

countries (Chad, Niger, and Mali). In Cameroon, manatees are

found throughout the coastal areas of the country, including in

numerous rivers (Ndian, Wouri, Sanaga, Nyong, Cross, Benue,

Nkam, and Ntem Rivers), and in Lake Ossa and Lake Tissongo

(Nishiwaki et al., 1982; Powell, 1996; Keith Diagne, 2015;

Takoukam Kamla, 2019). The lower Sanaga River Watershed

is the most monitored manatee habitat in Cameroon, home to

approximately 250 manatees, including a minimum of 49

manatees in Lake Ossa (Takoukam Kamla, 2019). Lake Ossa is

considered a manatee sanctuary, as it is protected and hosts a

year-round, relatively abundant manatee population when

compared to other habitats (Mayaka et al., 2013; Keith Diagne,

2015; Takoukam Kamla, 2019). However, Lake Ossa was

recently invaded by Giant Salvinia (Salvinia molesta), a free-

floating aquatic fern native to Brazil and known to have infested

many countries and caused major harmful environmental

impacts on native ecosystems in tropical and subtropical

regions (Oliver, 1993; McFarland et al., 2004). This invasive

plant has covered approximately 50% of Lake Ossa’s surface

(4,000 ha) in less than five years. The plant seems to outcompete

the antelope grass (Echinochloa pyramidalis), which is the major

manatee local food, representing on average 63% of their diet

composition (Takoukam Kamla, 2019). Also, the dense and

widespread mats formed by Giant Salvinia on the surface of

Lake Ossa may influence their habitat use and/or making their

detection more challenging.

In addition to habitat degradation like the current situation

of Lake Ossa, African manatees face other major threats

throughout their range including poaching, bycatch in fishing

gear, and habitat fragmentation by dams (Keith Diagne, 2015).

Fewer than 10,000 individuals of the species are estimated to

remain, and it is estimated that 30% or more are highly likely to

perish within 90 years due to threats (Keith Diagne, 2015). A

major challenge to the conservation of African manatees is the
Frontiers in Marine Science 02
limited available data due in part to the difficulty in detecting

and gathering information on them in the wild. African

manatees are naturally cryptic, elusive, and only mildly social;

due to poaching these traits seem to have been exacerbated. As in

most of their range, previous African manatee ecological surveys

in Cameroon were mostly based on visual detections (Grigione,

1996; Takoukam Kamla, 2012; Ngafack, 2014) and/or interviews

of local communities (Nishiwaki et al., 1982; Powell, 1996;

Mayaka et al., 2013; Mayaka et al., 2015; Mayaka et al., 2019).

A few studies used DNA to detect manatees (e-DNA, Hunter

et al., 2018) and to estimate their population numbers

(Takoukam Kamla, 2019). However, genetic analyses are

expensive, visual survey methods are limited by the low

detectability of manatees and the highly turbid and tannic

waters they inhabit, whereas citizen data are limited by the

unreliability of public reports of bycatch and poaching due to the

fear of being prosecuted.

Active and passive acoustics are used extensively in the field to

detect marine mammals and monitor their behavior. Many

studies have established sound navigation and ranging

(SONAR) scans as a valuable method of underwater detection

of Antillean manatees (T. m. manatus) in their turbid waters of

Mexico and Central America, with manatee detection frequencies

of up to 93% (Gonzalez-Socoloske et al., 2009; Gonzalez-

Socoloske and Olivera-Gomez, 2012; Guzman and Condit, 2017;

Puc-Carrasco et al., 2017; Castelblanco-Martıńez et al., 2018). In

addition, manatees produce a variety of vocalizations including

squeaks, screeches, whines, and trills (Umeed et al., 2018; Brady

et al., 2020; Baotic et al., 2022) shown to be important for their

underwater communication and emitted across various behavioral

states (Bengtson and Fitzgerald, 1985; O’Shea and Poché, 2006;

Brady et al., 2021). Passive acoustics have been used in many

studies to monitor manatees and have yielded up to 100%

detection frequencies (LaCommare et al., 2008; Kikuchi et al.,

2013; Rivera Chavarria et al., 2015; Rycyk et al., 2021; Rycyk et al.,

2022). While the above methodologies have been used to monitor

other species of manatee (Florida manatees: Rycyk et al., 2022;

Antillean manatees: Ramos et al., 2020), they have been rarely

implemented with African manatees. Rycyk et al. (2021) deployed

passive acoustic recorders in Lake Ossa in 2020 for two, 3-day

periods, resulting in the detection of thousands of vocalizations

and enabling the first characterization of African manatee calls;

the authors found that African manatee vocalizations are similar

to those of other manatee species, with mean fundamental

frequency of 4.65 kHz and average duration of 0.181s. Finally,

Takoukam Kamla (personal communication) conducted sporadic

sonar detections.

In this study, we compared three methods of monitoring

African manatees in Lake Ossa, Cameroon: visual point scans by

boat-based observers, passive acoustic monitoring for manatee

sounds, and 360° sonar scans. Our goals were to: 1) determine

and compare the manatee detection frequency of each of the

three methods; 2) determine which environmental conditions
frontiersin.org
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influence the likelihood of detecting manatees; and 3) make

recommendations for future manatee surveys based on the

combination of survey methods and environmental

conditions evaluated.
2 Material and methods

2.1 Study site

This study was conducted in Lake Ossa Wildlife Reserve

(LOWR, Figure 1), an IUCN category IV protected area, situated

in the Littoral region of Cameroon between the 3.75 N and

3.87 N (latitude), and 9.75 E and 10.07 E (longitude) and at an

average elevation of approximately 45 m (Wirrmann and

Elouga, 1998). Situated approximately 40 km inland, Lake

Ossa is a fully freshwater system, which is connected to the

country’s major river, the Sanaga River, through a narrow and

comparatively deep (5-9 m) channel. Through this channel, the

depth of Lake Ossa is seasonally influenced by the incursion of

water from the Sanaga River (Takoukam Kamla, 2019) which

also influences the lake’s water transparency. Lake Ossa is a

shallow lacustrine complex, with a maximum depth of 7 m

measured during the rainy season (March-November) (Giresse

et al., 2005). The Lake Ossa complex encompasses three

connected lakes: Lake Mévia (700 ha) in the north, Lake
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Mwembè (300 ha) in the south, and Lake Ossa (3000 ha)—

also known as Big Lake—situated between the two. The waters of

Lake Ossa are relatively calm, with Beaufort Sea state typically

fluctuating between 0 and 2, and water transparency is higher

during the rainy season than the dry season (Takoukam Kamla,

2019). However, since 2016 the lake is being invaded by Giant

Salvinia, a free-floating aquatic fern (Figure 2) originating from

Southern Brazil which has the potential to choke streams and

lakes (Westbrook, 1984) and to kill aquatic wildlife such as fish

(Barrett, 1989). To date, Giant Salvinia covers over 50% of the

lake’s surface with Malongue, Koungue, and Mevia being the

most invaded areas.
2.2 Experimental design

On a monthly basis, between November 2020 and October

2021 (12 months), we simultaneously implemented one-hour

visual point scans, 360° sonar scans, and passive acoustic

monitoring (PAM) of the African manatee at ten sites in Lake

Ossa (Figure 1). To investigate the influence of Giant Salvinia on

manatee detection, we included five sites within the Salvinia-

invaded area and five within the uninvaded area. A total of

120 surveys (1 survey/site/month = 1*10*12 = 120 surveys)

were conducted with each monitoring method. The boat was

anchored during the implementation of all the survey methods.
FIGURE 1

Map of Lake Ossa highlighting sampling sites with red circles. Koungue, Malongue, Mevia 1, Mevia 2 and Mevia 4 are sites situated in the
salvinia-invaded area of the lake, whereas the other sites are in the uninvaded area.
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A visual point scan survey consisted of two experienced

manatee observers sitting at the two ends of an anchored boat.

The survey boat was in fiberglass and approximately 3 m long.

Each observer watched the water’s surface at a height of

approximately 1.8 m. Observers searched for signs of manatee

presence by continuously scanning a 180° area, i.e., one side of the

vessel up to approximately 100 m away (Figure 3) (Self-Sullivan

et al., 2003; LaCommare et al., 2008; Takoukam Kamla, 2012).

Signs of manatee presence include direct signs (e.g., physical

presence of manatees, air bubbles, and mud plumes created by

their passage) and indirect signs (e.g., feces, feeding sign marks on

vegetation) (Takoukam Kamla, 2012). To reduce potential bias,

team members did not communicate during scans and only

shared their detections after the visual point scan ended.

For the 360° sonar survey of manatees, we used a transom-

mounted Humminbird sonar (Humminbird 999CI HD SI)

equipped with a spinning (rotating) transducer (i.e., 360° sonar)

and powered by a 12V Bluetop marine battery. The dual-beam

system produced sound waves at 83 and 200 kHz (Figure 3).

Sonar images were displayed on an 8” HD screen and were

captured by pressing the screen-capture button on the device.

Screenshots were saved in jpeg format on a SD (secure digital)

memory card for later confirmation of manatee presence after

inspection of sonar images. Here, manatee detection consisted of

an experienced sonar image researcher watching and focusing

only on the screen of the sonar device. The device was set to scan
Frontiers in Marine Science 04
the water column to a radius of up to 59 m. This distance was

occasionally reduced when a target object was closer to the boat to

obtain a better image then set back to 59 m after verification. The

transducer was set to rotate at the device’s default average speed,

and the sonar image on the screen was refreshed thrice per

minute. Morphologically (body shape and length), no species is

similar to the African manatee in Lake Ossa. Thus, four elements

were taken into account when determining whether or not a

target object on a sonar image was a manatee: the relative size of

the object, its shape, strength of acoustic reflectivity, and mobility.

It is not clear if and how sound waves of the sonar would interfere

with manatee hearing sensitivity as little is known about the

ultrasonic content of African manatee vocalizations. Manatees

can produce vocalizations at up to 83.1 kHz (Antillean manatee

Trichechus manatus manatus; Ramos et al., 2020) and 90.5 kHz

(Florida manatees - Trichechus manatus latirostris; Gaspard et al.,

2012). However, studies based on Florida manatees showed that

their hearing sensitivity may be best between 6 and 32 kHz

(Gerstein et al., 1999; Gaspard et al., 2012). The threshold dB

levels for the Florida manatee at 90.5 kHz and 76.1 kHz are very

high (141.1 dB and 128.4 dB respectively; Gaspard et al., 2012)

and manatees rarely vocalize above those thresholds. Thus, we

suggest that the sonar sound waves did not significantly influence

manatees in this study.

Passive acoustic monitoring (PAM) of manatees was

undertaken using an LS1 remote acoustic recorder (LS1,
FIGURE 2

An area of Lake Ossa (Koungue) invaded by Giant Salvinia.
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Loggerhead Instruments, HTI-96-min hydrophone with a

sensitivity of -180.2 dB re 1 V/µPa and frequency response of

2 Hz to 30 kHz) deployed underwater at multiple sites (Figure 3).

The device was set to record continuously (sample rate: 44.1 kHz;

16-bit) for an hour and store recordings in 5-min sound clips in

wav format. The recorder was attached horizontally to a concrete

weight of approximately 25 kg with a rope attached to facilitate

deployment and retrieval, set approximately 50 cm off the bottom

of the lake. The recorder was retrieved after one-hour

deployments (end of survey), and the recordings downloaded

for later analysis of the presence of manatee vocalizations (see

below for methods). Based on an estimate of manatee vocalization

detection range using similar equipment and in a similar

environment (Rycyk et al., 2022), manatees might be detected

using the PAMmethod at up to 148 m. A schematic illustration of

the implementation of all three methodologies appears in Figure 3.

All surveys were conducted between 06:00 and 10:00 AM, a

timeframe during which manatees are more likely to be visually
Frontiers in Marine Science 05
spotted in Lake Ossa (Takoukam Kamla, 2012). According to

Rycyk et al. (2021), African manatees in Lake Ossa seem to be

more active out of daylight hours, presumably in avoidance of

human presence. For all survey methods, detections were scored

as presence/absence for each one-hour survey. Prior to the

beginning of each survey, Beaufort Sea state and Giant Salvinia

coverage (percentage of the water surface covered by Giant

Salvinia approximately 500 m around the boat) were visually

estimated. Water depth (m) and temperature (°C) were

measured using a DepthTrax 1H sonar depth finder.

Transparency was measured with a Secchi disk to the nearest cm.
2.3 Data analysis

2.3.1 Analysis of acoustic recordings
Each 5-minute audio file was aurally and visually inspected

in small sections (~10 s) by an experienced researcher using
FIGURE 3

Schematic comparison of the procedures involved in each of the three survey methods for detecting African manatees. The three top images
illustrate in-situ experimental design for each method. The three center images show some cues for each method, e.g., manatee footprint for visual
point scan (center left image), manatee sonar image for 360° sonar scan (center middle image; manatee in the white circle) and a spectrogram of a
manatee vocalization for passive acoustics (center right image). The three bottom images illustrate detection ranges for the three methods.
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Raven Pro 1.6 (512-point DFT, Hann window, 50% overlap)

(Center for Conservation Bioacoustics, 2014). Presence of

African manatee vocalizations were determined for each 1-

hour passive acoustic monitoring period. Regardless of the

number of vocalizations, a manatee was considered present

when at least one manatee vocalization was noted in the

recordings. Examples of spectrograms of African manatee

vocalizations can be found in Rycyk et al. (2021).

2.3.2 Statistical analyses
We used software R, version 4.0.5 (R Core Team, 2021) to

plot figures and to run all statistical tests and modelling. Manatee

detection frequency was reported for each survey method as the

percentage of surveys in which manatee presence was recorded.

We ran a 3-sample (visual point scan, 360° sonar scan, and

PAM) test for equality of proportions to ascertain statistically

significant differences between the manatee detection

frequencies of the three survey methods and subsequently ran

post-hoc comparisons (visual point scan and 360° sonar scan,

visual point scan and PAM, 360° sonar scan and PAM) with a

Bonferroni correction using respectively the “prop_test” and

“pairwise_prop_test” functions of package “rstatix”

(Kassambara, 2022). To determine if and how some

environmental conditions and their interaction with the survey

methods influence the likelihood of manatee detection, we built

and fitted a Binomial Generalized Linear Mixed Effects Model

(GLMM) to our data. Manatee detection was predicted from

environmental variables, namely Giant Salvinia invasion

(invaded vs uninvaded by Giant Salvinia), Giant Salvinia

coverage, Beaufort Sea state, water depth, temperature, and

transparency – and their interaction with the survey methods.

Environmental variables were set to be fixed effects in the model.

As each site was monitored 12 times (once per month), and there

were 30 surveys per month (1 survey * 3 methods * 10 sites = 30)

we accounted for spatial and temporal autocorrelation in the

model by adding the variables “site” and “month” as random

effects. To test the relevance of including “Site” and “Month” as

random variables, we first did a likelihood ratio test between a

fixed-effects minimal baseline model (model1 = glm(Detection ~

1)) and a baseline mixed-model with only the random effects

(model2 = glmer(Detection ~ (1|Site) + (1|Month))) using the

“lrtest” function from the “lmtest” package (Zeileis and

Hothorn, 2002). The latter model (model2) yielded a better fit

than the first (model1) (p < 0.01). We then compared model2 to

two mixed-models each containing only one of the two random

effects: model3 = glmer(Detection ~ (1|Site)) and model4 =

glmer(Detection ~ (1|Month)). Model2 still yielded a better fit

than model3 (p < 0.01) and model4 (p = 0.03). It was therefore

relevant to include both site and month as random effects in our

model. Detection (i.e. manatee detection) was a binary response

variable with values 0 and 1, hence obeying a Bernoulli

distribution (Christensen, 1990; Agresti, 2002). Thus, the full/

saturated model predicted manatee detection as a function of the
Frontiers in Marine Science 06
above-cited environmental variables and their interaction with

the variable “methods” (survey methods) and in the condition

where “site” and “month” were set to be random effects.

To obtain the minimal adequate model, we parsimoniously

simplified the full model following the Occam’s razor principle.

We used a manual step-wise step-up procedure during which the

full model’s predictors (fixed effects) were removed one after

another and then the resulting model was compared to the

previous candidate model . To remove a predictor

(environmental condition) from the saturated model, we would

first remove only its interaction with the variable “Methods”, and

if this does not significantly influence the model, we would then

take it off. If taking the predictor off significantly influence the

model, then we put it back without the interaction term. If this

does not influence the model, we then progress to the next

predictor. Model discrimination/selection was done on the basis

of an analysis of variance using the function “anova” from the

“stats” package in R (R Core Team, 2021). We used function

“glmer” of package “lme4” (Bates et al., 2015) to run the models,

using the “binomial” family and the “logit” link function.

The minimal adequate model obtained was as follows:

Detection ~ Methods*Invasion + Depth + Transp + (1|Site) +

(1|Month), where “Detection” is the binary response variable (1

for manatee detection and 0 for non-detection), “Methods” are the

survey methods (coded as PAM, Sonar . scan and

Visual.point.scan). “Invasion” represents whether the survey

area is invaded or not (uninvaded) by Giant Salvinia and

“Depth” and “Transp” represent water depth and transparency

respectively. The asterisk indicates an interaction between at least

one survey method and Giant Salvinia invasion. Aside from water

depth and transparency (numeric variables), all the other variables

in the model were set as factors. To validate the final model, we

verified the level of collinearity between the fixed effects and the

level of residuals’ autocorrelation using respectively the

“check_collinearity” function of package “performance”

(Lüdecke et al., 2021) and the “acf” function of package “stats”.

Model’s autocorrelation structure (AR1) was inspected and its fit

parameters were summarized in a table using the “tab_model”

function of package “sjPlot” (Lüdecke, 2022). We further

inspected the model’s fit by generating the Somers’ Dxy rank

correlation (and the associated C-value) between the predicted

probabilities and the observed values using the “somers2” function

of package “Hmisc” (Harrell, 2022). Post-hoc analyses of the

interaction in our model were done using the “emmeans”

package (Lenth, 2022). Finally, we graphically plotted how the

explanatory variables predict the probability of detectingmanatees

using the “effects” package (Fox and Weisberg, 2019).
3 Results

No African manatee chewing sounds were recorded, so

passive acoustic detections of manatees in this study only
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referred to the detection of their vocalizations. PAM resulted in

the highest manatee detection frequency (24.17%; n = 120),

followed by the 360° sonar scan (11.67%; n = 120) and the visual

point scan (3.33%; n = 120) (Table 1; Figure 4). The test for

equality of proportions (based on Pearson’s chi-squared test

statistic) revealed statistically significant differences in manatee

detection frequencies between visual point scan, 360° sonar scan,

and PAM (p < 0.01; Table 2). Post-hoc comparisons showed a

significant difference only between PAM and visual point scan (p

< 0.01; Table 2). The detection frequency through PAM was

either equal (at 2 over 10 sites) or greater than those of the two

other survey methods (at 7 over 10 sites) at all the monitored

sites (Figure 5).

When all three methods were combined, manatees were

detected in 38 of the 120 surveys. In more than half of the

surveys with positive detections (57.9%, n = 22), manatees were

only detected by passive acoustics. Similarly, 21.1% of surveys

with positive detections were specific to the 360° sonar scan.

There was no survey where manatees were detected only by the

visual point scan method.

The output of the minimal adequate model is summarized in

Table 3. There was low collinearity (variance inflation factor < 4

for all the predictors) between the explanatory variables and no

residuals’ autocorrelation. Thus, our model did not violate

important assumptions. The total variance explained by the

model (conditional R2) was 0.52 (Table 3). Somers’s Dxy and

its associated C-value were respectively 0.78 and 0.89 (Table 3).

Water depth (p < 0.01) and transparency (p = 0.02) were

significant predictors of positive manatee detections (Table 3).

The likelihood of detecting African manatees increases with

lower water depth and higher water transparency (Figure 6).

Also, the interaction between the survey methods and Giant

Salvinia invasion had a significant predictive effect on the model

outcome (Table 3). Post-hoc analyses of this interaction revealed

that unlike the 360° sonar and the visual point scan methods, the

likelihood of detecting African manatees using PAM was

significantly different between the invaded and the uninvaded

areas of Lake Ossa (p < 0.01; Table 4). Passive acoustic detections

of manatees were more likely to occur in the uninvaded areas

than areas invaded by Giant Salvinia (Figure 6). In addition,

within the uninvaded area of the Lake, the likelihood of detecting

the African manatee was significantly higher when using PAM

than the 360° sonar (p < 0.01) or the visual point scan methods

(p < 0.01) (Table 4; Figure 6). The likelihood of detecting
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manatees in the invaded area of Lake Ossa was not

significantly different between survey methods (Table 4). The

fixed effects accounted for about 37% of the variance in our

model whereas all the predictors (including the random effects)

accounted for about 52% of the variance (Table 3).
4 Discussion

Developing improved methods for detecting endangered

species where their populations are in decline is crucial to

their preservation. Our previous work illustrated the strength

of passive acoustics for detecting manatees, and similar methods

have been successful in habitats of the West Indian manatee

(LaCommare et al., 2008; Gonzalez-Socoloske et al., 2009;

Gonzalez-Socoloske and Olivera-Gomez, 2012; Kikuchi et al.,

2013; Rivera Chavarria et al., 2015; Guzman and Condit, 2017;

Puc-Carrasco et al., 2017; Castelblanco-Martıńez et al., 2018;

Rycyk et al., 2021; Rycyk et al., 2022).

In this study, we implemented three methods of monitoring

African manatees, including one classic method (visual point

scan) and two novel methods (360° sonar and PAM). We also

investigated which survey method, environmental conditions, or

interaction between these latter influenced manatee detection by

fitting a parsimoniously selected binary logistic regression model

(GLMM) to our data. Our findings highlighted that passive

acoustics exhibited the greatest detection frequency, followed by

360° sonar and then visual point scan. Water depth and

transparency significantly predicted manatee detection. When

using PAM, manatees were more likely to be detected in the

uninvaded area than in areas invaded by Giant Salvinia. Within

the uninvaded area, it was more likely to detect manatees

through PAM than the 360° sonar and the visual point

scan methods.
4.1 Detection frequencies

The detection frequency of passive acoustics was two-fold

greater than that of the 360° sonar, the latter being four times

greater than that of visual point scan. These differences in

detection frequencies were statistically significant (p < 0.01)

and occurred between PAM and the visual point scan (p <

0.01). The superiority of passive acoustics in detecting manatees
TABLE 1 Detection frequency of African manatees using visual point scans, 360° sonar and Passive Acoustics Monitoring (PAM) (n = 120 surveys
for each method).

Visual point scan 360° sonar PAM

Number of successful scans 4 14 29

Total number of scans 120 120 120

Detection frequency (%) 3.33 11.67 24.17
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can be explained by several factors. In turbid environments like

Lake Ossa where visual cues are limited, sound is the most

efficient communication modality (Bauer et al., 2003). While the

vocal behavior of African manatees remains largely unexplored,

other manatee species are known to produce sounds in most

behavioral contexts, including milling, cavorting, resting, and

feeding (Bengtson and Fitzgerald, 1985; Sousa-Lima et al., 2002;

Nowacek et al., 2003; Sousa-Lima et al., 2008; Miksis-Olds and

Tyack, 2009). Manatee vocalization rate is highest during milling

and cavorting, and lowest during feeding and resting (Bengtson

and Fitzgerald, 1985). However, most vocalizations are between

mothers and their calves to maintain contact especially when

feeding or traveling in murky waters. Florida manatees have an

estimated vocalization rate of 12.7 vocalizations/manatee/60-

min (Rycyk et al., 2022). It is likely that PAM would be more

effective when manatee abundance within the acoustic range

increases, as the number of vocalizations would likely increase.
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Conversely, PAM might be less effective when only a single

manatee is within acoustic range. We did one-hour scans, thus

had several opportunities to record a manatee vocalization when

it was within acoustic range and if it stayed in the area. Although

we did not record manatee feeding sounds in this study, it would

be worth looking for them in future manatee passive acoustic

surveys as they could improve the detection probability.

The superiority of passive acoustics could also be due to the

many limits of the two other survey methods. We used a 360°

Humminbird sonar for the active acoustic survey of manatees.

Animal sonar images are of better quality when the boat is

moving slowly along a transect (side scan images) than when

staying stationary (Gonzalez-Socoloske et al., 2009). Stationary

active acoustic monitoring (360° sonar imaging) was chosen in

our study design to mitigate biases; if moving, engine noise

would alert manatees, which could flee and thus influence visual

point scan and passive acoustic detections. Also, sonar detection

probability is negatively correlated with the distance of the target

(manatees in our case) from the sonar and is estimated to be 0.5

at 33 m and drops below 0.05 at ranges over 59 m (based on grey

seals (Halichoerus grypus), Hastie et al., 2019). Moreover, the

study range of the 360° sonar (59 m radius around the boat) in

this study was much smaller compared to our passive acoustic

system which could likely detect manatees up to approximately

148 m around the boat (based on an estimate of manatee

vocalization detection range using similar equipment and in a

similar environment, Rycyk et al., 2022). The 360° sonar and

visual point scan methods could be subjected to many

perception and availability biases. The 360° sonar could be

subjected to perception bias when manatees were 40 m and

above (40-59m) as they would be less distinguishable on sonar

images. Perception bias occurs when an animal is potentially

detectable but not detected; this includes perception bias (stricto

sensu) whereby an animal is available for detection, but the

detection system fails to detect the available cue (Marsh and

Sinclair, 1989) and detection bias whereby an animal is available

in the study area but is not detected because for example the

detection probability drops with distance (Buckland et al., 2015).

Also, availability bias occurs when an animal is within the study

area but unavailable for detection because the cue is canceled by

other animals, turbid waters, ambient noise, etc. (Marsh and
TABLE 2 Output of 3-sample tests for equality of proportions based on Pearson’s chi-squared test statistic, comparing methods detection
frequencies.

Comparison c-squared df p-value Adjusted p-value

Visual - 360° sonar – PAM 23.25 2 8.95E-06

Visual - 360° sonar 4.86 1 0.03 0.08

Visual – PAM 20.24 1 6.84E-06 2.05E-05

360° sonar – PAM 5.55 1 0.02 0.06

Adjusted p-values (with Bonferroni correction) highlight post-hoc comparisons. PAM = passive acoustic monitoring. Significant p-values are in bold.
FIGURE 4

The number of manatee detections and detection frequency (%)
across three survey methods (visual point scan, 360° sonar, and
passive acoustics). Data are pooled across all ten sampling sites
and include all 12 monthly samples (n= 120 surveys for each
method).
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Sinclair, 1989; Buckland et al., 2015; Verfuss et al., 2018); e.g., the

manatee is within the acoustic range but does not vocalize or its

vocalizations are masked by ambient noise causing an

availability bias for passive acoustics.

Visual point scan was the method with the least manatee

detection frequency. Given the very low water transparency,

visual detection of manatees in Lake Ossa necessitates that the

manatee surfaces to breathe or create water bubbles and/or mud

at the water surface during their movements. Even though

surveys lasted one hour each and were done in silence,

manatees seem to prefer slow, cryptic movements that are

difficult to detect by humans from the surface. This behavior is

likely an adaptation to poaching as cryptic movements limit

their visual detectability and thus the likelihood of being spotted

by poachers. Most manatee visual detections during our survey

were opportunistic sightings (occurred when moving from one

area to another), whereby manatees fled when hearing the noise

of our boat engine, thus creating water bubbles and mud at the

water surface. Line transect surveys might be a more suitable

visual survey method in shallow water systems like Lake Ossa as

they cover a wider study area than point scans. When water

depth is low, abrupt manatee movements stir up bottom

sediments which change water color at the surface, thus

indicating manatee presence (mud plumes). Also, manatee

“footprints” created by tail movement during swimming can

be easily detected in Lake Ossa as the Lake is mostly calm

(Beaufort Sea state mostly between 0 and 2). However, all these

visual cues are less likely detectable in deeper and murkier water

systems. In this study, 50% of the monitored sites were invaded

by Giant Salvinia. This plant can completely cover the water
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surface, therefore hiding any visible sign of manatees (Figure 2)

and potentially causing availability bias for this method.

One limit of our surveys was that we do not know the

detection probability of each method as we were not sure

whether surveys with no positive detections of manatees were

due to the absence of manatees during surveys or to the failure of

the survey methods. In Lake Ossa, no animal is morphologically

similar to manatees nor produces similar visual cues

(“footprints”, air bubbles, mud plumes). Also, no animal

produces vocalizations that are similar to those of manatees.

Thus, the probability of false positive detection of manatees was

very limited for both survey methods. However, during this

study, a survey served as a positive control whereby detection

could be compared between methods as a manatee was known to

be present. Therefore, our study highlights that PAM is a

promising method of detecting African manatees, especially in

turbid habitats. PAM could be very useful in filling the many

gaps in African manatee ecology and lends itself to occupancy

modeling to understand the distribution and habitat use. There

is little literature on the influence of age and sex classes on

manatee vocalization rate but it known that this varies according

to the behavioral state, with milling and cavorting having the

highest (Bengtson and Fitzgerald, 1985). However, is it less likely

that the vocalization rate significantly influences occupancy

modelling as this type of models deals with presence/absence

rather than abundance data. Even in a context of low

vocalization rate, a single vocalization is enough to determine

presence. The value of passive acoustics can be further

strengthened if vocalizations are individually distinct, so that

the minimum number of manatees present could be calculated
FIGURE 5

African manatee detection frequency (%) of visual point scan, 360° sonar scan and passive acoustics at 10 sites of Lake Ossa. Each site was
sampled monthly for 12 months (n = 12 surveys per site).
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and population size estimated using mark-recapture analysis

techniques (Longden et al., 2020) and/or vocalization clustering

(Merchan et al., 2019). Longden et al. (2020) used mark-

recapture techniques of individually distinctive signature

whistles of common bottlenose dolphins (Tursiops truncatus)

to estimate their population size in Walvis Bay, Namibia. The

acoustically estimated population size was comparable to the

known population size in the area. Manatee vocalizations can

contain individually-distinctive parameters (Sousa-Lima et al.,

2002) that could serve in similar studies. Indeed, Merchan et al.

(2019) successfully used vocalization clustering to identify and

count Antillean manatees in Panamanian wetlands.

In addition to being the method with the highest detection

frequency, more than half (57.9%) of the overall manatee

detections were specific to passive acoustics. Thus, our overall

manatee detection frequency would have reduced by more than

half if we had used only 360° sonar and visual point scan

methods. One-fifth of manatee detections were specific to the
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360° sonar scan and none were specific to visual point scans. The

high ratio of specific passive acoustic detections could be because

PAM covered a wider detection range and that verified manatee

sounds are less subject to perception biases compared to the 360°

sonar and the visual point scans. Perception biases can be

human-based or can originate from environmental conditions.

Below we discuss which and how environmental conditions and

their interaction with the survey methods influenced

manatee detection.
4.2 Environmental conditions influencing
manatee detection

We built and fitted a binary logistic regression model

(GLMM) to our data to determine which and how

environmental conditions and their interaction with the survey

methods influenced manatee detection. Our model’s total
TABLE 3 Output of the binary logistic regression predicting African manatee detection in Lake Ossa as a function of water depth and
transparency and an interaction between the survey methods and Giant Salvinia invasion.

Detection

Predictors Log-Odds Odds Ratios CI Odds Ratios p

(Intercept) -2.82 0.06 0.01 – 0.67 0.022

Methods [Sonar.scan] -0.00 1.00 0.31 – 3.19 1.000

Methods
[Visual.point.scan]

-1.25 0.29 0.06 – 1.26 0.099

Invasion [Uninvaded] 2.76 15.78 3.07 – 81.00 0.001

Depth -1.13 0.32 0.12 – 0.84 0.020

Transp 2.15 8.60 2.13 – 34.67 0.002

Methods [Sonar.scan]
Invasion [Uninvaded]

-2.02 0.13 0.03 – 0.68 0.016

Methods
[Visual.point.scan]
Invasion [Uninvaded]

-2.92 0.05 0.00 – 0.76 0.030

Random Effects

s2 3.29

t00 Month/t00 Site 0.65/0.37

ICC 0.24

N Month/N Site 12/10

Observations 360

AIC 234.3

Marginal R2/Conditional R2 0.365/0.516

Somers’s Dxy/C 0.78/0.89

For each fixed effect, the log-odds (estimate), the odds ratio, confidence interval of the odds ratio (CI Odds Ratios) and the corresponding p-value (significant values at 5% error
threshold are in bold) are given in the table. Model fit parameters including the AIC (Akaike’s Information Criterion), marginal and conditional R2 and Somers’s Dxy rank correlation
and c-value are reported.
Significant P-values at 5% threshold are in bold.
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explanatory power was substantial (conditional R2 = 0.52;

Table 3) (Nakagawa et al., 2017). Moreover, the C-value and

Somers’s Dxy were respectively 0.89 and 0.78. C-values above 0.8

indicate strong predictive capacity (Baayen, 2008). Somers’s Dxy

ranges between 0 (complete randomness) and 1 (perfect

prediction) (Baayen, 2008). Thus, our model had a substantial

predictive power. Water depth and transparency, and an

interaction between Giant Salvinia invasion (invaded vs.

uninvaded) and the survey methods had significant predictive

effects on the likelihood of detecting African manatees in Lake

Ossa (Table 3).

The likelihood of detecting manatees decreased with

increasing water depth (Figure 6). The odds of detecting

manatees when water depth increases by one unit (1 m) is

0.32 (Table 3), meaning there was 68% less chance of detecting a

manatee when the water level increased by one meter. The

greater manatee detection probability in shallower water depths
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could be the result of the fact that in low water season, manatees

are constrained to converge in the lake basin rather than staying

in inaccessible areas, therefore increasing their detection

probability. Unfortunately, there is no available data regarding

the difference in the surface area of Lake Ossa between low and

high-water seasons. Inspecting this would help to better

understand manatee habitat use and better analyze the effect

of water depth on manatee detectability in Lake Ossa.

Conversely, the likelihood of detecting manatees increased

with higher water transparency (Figure 6). The odds of detecting

manatees in Lake Ossa was more than eight times higher when

water transparency increased by one meter (Table 3). Even

though our model did not highlight this, it is more likely to

visually spot manatees in higher water transparency (Takoukam

Kamla, 2012). Also, sonar images are of better water quality (and

thus increase chance of detection) when turbidity is low i.e., high

water transparency (Flowers and Hightower, 2013).
A

B

C

FIGURE 6

Plots illustrating the effects of water depth (A), transparency (B), and the interaction between survey methods and Giant Salvinia invasion (C) on
the probability of detecting manatees in Lake Ossa. PAM = passive acoustic monitoring. Error bars in plot C indicate 95% confidence intervals.
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Within the uninvaded area of Lake Ossa, the likelihood of

detecting manatees was significantly higher when using PAM

than the 360° sonar or the visual point scan methods (Table 4;

Figure 6). Unlike the two other methods, the probability of

detecting manatees through PAM was significantly higher

within the uninvaded areas than in areas invaded by Giant

Salvinia. For all the survey methods, the likelihood of detecting

manatees was greater within the uninvaded area. Manatees may

find it difficult to surface and breathe in invaded areas as Giant

Salvinia forms dense and thick carpets on the water surface.

Also, manatees in Lake Ossa are not known to consume Giant

Salvinia (Takoukam Kamla, 2019), and this invasive plant

competes with the major manatee local food plant (Antelope

grass). Thus, it is very likely that manatees prefer uninvaded

areas of the lake.
4.3 Recommendations for future
manatee surveys based on survey
methods and environmental conditions

In this study, we compared three methods in stationary

positions, PAM, 360° sonar, and visual point scan, to monitor

African manatees. One of the survey methods, PAM, accounted

for more than half of all positive detections. We recommend, in

the scenario of choosing only one of these methods, using PAM

in future manatee surveys. However, combining both PAM and

360° sonar is ideal, as it would increase detection probabilities.

PAM has the advantage of being non-invasive and passive (does

not require human control in-situ) and can cost-effectively cover

longer time-scales including night sampling. Indeed, deploying

acoustic devices over longer periods can improve the likelihood

of detecting target animals. This survey method would

particularly be useful in highly turbid water systems where

cues of a target species are difficult to visually detect. However,

underwater acoustic devices may be expensive to get

(particularly in low-income countries) and can only cover

limited survey areas, especially when the number of devices is

very limited. In shallow and calm water systems like Lake Ossa,

visual surveys would be more effective when water transparency
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is high. Line transects surveys could also be preferred to PAM

when the study aims to cover large survey areas in a time-

effective way. Similarly, when available, side-scan imaging would

be preferable to 360° imaging as the first allows covering larger

areas and can be coupled with line transects surveys to enhance

detectability. African, Amazonian, and Antillean manatees share

some common habitat characteristics (habitat turbidity and

depth). These recommendations could be applicable to other

manatee species and other species inhabiting similar habitats.
5 Conclusions

Passive acoustics clearly was more successful in detecting

African manatees than 360° sonar and visual point scans. The

visual point scan had a very low detection rate and was four

times less successful than the 360° sonar scan. When combined,

the 360° sonar and passive acoustics accounted for 100% of all

surveys with positive detections of manatees. In Lake Ossa the

likelihood of detecting manatees increases with higher water

transparency and shallower water depths and when moving

from areas invaded by Giant Salvinia to uninvaded areas. The

invasion of Giant Salvinia is likely influencing manatee

distribution in Lake Ossa. We recommend using passive

acoustics, or even better, the combination of passive acoustics

and 360° sonar to enhance manatee detection and by extension,

enhance our understanding of the very elusive African manatee.

Passive acoustics could further provide in-depth information on

African manatees and enhance their detection when acoustic

recorders are deployed over longer time periods. Visual surveys

may be more effective in clearer water systems and would be

preferable to PAM when aiming to maximise coverage in studies

with limited acoustic receivers and where limited sonar

detections can be expected.
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Ngafack, P. R. (2014). L’effet combiné de sites, de périodes et de saisons sur l’indice
de présence du lamantin (Trichechus senegalensis link 1795) et les caractéristiques
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