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Light is one of the most critical stimuli in the majority of living organisms. In the

last two decades, blue light (BL) has become a major subject of attention

because of developments in light-emitting diodes (LED). The effects of BL on

eukaryotic organisms and phototrophic prokaryotes have been well studied,

but the knowledge of its effects on non-phototrophic prokaryotes remains

unclear. Since BL can penetrate seawater, it is expected that most prokaryotes

living in the ocean possess molecular mechanisms which protect against BL.

The aim of this study is to assess the molecular mechanisms of Vibrio

parahaemolyticus cells against BL as a marine bacterial model compared to

other wavelength light exposures. Physiological and transcriptomic analyses of

BL-exposed cells compared to other light treated cells revealed the highest

ROS fold change, the highest number of differentially expressed genes (DEGs),

and up-regulation in the gene responsible to not only compatible solute such

as glycine betaine and ectoine but also iron-sulfur biosynthesis related to ROS

formation. Furthermore, red light (RL) up-regulated the expression of

cryptochrome DASH, a protein known to be excited by BL, and orange light

(OL) decreased the expression of thermostable direct hemolysin (TDH),

suggesting that OL attenuates the virulence of V. parahaemolyticus. In

addition, the expression of VtrA (V. parahaemolyticus type III secretion

system 2 (T3SS2) regulator A) but not VtrB (V. parahaemolyticus T3SS2

regulator B) increased under both light treatments, indicating that light

exposure is unlikely to be involved in T3SS2-mediated pathogenicity. These

results expand our knowledge on unique light responses in non-phototrophic

marine prokaryotes.
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Introduction

Living organisms respond to various environmental stimuli.

Among these stimuli, light is one of the critical stimuli for most

living organisms affecting their physiology, behavior, and

ecology (Correa et al., 2013; Tardu et al., 2017; Pattison et al.,

2018; Sánchez de Miguel et al., 2022). In the last couple of

decades, blue light (BL), defined to be 380 nm to 500 nm lights,

has become the subject of attention because of developments in

light-emitting diodes (LED) and its uses worldwide (Pattison

et al., 2018; Sánchez de Miguel et al., 2022). BL has been reported

to affect various eukaryotic organisms; e.g. acute melatonine

suppression in humans (Pattison et al., 2018), severe retinal

degeneration of the eye of rats (Grimm et al., 2001), survival of

the pupa Culex pipiens molestus (Hori et al., 2015), and

induction of photophobic response due to photoactivation of

adenylate cyclase in Euglena gracilis (Iseki et al., 2002; Ozasa

et al., 2017). Responses to BL in phototrophic bacteria have also

been well studied; e.g. negative phototaxis by illuminations of

360 nm ultraviolet A ray (UVA), 470 nm BL, and high intensity

red light (RL) between 600-700 nm in a Synechocystis (Choi

et al., 1999; Ng et al., 2003), repression of genes responsible for

structural proteins of the photosynthetic complex by BL

illumination in Rhodobacter sphaeroides under semi-aerobic

growth, and identification of the blue light-dependent sensory

transduction (Braatsch et al., 2002).

Since BL responses are likely to be present in all domains of

life, knowledge of BL effects has been also accumulated in non-

phototrophic bacteria (Ávila-Pérez et al., 2006; Tschowri et al.,

2009; Tardu et al., 2017; Yoshida et al., 2017 etc.), however, this

knowledge lags behind those on eukaryotes and phototrophic

prokaryotes. Currently, these are only a few reports on BL effects

on non-phototrophic bacteria; identification of various BL-

accepting domains such as Light-Oxygen-Voltage (LOV)

domain of YtvA protein in B. subtilis (Ávila-Pérez et al., 2006)

and the BLUF domain of YcgF protein in E. coli (Tschowri et al.,

2009), and BL triggered reactive oxygen species (ROS) increased

photo-oxidative stress in Porphyromonas gingivalis (Yoshida

et al., 2017) and V. cholerae (Tardu et al., 2017) cells. In B.

subtilis, sigma factor B (sB) regulated by the BL stimulus

triggered general stress responses (Ávila-Pérez et al., 2006), or

suppression of the metalloregulatory (MerR)-like repressor

protein YcgE after BL exposure through BLF domain of YcgF

protein affected the expression of downstream extracellular

polysaccharide and cholanate synthesis genes, which further

caused the formation of a thick biofilm (Tschowri et al., 2009).

An anti-sigma factor ChrR and a putative MerR were identified

as being responsible for BL response regulation in V. cholerae

(Tardu et al., 2017). In addition, molecular mechanisms of red-

light sensing by phytochromes and blue-light sensing by LOV

domain proteins have been well studied in plant associated

microbes (Beattie et al., 2018). Bacteriophytochromes function

to mediate light-regulated suppression of virulence, motility, and
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conjugation in some phytopathogens and light-regulated

induction of the photosynthetic apparatus in a stem-

nodulating symbiont (Beattie et al., 2018). Bacterial LOV

proteins also influence light-mediated changes in both

symbiotic and pathogenic phenotypes (Beattie et al., 2018).

BL can penetrate seawater deep in the ocean, so most

prokaryotes, even in non-phototrophic prokaryotes (Duanmu

et al., 2017), living in the ocean possess conserved or unique

light-accepting proteins and/or molecular mechanisms to

protect or respond to BL similar to those retained in terrestrial

prokaryotes (Tardu et al., 2017). In fact, different types of BL

photoreceptors such as phototropins, cryptochromes (CRYs),

and proteins containing BLUF domains and LOV domains to

sense the light have been identified in most of marine bacteria

(Tardu et al., 2017). However, not only the effects of BL against

marine bacteria but also the molecular mechanism in those cells

treated with BL have not been fully elucidated yet. V.

parahaemolyticus is a Gram-staining negative halophilic

bacterium that occurs widely in marine and brackish

environments, and it is associated with a wide variety of

marine animals (Shinoda, 2011; Gomez-Gil et al., 2014;

Matsuda et al., 2019a). Portion of strains in this bacterial

species show pathogenicity to not only humans but also

crustaceans (shrimps and crabs) (Gomez-Gil et al., 2014; Lee

et al., 2015; Zhang et al., 2016). V. parahaemolyticus and related

species live in both shallow and deep-sea environments

(Raguénès et al., 1997; Hasan et al., 2015), so unique

physiology and survival strategies of this lineage of bacterial

species against not only BL but also other light sources are to be

expected. Furthermore, genomic and transcriptomic analyses of

V. parahaemolyticus, in particular, using the strain RIMD

2210633 (serotype: O3:K6), reveals that major genes

responsible for the pathogenicity to humans are on the small

chromosome, presence of pathogenicity island, called V.

parahaemolyticus Pathogenicity Island, Vp-PAI, the presence

of two sets of genes responsible for type III secretion system

(T3SS), and the expression control by environmental stimuli

(Makino et al., 2003; Park et al., 2004a; Park et al., 2004b; Ono

et al., 2006; Sugiyama et al., 2008; Broberg et al., 2011; Shinoda,

2011; Matsuda et al., 2019a; Matsuda et al., 2019b). T3SS2 is on

the Vp-PAI (Matsuda et al., 2019a; Matsuda et al., 2019b).

Therefore, in both ecophysiological and evolutionary terms, V.

parahaemolyticus could be an excellent model marine bacterium

to study BL response because of their multiple occurrences in

both marine and human associated environments, and

accumulated knowledge on their genomes and gene

regulations. However, there is little knowledge on how V.

parahaemolyticus responds to BL, and how BL affects V.

parahaemolyticus cells, and the gene expression on the

pathogenicity (Pazhani et al., 2021). Here, we report the effects

of BL on V. parahaemolyticus survival and the cellular light

responses against BL compared to the effects of the other lights

such as UVC, orange light (OL) and red light (RL) as controls
frontiersin.org

https://doi.org/10.3389/fmars.2022.1037594
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kuroyanagi et al. 10.3389/fmars.2022.1037594
Materials and methods

Microbial strains and growth conditions

V. parahaemolyticus RIMD 2210633 (serotype O3:K6) was

used in this study. The strain was kept at -80°C in 20% glycerol.

In each experiment, the glycerol stock was recovered, purified,

and used for later experiments. For preculture, the strain was

cultured in 100 mL of Tryptic Soy Broth (Becton, Dickinson and

Company, New Jersey, USA) supplemented with 2% NaCl (TSB

+2% NaCl) using a rotary shaker (FMC-100, EYELA, Tokyo,

Japan) at 120 rpm, 37°C, for 16 hours in darkness. The 1 mL of

preculture was inoculated into 100 mL TSB+2% NaCl, and then

cultured using a rotary shaker at 120 rpm, 37°C, in darkness,

until the optical density of cell suspension reached 0.5 at OD620.

The culture was transferred to two 50 mL Falcon tubes, and then

cells were harvested using centrifugation at 5,000×g for 10 min at

25°C (Avanti HP-26 XP, BECKMAN COLTER, Japan, Tokyo).

The pellet was washed twice using Potassium Phosphate Buffer

(PPB; 1.4 g K2HPO4, 0.6 g KH2PO4, 20 g NaCl, 1 mL of 100 mM

EDTA up to 1 L distilled water) supplemented with 2% NaCl

(PPB+2% NaCl), suspended in 30 mL of PPB+2% NaCl, and

then used for the light exposure experiments.
Light exposures

All the following experiments were performed in a dark

room. A total of 2 mL of cell suspension was dispensed to

disposable polystyrene dishes (40 mm in diameter and 13.5 mm

in height), and then exposed to UVC (253.7 nm), BL (minimum

wavelength (min.WL): 426 nm, maximum wavelength

(max.WL): 525 nm, peak wavelength (peakWL): 456 nm), OL

(min.WL: 500 nm, max.WL: 860 nm, peakWL: 620 nm) or RL

(min.WL: 584 nm, max.WL: 860 nm, peakWL: 634 nm). For BL,

OL, and RL experiments, each light from a fiber light source

(FIBER OPTIC LIGHT SOURCE, Nikon, Japan) was selected

using a filter (BL, OL: Spectral Line Band-pass Filter, Sigmakoki,

Japan, RL: Sharp Cut Filter, Sigmakoki, Japan), photon flux

density of each was adjusted to 50 µmoles/m2/s, and then it was

exposed to the cell suspension for 45 minutes. Due to extreme

high bactericidal effects of the UVC at the same photon flux

density of BL, OL, and RL, the UVC exposure was shortened to

30 seconds using a germicidal lamp (60 µW/cm2, Germicidal

lamp GL-4, Panasonic, Japan). The dark control cells were

prepared in the same manner without any light exposures, and

used as a negative control to compare physiological states and

transcriptomic profiling of the light exposed cells.

To set time for exposure of BL, OL and RL in RNA-Seq

experiments, the time to maximize ROS production was selected.

For setting the time for the UVC exposure, the time giving a 50%

cell survival rate was selected.
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Survival rate

Viable bacterial counts were counted using the dilution plate

method. Cell suspension was inoculated onto Tryptic Soy Agar

supplemented with 2% NaCl (2% NaCl+TSA) (Becton, Dickinson

and Company, New Jersey, USA), incubated at 37°C, and then

viable bacterial colonies were counted. Viable bacterial counts of

the cell suspension exposed to each light versus those left to stand

in darkness (control) were measured as the survival rate. Using

various light irradiation times from 10 seconds to 60 seconds in

UVC, and in BL, OL and RL from 15 minutes to 60 minutes,

changes in survival rates were measured.
Measurement of damaged cells

Live/Dead Cell Staining Kit (BioVision, San Francisco, USA)

was used for the measurement of the damaged cells after light

exposures. SYTO9 in SolutionA can stain all bacterial cells with

not only intact cell membranes but also damaged cell

membranes, but propidium iodine in SolutionB can only

permeate damaged cell membranes and weaken the SYTO9

fluorescence, so bacterial cells with damaged cell membranes

were red fluoresced. The V. parahaemolyticus cell suspensions

after light exposures were centrifuged, washed, and suspended in

2% NaCl+PPB. These cell suspensions were used for the Live/

Dead staining according to manufacturer’s instruction. A dark

control and a dead cell sample suspended in 70% of 2-propanol

were prepared to confirm the staining had completed. In brief,

500 µL of cell suspension was dispensed to a sterilized 1.5 mL

tube, and then mixed with 1.5 µL of the staining mixture

comprised of SolutionA : SolutionB=1:1 at room temperature

in the dark for 15 minutes. The stained live and dead cells were

observed using a fluorescence microscope (Axiophoto, Zeiss,

Oberkochen, Germany) at excitation spectra of 400 nm and 490

nm, and the number of cells in each was enumerated. The ratio

of cells with damaged cell membranes was calculated based on

total stained cells.
Assessment of photo-oxidative stress

DCF-DA (2’,7’-Dichlorofluorescin diacetate, SIGMA-

ALDRICH, St. Louis, USA) was used to detect total ROS

product ion. After harvest ing and washing the V.

parahaemolyticus cells, the cells were suspended in 29.97 mL

of 2% NaCl+PPB, the 30 µL of 10 mM DCF-DA solution was

added and left to stand at 37°C for 30 minutes. A total of 2 mL of

stained cell solution was dispensed to disposable dishes and

exposed to each light type. The RFU (Relative Fluorescein Units)

was measured using a microplate reader (Infinite200, TECAN,

Männedorf, Switzerland) at excitation and emission spectra of
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485 ± 20 nm and 535 ± 25 nm, respectively. Similarly, the RFU of

cells kept in darkness was measured as a control. We made a

comparison between the RFU of the control cells and the cells

exposed to light, and calculated ROS fold change based on

triplicate samples.
Measurement of damaged cells in
outer membrane

The ratio of cells damaged in the outer membrane was

calculated based on a viable cell percentage obtained from the

number of viable bacterial counts on TCBS (Nissui, Tokyo,

Japan) compared to that on 2% NaCl+TSA (O'Brien and

Colwell, 1985; Alam et al., 2001). The bacterial solutions

exposed to each light type and left to stand in darkness as

controls were prepared, and then viable bacterial counts were

counted on 2% NaCl+TSA and TCBS. The UVC exposure time

was set at 30 seconds. The BL, OL, and RL exposure time was set

at 45 minutes. The damage to the outer membrane caused by

light exposure was then evaluated.
RNA extraction, purification, and RNA-Seq

The 250 µL of cell solution treated with each type of light stress

or the dark control were added to 750 µL of TRIzol®LS Reagent

(Life Technologies™, New Jersey, USA), mixed well, and then

stored at -80°C. Total RNA was isolated from each sample

according to the manufacturer’s instructions. Isolated total RNA

was treated using RQ1 RNase-Free DNase (Promega, Milwaukee,

USA) to decompose residual DNA, and then purified using the

RNeasy Mini Kit (Qiagen, Maryland, USA). The purity and

concentration of total RNA was measured by spectrophotometer

(BioSpectrometer, Eppendorf, Hamburg, Germany). Sufficient

concentrations of RNA (above 10 µg/µL) were used for RNA-Seq.

RNA-Seq was performed by the Genome Information Research

Center, Research Institute for Microbial Diseases, Osaka University

(Osaka, Japan). In brief, the composition of total RNA was

measured by Agilent2100 Bioanalyzer (Agilent technologies,

California, USA). After removal of rRNA from total RNA by

using the Ribo-Zero Removal Kit (Bacteria) (Epicentre, California,

USA), the amount of RNA above 10 µg/µL was confirmed, and then

the library for RNA-Seq was manufactured by using the TruSeq

Stranded mRNA Sample Prep Kit (Illumina, California, USA)

without poly-A selection. Single read sequences of 75 bp were

obtained by HiSeq2500 (Illumina, California, USA).
Bioinformatic analyses

For quality control, mapping, and analysis of the amount of

gene expression levels, Genome Traveler (ver. 3.0.48, In Silico
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Biology Inc, Yokohama, Japan) was used. All sequencing reads

were filtered at Quality Volume (QV)=25. Filtered reads were

mapped on the reference genome sequences, each on both

chromosome 1 and 2, of V. parahaemolyticus RIMD 2210633

by LAST. After mapping the reads, the RPKM values and

mapped read counts on each CDS were outputted. Firstly,

RPKM values of dark control and BL exposed cells were

compared, and genes showing changes above or below two-

fold were identified as Set1B.Genes (Tardu et al., 2017). In the

same ways, Set1O.Genes, Set1R.Genes, and Set1U.Genes were

identified under OL, RL, and UVC, respectively.

Secondly, for the normalization of mapped gene counts and

the statistic test assumed negative binominal distribution,

“DESeq” (ver.1.30.0, http://www.bioconductor.org/packages/

release/bioc/html/DESeq.html) which is one of the R (ver

3.4.3, https://www.r-project.org/) package was used with the

following parameters: p-value and q-value were less than 0.05

to mine Differentially Expressed Gene (DEG) (Anders and

Huber, 2010). In each light exposure, DEGs were identified by

comparison to the dark control, and then DEGs were set as

Set2B.DEGs, Set2O.DEGs, Set2R.DEGs, and Set2U.DEGs,

respectively. For further functional analysis, the expression

values of Set2B.DEGs under each light type were log2

transformed, and hierarchical clustering was performed on

genes using the Euclidian distance with centroid method using

the gplots program, which is one of the programs in the R

package. After clustering expression values of Set2B.DEGs, a

heatmap was generated using the gplots program. The DEGs

under each light type were annotated using Rapid Annotation

using Subsys tem Technology (RAST, vers ion 2 .0 ,

rast.nmpdr.org/rast.cgi) (Overbeek et al., 2014), and more

detailed protein information was obtained using UniProtKB

(http://www.uniprot.org/uniprot/?query=taxonomy:223926).

Furthermore, the KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathways were identified using DAVID (https://

david.ncifcrf.gov/home.jsp) with a p-value<0.05 (Huang et al.,

2007). Also, Gene Onthology (GO) terms and enrichment scores

were obtained by DAVID with a p-value<0.05, and then network

diagrams of GO terms were drawn. As for genes annotated as

hypothetical, similar domains and proteins were searched using

the HMMER web tool (https://www.ebi.ac.uk/Tools/hmmer/)

(Finn et al., 2011). Pfam (http://pfam.xfam.org/) was also used

for protein domain search.
Statistical analysis of viable cell counts
and ROS measurement data

A Shapiro-Wilk test was performed to test whether data was

sampled from the normal population. In the Shapiro-Wilk test,

the significance level was tested at 5%, and in the case of p-

value<0.05, it was judged that the data did not follow the normal

distribution. When the data did not follow normal distribution,
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a Wilcoxon rank sum test or Wilcoxon singed-rank test was

performed to compare each light stress with the same exposure

time or light exposure time in the same color light stress. After

that, to compare each light stress, p-value was corrected using

Tukey’s Honestly Significant Difference (Tukey’s HSD), and

comparison for each light exposure time, FDR was adjusted

using the Benjamini-Hochberg method (Benjamini and

Hochberg, 1995). When q-value<0.05 was satisfied, there was a

significant difference. On the other hand, data following the

normal distribution was tested for equal variances using the

Bartlett test. In the Bartlett test, the significance level was tested

at 5%, and in the case of p-value<0.05, it was judged that the data

was of unequal variance. For unequal variance data, comparison

between the two groups was performed in the same way as the

method of testing data not following the normal distribution. In

the case where the data was of equal variance, after analysis of

variance by ANOVA, a paired t-test was performed for

comparison of each light stress with the same exposure time,

and Student’s t-test was performed for comparison of light

exposure time in the same color light stress. After that, to

compare each light stress, p-value was corrected by Tukey’s

HSD, and comparison for each light exposure time, FDR was
Frontiers in Marine Science 05
adjusted using the Benjamini-Hochberg method (Benjamini and

Hochberg, 1995). When q-value<0.05 was satisfied, there was a

significant difference.
Results

Survival rate and cell damage by
light exposures

In UVC exposure, the survival rate decreased along with

exposure times, and the survival rate decreased to below 50%

after 30 seconds exposure (Figure 1A). On the contrary, the

exposure time did not affect the survival rate (p> 0.05) under BL,

OL, and RL exposure (Figure 1B).

The ratio of cells with damaged plasma membranes under

UVC, BL, OL and RL were 5.0, 3.5, 6.8 and 3.0%, respectively, and

little bactericidal effects were observed under these light

exposures, nevertheless, the ratio of cells with damaged

membranes after 2-propanol treatment reached 76% (Figure 1C).

The ratio of cells with damaged outer membranes was

32.7%, 39.1%, 29.1% and 39.7% under dark, UVC, RL and OL,
A
B

D
C

FIGURE 1

Survival rate and cell damages of Vibrio parahaemolyticus after exposure of various lights. (A) Time course of survival rate after UVC exposure. UVC
dose was set at 60 mW/cm2. (N = 3, mean ± standard deviation). (B) Time course of survival rate after BL, RL, and OL exposures. Photon flux density
was set at 50 µmoles/m2/s. (N = 3, mean ± standard deviation). (C) Cell membrane damage. (D) Outer membrane damage (N = 3, mean ± standard
deviation). For (B, D), no statistical significance was detected.
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respectively, whereas it increased to 55.2% under BL (Figure 1D).

However, there was no significant difference in the ratio in any

light treatments (p>0.05).
BL makes Vibrio parahaemolyticus
form ROS

Under BL exposure, ROS increased along with exposure

times, and reached around 100 times that of dark control cells

after exposure for 45 minutes (Figure 2A). However, there was

no significant difference in the value of ROS fold change of 30-,

45-, and 60-minutes BL exposure (p>0.05). On the other hand,

under RL and OL treatments, ROS fold changes did not change

significantly over time (Figures 2A, S1). Although ROS tended to

increase under UVC exposure, there were no significant

differences (Figure 2B).
BL affects the largest number of
gene expression

Under each light stress treatment, 899, 835, 638 and 288

genes were identified as Set1B.Genes, Set1O.Genes Set1R.Genes,

and Set1U.Genes, respectively (Figure S2). Set2B.DEGs,

Set2O.DEGs, Set2R.DEGs and Set2U.DEGs were identified as

77 (up:63, down:14), 59 (up:43, down:16), 76 (up:51, down:25)

and 9 (up:0, down:9), respectively (Figure 3). In all light

exposure, Set2.DEGs were included in the Set1.Genes. Only

three genes were found as common DEGs (VP1941: gene

similar to carboxynorspermidine dehydrogenase, VP2757: gene

similar to argininosuccinate synthase, VP2758: gene similar to

acetylglutamate kinase) with down-regulation under all light

exposures (Figure 3). The highest number of genes with variable

expression was observed in the BL treatment (Figure 3 and Table

S1). All Set2.DEGs were conserved among V. parahaemolyticus
Frontiers in Marine Science 06
strains based on genome BLAST searches. Therefore, subsequent

functional and pathway analyses on Set2B.DEGs were

further performed.
Genes responding to BL are
mostly solute- and iron-sulfur
cluster-related genes

Unique Set2B.DEGs were counted to be 28 (Figure 3 and

Table S1). For further visualization of the changes in gene

expression by BL exposure, we performed clustering and heat

mapping of Set2B.DEGs (Figure 4). A total of 14 DEGs in

Set2B.DEGs were found to have over 30-fold changes, and

these 14 DEGs were newly designated as Set3.DEGs (Table S2).

KEGG enrichment analysis of Set2B.DEGs revealed

significant upregulation (p<0.05) of three pathways: 1) glycine,

serine and threonine metabolism, 2) phenylalanine, tyrosine and

tryptophan biosynthesis and valine, and 3) leucine isoleucine

degradation (Table S3). All pathways are involved in amino acid

metabolism, and genes related to glycine, serine and threonine

metabolism were most significantly up-regulated (p<0.05). The

only pathway significantly down-regulated (p<0.05) was

arginine biosynthesis (Table S3). Two photolyase genes,

VPA0204 and VPA1471, were up-regulated (Table S1).

GO term enrichment analysis of Set2B.DEGs revealed 22

significant (p<0.05) GO terms, 19 of which belonged to

biological processes, 3 to molecular functions, and none to

cellular components. GO terms detected as biological

processes were divided into five groups, and the lowest GO

terms in each group were 1) glycerol-3-phosphate metabolic

processes, 2) protein-chromophore linkage processes, 3) glycine

betaine biosynthetic processes from choline, 4) iron-sulfur

cluster assembly, and 5) arginine-glutamine family amino acid

biosynthetic process. Glycerol-3-phosphate metabolic processes,

protein-chromophore linkage, glycine betaine biosynthetic
A B

FIGURE 2

Time course of ROS generation after light exposures. (A) BL, OL, RL exposures (N=5, mean ± standard deviation) (see Figure S1 for a scale
enlarged bar plot for OL and RL). (B) UVC exposure (N=5, mean ± standard deviation). For (B), no statistical significance was detected.
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processes from choline, and iron-sulfur cluster assembly were

significantly (p<0.05) up-regulated. The group of GO terms

significantly (p<0.05) down-regulated was the Arginine-

Glutamine family amino acid biosynthetic process (Figure 5A).

Of the five groups of GO terms, the glycine betaine biosynthetic

process from choline was the most abundant in Set2B.DEGs.

Glycine betaine is known to be a compatible solute for V.

parahaemolyticus. Ectoin synthesis gene (ectA), another known

compatible solute, was also upregulated. On the other hand,
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GO terms detected as molecular functions were divided into two;

1) 2 iron, 2 sulfur cluster binding and 2) tryptophan synthase

activity (Figure 5B). Both GO terms were assigned to up-

regulated DEGs.

With the exception of VP1119, VP1120, and VP1123,

Set3B.DEGs were identified to be hypothetical proteins (Table

S2). But further domain searches predicted that VP1121 and

VP1125 had significantly (E-value <0.01) similar domain

proteins (Table S4). VP1121 were suggested to have functional
FIGURE 3

Venn diagram of Set2.DEGs. Blue, orange, red and purple color indicate BL, OR, RL and UVC exposure, respectively. A total of 77, 59, 76, and 9
genes were identified as Set2B, Set2O, Set2R, and Set2U.DEGs, respectively. The largest number of BL unique DEGs was observed.
FIGURE 4

Heatmap of Set2B.DEGs. See Table S1 for gene product function. Expression levels are represented by color: green, higher expression level; red,
lower expression level based on Log2 fold change.
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domains related to cofactors and coenzymes such as flavin and

NAD(P). On the other hand, VP1125 was found to have

domains similar to chalcone isomerase-like proteins, but

chalcone biosynthesis pathways have never been found

in prokaryotes.
RL and UVC-specific responsive genes

In Set2DEGs, 17 DEGs responded in an RL-specific manner

(Figure 3 and Table S1). For RL-specific DEGs, GO term

enrichment analysis was performed and a network diagram

was drawn (Figure S3). The GO terms for biological processes

were obtained, and there were no significant up-regulated terms

among them (p>0.05). Down-regulated terms yielded a group of

GO terms for arginine-glutamate family metabolism (p<0.05)

(Figures S4, S5). DEGs responded to UVC were trpE (VP1956)

and trpG (VP1957) related to tryptophane biosynthesis, and

oligopeptide ABC transporter (VP2088) (Table S1 and Figure

S6). All three were downregulated.
There were genes on Vp-PAI that
commonly responded to light stress

No genes on Vp-PAI were included in Set2.DEGs, but 6, 2, 6

and 1 Set1.Genes on Vp-PAI after BL, RL, OL and UVC

exposures, respectively, were found (Table S5). The expression

of VPA1332 (vtrA) tended to increase under all light stresses.
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VPA1314 (thermostable direct hemolysin A) and VPA1378

(thermostable direct hemolysin S) were likely to be down-

regulated by OL exposures.
Discussion

There is growing interest in the light response of all domains

of life in the perspective of evolutionary conservation of

physiological effects (Correa et al., 2013; Tardu et al., 2017;

Pattison et al., 2018; Sánchez de Miguel et al., 2022). Since BL

can penetrate deep in the ocean, it is assumed that there are non-

photosynthetic marine bacteria that maintain unique BL

responses (Duanmu et al., 2017; Tardu et al., 2017). In fact,

the BL response has been examined in V. cholerae and the ROS

triggered photooxidative stress response though an anti-sigma

factor, ChrR, and a putative metalloregulatory-like protein,

MerR, was proposed (Tardu et al., 2017). Three genes

(VC1392, VC1814, and VCA0057) encoding cryptochrome/

photolyase family (CPF) members were up-regulated, but uses

of knockdown mutants did not identify these genes to be

involved in BL-mediated responses (Tardu et al., 2017). No

genes responsible to pathogenicity and virulence of V. cholerae

were DEGs responding to BL (Tardu et al., 2017). V.

parahaemolyticus may have various adaptive capacities because

of the diversity of its habitat and pathogenicity, but knowledge of

the response of V. parahaemolyticus to not only BL but also the

other types of lights is limited (Pazhani et al., 2021). In this

study, our aim is to elucidate light responses of V.
A B

FIGURE 5

GO term enrichment analyses ofSet2B.DEGs. (A) Biological process, (B) Molecular function. Circles represent each GO term; up-regulated GO
terms are shown by red to yellow, and down-regulated GO terms are shown by blue to cyan. GO terms closed to red and blue colors are
significantly regulated based on p-value.
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parahaemolyticus based on physiological and transcriptome

experiments. Not surprisingly, BL exposure regulates gene

expression through ROS in V. parahaemolyticus, similar to V.

cholerae, which possesses photolyase/cryptochrome (CPF)

member proteins as the sole BL photoreceptors (Tardu et al.,

2017). In addition, BL also up-regulated the gene responsible for

not only CPF members but also compatible solute such as

glycine betaine and ectoine, and iron-sulfur biosynthesis

related to ROS formation in V. parahaemolyticus .

Interestingly, OL was likely to repress the TDH expression,

suggesting that OL may attenuate the virulence of V.

parahaemolyticus. In addition, the expression of VtrA but not

VtrB increased under RL and OL treatments, indicating that

light stress is unlikely to be involved in T3SS2-mediated

pathogenicity. Each light stress response is further

discussed below.
Physiological effects of each light on
Vibrio parahaemolyticus

UVC induces a significant decrease in survival rates of V.

parahaemolyticus without ROS accumulation. On the contrary,

BL did not cause decreases in cell viability and survival but

significant increases in ROS accumulation in this bacterium. As

in V. cholerae , BL triggers ROS production in V.

parahaemolyticus. In V. cholerae, extracellular ROS is formed

by the reaction of Na+-NQR (Na+-driven NADH-quinone

oxidoreductase) on the cell membrane (Lin et al., 2007), so it

is possible that in V. parahaemolyticus, ROS production by BL

exposure may be similar to that in V. cholerae. OL or RL

irradiations were unlikely to affect not only cell viability but

also the ratio of dead bacteria, neither in ROS accumulation.
Gene expression by BL exposure

Compatible solutes, iron-sulfur cluster biosynthesis genes,

ROS responsive genes, and light recovery enzyme genes were

significantly up-regulated by BL treatment, each feature is

discussed below.
Solute biosynthesis genes are
upregulated by BL treatment

GO term enrichment analysis of Set2B.DEGs showed that

the glycine betaine biosynthesis pathway from choline (betABI;

VPA1112, VPA1113, VPA1114) and its transporter, the ABC

transporter gene VPA1111, as well as the ectoin synthesis gene

(ectA; VP1722) were significantly up-regulated. KEGG

enrichment analysis showed a significant increase in the
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glycine biosynthesis pathway, indicating that BL exposure up-

regulates metabolic pathways related to glycine betaine.

VPA1111, VPA1112, VPA1113, and VPA1114 were also found

in the Set2O.DEGs. Glycine betaine, also called trimethylglycine,

and ectoin are synthesized as compatible solutes in V.

parahaemolyticus and are involved in osmotic adaptation

(Ongagna-Yhombi and Boyd, 2013), but ectoin is the only

compatible solute in V. cholerae, and that is from aspartic acid

(Pflughoeft et al., 2003). In V. parahaemolyticus, these solutes are

synthesized in a growth phase-dependent manner under high

salinity (6% NaCl) conditions (Ongagna-Yhombi and Boyd,

2013), and betABI expression has also been reported to

increase with temperature stress (Ma et al., 2017). As

discussed later, the up-regulation of betABI was observed after

OL exposure as well, that might be caused by temperature stress.

As OL is more easily absorbed by water than BL, which may

cause a temperature change in cellular fluid fraction, so

significant up-regulations of solute-related genes by BL might

be triggered to metabolize precursors of each osmolyte. The BL

induced osmolyte gene expressions need to be elucidated in

the future.
Expression of iron-sulfur cluster
biosynthesis genes is also increased by
BL treatment

GO term enrichment analysis of Set2B.DEGs revealed a

significant increase in the expression of iron-sulfur cluster

biosynthesis genes: iscU (VP0597), iscA (VP0598), hscB

(VP0599), hscA (VP0600) and ferredoxin (VP0601). Iron-

sulfur clusters are coordinately bound within proteins in the

form of 2Fe-2S and 4Fe-4S and are involved in chemical

reactions as Rieske centers (Conte and Zara, 2011). Iron-sulfur

clusters are present in all organisms and are involved in many

vital cellular processes such as respiratory chain, central

metabolism, gene expression regulation, RNA modification,

and DNA repair and replication (Py and Barras, 2010). When

iron-sulfur clusters are destabilized by ROS, their structure

changes and iron ions are released, and further ROS are

formed by Fenton reactions between hydrogen peroxide, one

of the ROS, and free iron ions (Remes et al., 2015). There are

three iron-sulfur cluster synthesis systems in bacteria, ISC, SUF,

and NIF (Py and Barras, 2010; Remes et al., 2015), and based on

annotation results, ISC and NIF-related genes were present in V.

parahaemolyticus. In this study, BL exposure increased the

expression of a series of iron-sulfur cluster synthesis systems

(ISC machinery; iscRSUA, hscA/B and Ferredoxin), which are

controlled by the transcriptional regulator iscR. This is

presumably explained that the ROS produced by BL exposure

deprived the iron-sulfur clusters in the iron-sulfur protein of

iron ions, and ISC was activated to compensate for this
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deprivation. In addition, since free iron generates ROS, the

increased expression of ISC in V. parahaemolyticus may

indicate the generation of new ROS.
Genes responsive to ROS

In V. cholerae, ROS is formed by Na+-NQR and coenzyme Q,

causing transcriptional regulation through the transcriptional

regulators ChrR and MerR-like regulators; ChrR is an anti-sigma

factor that represses sE (Tardu et al., 2017); MerR-like regulators

are transcriptional activators which respond to oxidative

transcriptional activators that respond to stimuli such as stress,

heavy metals, and antibiotics (Brown et al., 2003). Therefore, we

investigated whether Set2B.DEGs contain genes encoding similar

proteins or not, and found a ChrR (VP2357) and a MerR-like

regulator (VPA1472) genes, whose expression levels were 28.8- and

41.1-fold higher than those of dark control, respectively. Thus, it

was suggested that gene expression is regulated by ROS in V.

parahaemolyticus similar to that inV. cholerae. It was also suggested

that LitR, a MerR-like regulator in Streptomyces griseus, may not

only be involved in transcriptional regulation but also act as a

photoreceptor sensor (Takano et al., 2006). However, no

photoreceptor PAS (Per Arnt Sim) domains in MerR-like

regulators similar to those in Streptomyces griseus were found in

V. parahaemolyticus. Thus, the MerR-like regulator of V.

parahaemolyticus is not involved in photoreception. Glutathione

peroxidase was also among the BL-specific DEGs (Table S1).

Glutathione peroxidase is an enzyme that primarily converts

glutathione oxidized by ROS back to its reduced form (Miyamoto

et al., 2003), confirming that BL can activate ROS removing

mechanisms in V. parahaemolyticus.
BL irradiation increased expression of the
cryptochrome/photolyase family

V. parahaemolyticus possess VPA0203 (cryptochrome DASH),

VPA0204 (putative photolyase) and VPA1471 (CPD photolyase;

Cyclobutane Pyrimidine Dimer photolyase) as known BL response

protein genes (Su et al., 2015). These three proteins belong to the

cryptochrome/photolyase family (CPF), which are light-recovery

enzymes known to be stimulated by BL, and directly repair CPD,

DNA dimerization damages. Cryptochrome DASH mainly repairs

CPD on single-stranded DNA, while CPD photolyase repairs CPD

on double-stranded DNA (Kavakli et al., 2017). In this experiment,

all CPFs of V. parahaemolyticus were found in Set2B.DEGs,

confirming that BL exposure enhances direct DNA repair

capacity. These genes similar to CPF members were candidates

for BL-receptor proteins, but these genes were similar to genes up-

regulated under BL exposure in V. cholerae, not being involve in

BL-mediated gene expression (Tardu et al., 2017).
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Based on the clustering of expression values for Set2B.DEGs,

Set3.DEGs included gene sets VP1119, VP1120, VP1122, VP1123,

VP1124, VP1125, and VP1126, which are thought to be co-

expressed. VP1123 is a gene encoding a putative cyclopropane

fatty acid phospholipid synthase (CFA synthase); CFA is a

component of bacterial cell membrane lipids, and CFA synthase

forms cyclopropane rings on unsaturated fatty acids in membrane

phospholipids using S-adenosylmethionine as a methyl donor

(Zhang and Rock, 2008), and CFAs have been reported to protect

cells from various injuries. In E. coli, it has been reported that CFAs

are formed by heat and pressure stress treatment (Chen and Gänzle,

2016). It has also been reported that under oxidative stress, CFA

decreases the proton permeability and efflux capacity of the plasma

membrane and maintains intracellular pH homeostasis (Shabala

and Ross, 2008). Furthermore, increased CFA synthase gene

expression has been observed in V. cholerae upon BL irradiation,

which is thought to protect cells from ROS and minimize their

susceptibility to further oxidative damage (Tardu et al., 2017).

Therefore, the reason for the lack of an increase in plasma

membrane-damaged dead cells may be that CFA synthases

prevent oxidative damage to membrane lipids by ROS by

modifying plasma membrane phospholipids. Furthermore,

Set2B.DEGs contained a blc-like gene (VPA1018) encoding the

lipoprotein Blc, but not Set3DEGs, and its expression level was 11.4-

fold higher in the dark control cells upon BL irradiation. It has been

suggested that BL damages the outer membrane via ROS, and the

expression of blc increased in response (Campanacci et al., 2006).

The above suggests that the reason for the increases in numbers of

outer membrane-damaged cell but not in those of plasma

membrane-damaged dead cells under BL exposure may be a

protection of the plasma membrane by addition of cyclopropane

rings by CFA activity.
Genes expression by RL and
OL exposures

GO term enrichment analysis of RL-specific responsive DEGs

revealed that the arginine biosynthetic pathways (VP2653, VP2756,

and VP2759) were reduced. GO term enrichment analysis of

Set2B.DEGs also showed a decrease in the arginine-glutamate

family biosynthetic pathway. DEGs also contained arginine

biosynthesis genes, which were also reduced in both Set2O.DEGs

and Set2U.DEGs. These results indicate that this amino acid

biosynthesis pathway is suppressed in general light stress. Broad

Set2DEGs comparison revealed that arginine metabolism-related

genes were well repressed by RL and OL (Figure S3). KEGG

pathway mapping further identified N-acetylglutamate

semialdehyde is synthesized from glutamate (VP2371, VP2756,

VP2758, VP2759) and arginine from ornithine (VP2653, VP2756,
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VP2757) were well suppressed under RL exposure (Figure S4).

Those pathways were also suppressed to almost the same extent

under OL exposure. Thus, it was suggested that the arginine

biosynthetic pathway of V. parahaemolyticus is completely

suppressed by RL and OL exposures. In addition, the glutamate

biosynthesis gene, which is required for arginine biosynthesis, was

not included in all Set2.DEGs, and only the arginine biosynthesis

gene was significantly suppressed (p<0.05). Thus, the reason for the

suppression of arginine biosynthesis may be that glutamate was

required for the biosynthesis of another metabolite. Glutamate is

involved in a variety of metabolisms, including amino acid

metabolism such as histidine and purine, nitrogen metabolism,

glutathione metabolism, porphyrin metabolism, and butyrate

metabolism. Glutamate may be used for the synthesis of

glutathione, an antioxidant known as an antioxidant protection

mechanism against ROS (Reynolds and Hastings, 1995), but it is

not known whether RL and OL exposures resulted in much lower

ROS accumulation than BL, and this could not be the reason why

RL and OL most inhibited arginine biosynthesis. In addition, since

glutamate is one of the compatible solutes of V. parahaemolyticus

(Ongagna-Yhombi and Boyd, 2013), it is possible that glutamate is

accumulated intracellularly to counteract light stress.

In addition, OL exposure reduced the expression of tdh1

(VPA1378) and tdh2 (VPA1314) to less than half that in dark

control. Tdh is related to Kanagawa phenomenon (Sakazaki

et al., 1968; Nishibuchi and Kaper, 1995; Shinoda, 2011). These

genes were found only in Set1O.DEGs, suggesting that OL may

not strengthen the virulence of V. parahaemolyticus.
Genes expression by UVC exposure

Genes that responded in a UVC-specific manner were trpE,

trpG and oligopeptide ABC transporters involved in tryptophan

biosynthesis, all of which were downregulated. The heatmap of the

regulation of trpL, trpE, trpG, trpC, trpB1, and trpA genes on the

tryptophan operon (trp operon) under light irradiation showed that

their expression tended to increase under BL, OL, and RL

irradiation, while their expression decreased under UVC

irradiation (Figure S5). The trp operon is a set of genes whose

transcription is repressed when tryptophan is abundant and

activated when tryptophan is deficient. The reason for this may

be that the initial response to UVC irradiation is rapid biosynthesis

of tryptophan, but once the concentration reaches a certain level in

the cell, it may shift toward repression of transcription of the trp

operon. In addition, tryptophan, an aromatic amino acid, has been

reported to absorb UVC and UVB at 260-305 nm (Holiday, 1936).

Furthermore, it has been shown that when tryptophan-containing

DNA solutions are exposed to UVCs, tryptophan preferentially

absorbs UVCs and reduces DNA damage (Oladepo and Loppnow,

2010). Therefore, it is possible that tryptophan is synthesized to

protect DNA from UVC-induced DNA damage, and intracellular
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tryptophan concentration and localization should be measured

before and after UVC irradiation.

UVC is also known to decrease viability and cause

dimerization damage to DNA, which is thought to activate

DNA repair mechanisms, but DNA repair-related genes were

not found in Set2U.DEGs. This could be because the UV

intensity was too intense or because the 30-second irradiation

did not stress all the bacterial cells.
Pathogenicity and light stress

VPA1332 was upregulated under all light stresses. The

VPA1322 product is named to be VtrA, a membrane-bound

transcriptional regulator that plays a central role in the

expression of the Vp-PAI gene, and VtrA also activates T3SS2

synthesis indirectly by activating transcription of vtrB

(VPA1348) (Li et al., 2016). BL exposure up-regulated the

most in vtrA. Upregulation of only vtrA gene, but not vtrB

gene, by light exposures suggests that light stress does not induce

T3SS2-mediated pathogenicity. Furthermore, it has been

reported that VtrA oligomerizes between DNA-binding

domains on the cytosolic sol side when cells are stimulated,

activating transcription of vtrB (Okada et al., 2017; Matsuda

et al., 2019a). It has also been reported that VtrA activates

transcription of vtrB by forming a complex with VtrC

(VPA1333) (Li et al., 2016; Matsuda et al., 2019a), however,

we did not find that vtrC was included in Set1.Genes.
Conclusion

Light response is ecophysiologically important and conserved

in evolutionary terms in all domains of life, but that of non-

photosynthetic bacteria has been not fully studied yet. Recent

developments of LED devices encourage us to focus on how BL

responses effect organisms. In particular, the ocean is a unique

medium for selecting various kinds of lights, BL can penetrate

seawater deeply, so life in the ocean may foster better biological

materials to answer the questions of how marine organisms

respond to BL. In this study, using V. parahaemolyticus RIMD

2210633, a pandemic strain, as a non-phototrophic marine

bacterium model, BL response is accessed using physiological and

transcriptomic approaches. Interestingly, V. parahaemolyticus

responds to BL more than the other light type, and in particular,

up-regulation in the gene responsible to not only compatible solute

but also iron-sulfur biosynthesis related to ROS formation, but

there were no regulations on genes on the pathogenicity.

Nevertheless, the population structure of V. parahaemolyticus

strains was rather complex but clonal in pandemic strains

(Chowdhury et al., 2000; Gonzalez-Escalona et al., 2008;

Urmersbach et al., 2014), however, genes responding to not only
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BL exposure but also to the other lights wavelength are likely to be

conserved among V. parahaemolyticus strains. These results

provide new ecophysiological and evolutionary insights in light

responses in non-phototrophic marine bacteria.
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