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Differential patterns and
assembly processes of
bacterial communities from
distinct microhabitats in a
subtropical estuary

Kang Ma1,2, Ze Ren1,2, Jiaming Ma1, Nannan Chen1

and Jingling Liu1,2*

1State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal
University, Beijing, China, 2Research and Development Center for Watershed Environmental Eco-
Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
Estuarine ecosystems interconnect freshwater and marine environments, and

comprise multiple highly dynamic and complex microhabitats. The resident

microbiota in estuary is influenced by contrasting microenvironmental

heterogeneity. However, the bacterial patterns and assembly processes in

different microhabitats of estuarine ecosystem are not well studied. Here, we

investigated the bacterial diversity, functions and community assembly

mechanisms of mangrove soil, river sediment and overlying water in a

subtropical estuary. Results showed that similar profiles of bacterial

communities existed in the mangrove soil and river sediment and were

dominated by Proteobacteria, Bacteroidetes and Acidobacteria. In terms of

different microhabitats, the lowest alpha diversity of bacterial communities was

found in overlying water and were dominated by Proteobacteria,

Actinobacteria and Bacteroidetes. Meanwhile, the functional potential genes

associated with carbon metabolisms were also substantially different in the

three microhabitats. The relative abundance of genes connected to aerobic

carbon respiration was significantly higher in overlying water than in the other

two microhabitats. Bacterial communities in river sediments were enriched for

genes associated with aerobic methane oxidation. The strong environmental

heterogeneity of the three nearby microhabitats shaped the taxonomic and

functional composition of the bacterial communities in estuarine ecosystem.

Moreover, the plant rhizosphere effect increased the proportion of the

dispersal limitation processes in mangrove soils compared to that in river

sediments, while the overlying water was fluid and had less environmental

selection processes compared to that in mangrove soil and river sediment. The

bacterial communities in river sediment construct a more clustered network,

while the overlying water network showed the highest complexity. Our findings
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reveal the differences of bacterial patterns and community assembly

mechanisms in distinct microhabitats of estuarine ecosystems, and provide

important insights for a comprehensive understanding of the mechanisms to

maintain estuarine wetland conservation under environmental changes.
KEYWORDS

estuarine ecosystem, bacterial diversity, carbon cycle, assembly processes, co-
occurrence network
Introduction

The estuarine ecosystem represents the transition between

freshwater and marine environments and is influenced by both

aquatic realms (Bernhard and Bollmann, 2010). Due to strong

terrestrial-oceanic interactions, estuaries have complex organism

community biodiversity of both freshwater and marine origin,

composed of microorganisms, aquatic animals, and riparian

vegetations (Regnier et al., 2013; Weinke and Biddanda, 2018).

Acting as a filter along the land-ocean aquatic continuum,

estuaries comprise highly dynamic and complex habitats and

play a vital role in biogeochemical processing (Bauer et al.,

2013; Rosentreter et al., 2021). In recent years, estuaries have

become more susceptible to increasing pressures from growing

human activities related to eutrophication, urban construction,

and general environmental degradation (Weinke and Biddanda,

2018; Yuan et al., 2019; Zhou et al., 2021). Microbes are the most

prevalent organisms in natural ecosystems and are sensitive

indicators of ecosystem stress. They constitute aquatic food

webs, participate significantly in various biogeochemical cycles,

and maintain ecosystem functions (Fuhrman, 2009). Thus,

understanding the estuarine bacterial community is of great

importance for the sustainability of estuarine ecosystem

functions in natural environments (Vasar et al., 2022).

Lying at the interface between the river, marine, and terrestrial

ecosystems, estuarine ecosystems comprise some of the most

productive ecosystems in the world, and receive large amounts of

organicmaterials and nutrient from ocean and rivers (Regnier et al.,

2022). It has been reported that vegetated habitats in estuary

sustain the highest rates of carbon sequestration, contributing

to climate change mitigation and adaptation (Li et al., 2021). Due

to the differences of vegetation types, hydrological conditions

and land conversion, the environmental factors in different

microenvironments of estuarine ecosystems have very strong

heterogeneity (Rogers et al., 2019; Tee et al., 2021; Wang et al.,

2021). The sediment microhabitats are kept submerged under

overlying water, but the soil microhabitats were alternately

exposed and submerged for the hydrological processes in estuaries

(Liu et al., 2018b). Compared to nonfluidic sediment and soil, the

fluidic overlying water is more susceptible to external environment
02
variables with respect to atmospheric changes and terrestrial

hydrologic processes (Liu et al., 2018a; Lei et al., 2020; Liao et al.,

2020). The bacterial communities in planktonic and sedimentary

microhabitats in estuary could be highly diverse and variable. The

underlying sediments and riparian soil exhibit similar properties in

some way, while vegetations can selectively enriched specific

microbial populations by rhizosphere effects (Yu et al., 2020;

Zhuang et al., 2020). Moreover, the confluence of freshwater and

tidewater helps to change nutrients and salinity levels, which are

main factors controlling the bacterial communities (Cloern et al.,

2017; Zhang et al., 2021c). Previous studies have highlighted that

microbial communities living in microenvironments differ

significantly in community profiles (Jiao et al., 2020; Zhang et al.,

2021b). As the central roles of the biological carbon cycles in natural

ecosystems, bacteria in estuarine ecosystems carry out the

dichotomous functions of carbon inputs and outputs, and the

balance between these two processes might shift the ecosystems

from carbon sinks to carbon sources (Jansson and Hofmockel,

2020). However, bacterial diversity patterns and the functional

changes in nearby microhabitats of estuaries have not been

systematically investigated, limiting our understanding of bacterial

diversity patterns and functional changes, which are highly relevant

to mitigating estuarine degradation and adaptive management of

estuarine wetlands under intensifying global changes.

Microbial diversity patterns in natural ecosystems are also

driven by community assembly mechanisms, including

deterministic and stochastic processes (Ofiteru et al., 2010; Stegen

et al., 2013). Revealing the underlying mechanisms that shape

microbial community assembly is useful for understanding

community stability and ecosystem function (Dini-Andreote

et al., 2015; Zhou and Ning, 2017). Based on niche, neutral, and

process theories, the ecologicalmodelswere proposed to investigate

the assembly mechanisms of the microbial community. The

stochastic, deterministic and undominated processes operate the

microbial assembly mechanism simultaneously (Chase, 2010).

Furthermore, a conceptual framework was proposed and

exhibited that community assembly mechanisms are five

ecological processes (Vellend, 2010). Under this framework, the

stochastic processes were categorized as homogeneous selection or

heterogeneous selection, and the deterministic processes were
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categorized as homogenizing dispersal and dispersal limitation

(Vellend, 2010). Many studies have reported ecological assembly

processes in river, lake, marine, and soil habitats. For example,

environmental preferences could result in habitat filtration and

selection. It was found that heterogeneous selection was the most

important assembly process in acid mine drainage lakes (She et al.,

2021). Heterogeneous selection and dispersal limitation are two

domain assembly processes in the plant rhizosphere soil of

grassland (Zhong et al., 2022). In addition, co-occurrence network

method was applied to uncover potential interactions of bacterial

taxa, and elucidate thepatterns ranging frompairs of taxa to complex

communities (Barberán et al., 2014). Although many recent studies

have been conducted on microbial assembly in many aquatic and

terrestrial habitats, the different microhabitats of estuarine

ecosystems are poorly studied. Such knowledge is essential for

increasing the understanding of the assembly mechanism of

microbial communities in estuarine ecosystems.

Based on the variation of oxygen and water fluxion along the

transition zone from waterward to landward, the estuarine

sedimentary compartments were divided into sediments and

riparian soils (Wang et al., 2021). The flowing water not only acts

as a carrier of sea and upper river substances, but also serves as the

exchange medium for soil and sediment (Battin et al., 2009; Zhang

et al., 2022). It is generally accepted that both microhabitat type and

physicochemical parameters are key factors shaping the microbial

community (Lozupone and Knight, 2007). Different microhabitats

may impose different stresses (e.g., oxygen, rhizosphere effect, or

fluidity of environmental media) that drive community assembly

processes, thus altering the species co-occurrence patterns and

carbon cycling. Therefore, we chose a typical subtropical estuarine

ecosystem with the riparian zones wholly covered by mangroves as

our study area. The purpose of this study was to explore (1) the

bacterial community profiles and functional differences of

mangrove soils, river sediments, and overlying water in estuarine

ecosystems; (2) the dominant ecological processes governing the

assembly mechanisms and species interactions of bacterial

communities in different microhabitats. Given the contrasting

environmental heterogeneity of the three microenvironments, we

hypothesized that bacterial taxa exhibited distinct carbon cycling

function and community assemblage processes in different habitats.
Methods

Study area and sampling strategy

Our study area was conducted at the Zhenhai Bay (21°44’00″
to 21°56’30″N, 112°24’00″ to 112°33’00″E) of Guangdong

Province, China (Supplementary Figure 1), which located in

subtropical zone. The annual precipitation of the Zhenhai Bay is

2683 mm and the annual air temperature is 23.7°C. In this study

area, the tide is an irregular semidiurnal tide, and the riparian

zones are covered with natural mangroves. We chose six sites in
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the river center and established sampling belts from river center

to riparian zone (Supplementary Figure 1). The riverway

distance between each sampling transect was about three

kilometers. A more detailed description of the sampling sites is

provided in Table S1. Paired overlying water and surface river

sediment samples were collected synchronously from the river

center. The mangrove soil samples were collected parallel to each

sampling site from riparian zones, respectively. At each location,

three replicates of the water samples were randomly collected at

a depth of 0.5 m by Ruttner sampler (Hydro-Bios, Altenholz,

Germany) and combined at each sampling location. Microbial

samples of water samples were collected by filtering water

through 0.22 mm Millipore polycarbonate membranes and

immediately frozen in dry ice (-80°C) in the field. The

remaining water samples were acid fixed and stored at -4°C

for chemical analyses. For sediments and soils, three replicates of

samples were randomly collected and combined at each site

using a pre-cleaned grab sampler. Microbial samples of soil and

sediment samples were connected in a 45-mL sterile centrifuge

tube and immediately frozen in dry ice in the field. The

remaining soil and sediment samples were air-dried and stored

for the determination of chemical properties.
Physicochemical analyses

Environmental variables were measured according to the

methods used in our previous studies (Ren et al., 2020). At the

time of sampling, a multiparameter instrument (YSI ProPlus,

Yellow Springs, Ohio, USA) was used to measure the pH and

electrical conductivity (EC) of water samples in the field. Dissolved

organic carbon (DOC) levels in thewater sampleswere determined

by a Shimadzu TOC analyzer (TOC-VCPH, Shimadzu Scientific

Instruments, Columbia, MD, United States). Total nitrogen (TN)

and total phosphorus (TP) in the water samples was analyzed by

colorimetric method after oxidation according to EPA 300.0 and

365.3. For soil and sediment samples, pH and electric conductivity

wasmeasured in a 1:2.5 and 1:5 air-drying samples todistilledwater

ratio using pH and conductivity meter respectively (Yang et al.,

2012). The soil total carbon (TC) and nitrogen (TN) contents were

determinedbyair-drying samples and sieving themto2mm,before

determination by combustion (Thermo Fisher Scientific Flash

Smart Elemental Analyzer, Bremen, Germany). An ICP AES

Optima 8000 instrument (PerkinElmer, Waltham, MA, USA)

was used to measure the TP.
Molecular methods

The total genomic DNA of water samples was extracted

from the filter using DNeasy PowerWater kit (QIGEN,

Germany) according to the manufacturer’s instruction. For soil

and sediment samples, the total genomic DNA was extracted
frontiersin.org
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from ~0.5 g samples using DNeasy PowerWater kit (QIGEN,

Germany) according to the standard instruction. The forward

primer (343 F 5’-TACGGRAGGCAGCAG-3’) and reverse

primer (798 R5’-AGGGTATCTAATCCT-3’) were used

amplify the V3–V4 variable regions of the 16S rRNA genes

(Nossa et al., 2010). According to manufacturer’s instructions,

the PCR amplifications for each DNA sample were performed

using the following procedure as our previous study (Ma et al.,

2022). Amplified DNA was purified using the Gel Extraction Kit

(Qiagen, Hilden, Germany) and then validated by Agilent 2100

Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States)

and quantified by Qubit 2.0 Fluorometer (Invitrogen, Carlsbad,

CA, United States). The amplicon libraries were sequenced on

an Illumina MiSeq platform (Illumina, Inc., San Diego, CA,

USA) according to standard instructions.

Raw sequence data were trimming firstly, to detect and cut

off ambiguous bases and low-quality sequences (average quality

score below 20) by using Trimmomatic (version 0.35) (Bolger

et al., 2014). Then, the assembly of paired-end reads were

generated by FLASH software (Magoc and Salzberg, 2011).

Quality filtering of raw sequences was processed using the

QIIME 1.9.1 (Caporaso et al., 2010; Bokulich et al., 2013). The

obtained gene tags were compared with the Silva database

(version 138.1) to remove the chimera sequences (Quast et al.,

2013). Based on trimming sequences, operational taxonomic

units (OTUs) were further clustered at 97% identity threshold

against the Silva database (Schloss, 2009). At last, the sequences

of all samples were homogenized to equal depth (48948 per

sample), prior to further analysis. Raw sequence data can be

accessed at the China National Center for Bioinformation

(GSA: CRA007468).
Bioinformatic analysis

Based on the sequences data, the alpha diversity indices were

calculated and the significance of each index among groups was

tested and visualized using test line regression tools in Hiplot

(https://hiplot.com.cn). The Beta-diversity (Bray-Curtis

distance) was calculated and Adonis test was performed in the

“vegan” package (version 2.5-7) in the R statistical software to

illustrate the community dissimilarity and the principal

coordinates analysis (PCoA). The biomarkers of bacterial

communities (Wilcoxon test < 0.05, threshold > 4.0, Kruskal–

Wallis test < 0.05) were identified by using least discriminant

analysis (LDA) method (Segata et al., 2011). To assess the

relationship between the environmental variables and bacterial

communities, redundancy analysis (RDA) was performed in the

“vegan” package (version 2.5-7) in the R statistical software.

Based on the PICRUSt (phylogenetic investigation of

communities by reconstruction of unobserved states, version

1.0) analysis of the 16S rRNA gene sequence data, the functional

profiles of the bacterial communities in this study were predicted
Frontiers in Marine Science 04
(Langille et al., 2013). The nearest sequence taxon index (0.082

for bacteria) in this study was calculated, indicating a high

accuracy of the PICRUSt prediction (Langille et al., 2013). By

using the predicted metagenomes, the KEGG orthologs (KOs,

https://www.genome.jp/kegg/) were clustered and different

pathway levels (levels 1–3) were calculated. Then, the KOs

associated with the carbon cycles in microhabitats were further

extracted (Supplementary Table 2) and the relative abundance of

each pathway was calculated (Lauro et al., 2011). The figure of

carbon conversion step was modified from (Lauro et al., 2011)

and (Llorens-Mares et al., 2020).

To analysis the community assembly processes in each

microhabitat in this study, we firstly constructed the phylogenetic

trees in the FastTree (Version 2.1.11) software based on 16S rRNA

gene sequences (Price et al., 2009). Then, we divided the taxonomic

groups based on phylogenetic relationships between OTUs (12-48

OTUs) to improve the accuracy of community assembly processes

inferring in the ‘iCAMP’ package (Ning et al., 2020). The bin size

(24) and threshold of phylogenetic distance (0.05)were determined

by phylogenetic signal. Based on 1000-times randomization of the

taxa across the tips of the phylogenetic tree, the beta net relatedness

index (bNRI) and Raup–Crick metric (RC) was likewise calculated

to obtain the relative importance of five community assembly

processes: homogeneous selection, homogeneous dispersal,

dispersal limitation, heterogeneous selection (variable selection),

and undominated (including ecological drift, diversification, weak

selection, and/orweakdispersal. This frameworkuses the threshold

described to divide community assembly processes (Ning et al.,

2020). Finally, the relative importance of ecological processes to

community assembly at the subcommunity and bin levels

was ascertained.

The bacterial co-occurrence network analysis was

established in this study. The OTUs dataset was simplified

firstly with the retaining only OTUs of relative abundance >

1% in all samples (Barberán et al., 2014). Secondly, based on the

OTU levels, the possible pairwise Spearman’s rank correlations

were calculated, and connections mean strong (Spearman R >

0.8 or R < -0.8) and significant (P- adjust < 0.05) correlation were

extracted by using Benjamini and Hochberg (BH) methods

(Benjamini and Hochberg, 1995). At last, the Gephi software

(WebAtlas, Paris, France) was used to visual network patterns

and calculate network topological parameters (Bastian et al.,

2009). All statistical tests described were performed in the R

environment (Version 4.1.1) (R Core Team, 2017).
Results

Alpha and beta diversity

A total of 881064 clean reads were obtained after quality

filtering, and 24705 OTUs were divided according to the 97%

similarity threshold in this study. Rarefication curves
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approached a plateau, confirming that adequate sequencing

depth was achieved (Supplementary Figure 2). Among the

OTUs identified, 5676, 4282 and 1573 (mean OUT number in

each group) were specific to the mangrove soil, river sediment

and overlying water, respectively, and 2837 were shared between

the three microhabitats (Supplementary Figure 3). However, the

most shared OTUs between each two matrices were found in the

mangrove soil and river sediment, which was much higher than

the shared OTUs between each with overlying water.

The alpha diversity of bacterial communities in coexisting

microhabitats was calculated based on the OTUs (Figure 1). The

results showed that, the community richness of the mangrove soil,

river sediment and overlying water was between 6166 and 7105,

6079 and 6479, 1586 and 2593, respectively. The one-wayANOVA

analysis was used to identify the significant differences in alpha

diversity indices among groups. The observed OTUs, Shannon,

Chao1 and phylogenetic diversity indexes were significantly (p <

0.05) lower in overlying water samples than in the other two

microhabitat samples, and no significant difference was found

between the mangrove soils and river sediments. In total, these

findings indicated that the similarities of OTUs only existed in the

mangrove soil and river sediment, and the overlying water had

more unique community diversity.

Principal coordinates analysis (PCoA) was applied to

investigate the heterogeneity of the samples (Figure 2).
Frontiers in Marine Science 05
The first axis revealed that the planktonic bacterial

communities differed significantly (p < 0.05) from the

sedimentary bacterial communities. According to the Adonis

test, the community dissimilarity of bacteria was affected by the

differences of microhabitats (R = 0.61, p < 0.001). The results

demonstrated that overlying water and river sediment samples

were different, although they were collected from the same sites.
Bacterial composition and
functional prediction

At the phylum level, Proteobacteria was dominant (mean relative

abundance,67.84%) inall samples, followedbyBacteroidetes (10.85%),

Actinobacteria (6.32%), Acidobacteria (3.48%), Gemmatimonadetes

(2.89%), Firmicutes (2.02%), Nitrospirae (1.86%), Epsilonbacteraeota

(0.85%), Spirochaetes (0.60%), and Chloroflexi (0.58%); these top 10

bacterial phyla constituted 97.29% of the average relative abundance

(Supplementary Figure 3). Furthermore, the distinct bacterial

community compositions of the three habitats (mangrove soil, river

sediment and overlying water) are shown in Figure 3A. The

Proteobacteria and Actinobacteria phyla had the highest relative

abundances in overlying water, while other phyla were lowest

compared to mangrove soils and river sediments. Proteobacteria was

dominant, with mean relative abundances of 61.40% (mangrove soil),
B

C D

A

FIGURE 1

The alpha diversity indices of the bacterial communities in the mangrove soil, river sediment and overlying water. (A) observed OTUs;
(B) Shannon diversity; (C) Chao1 diversity; (D) Phylogenetic Diversity. Significance of the one-way ANOVA tests: ns, not-significant; **p < 0.01.
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65.13% (river sediment), and 76.98% (overlying water). However,

Bacteroideteswasmoreabundant inmangrovesoil andriver sediment,

with mean relative abundances of 14.56% and 10.19%, respectively,

andActinobacteriawasmore abundant in river sediment,with amean

relative abundance of 11.24%. The least discriminant analysis (LDA)

method was applied to calculate the linear discriminant analysis effect

size (LEfSe) of taxonomic differences between the three microhabitats

(Figure 3B). Eleven, 21 and 20 biomarkers (LDA > 4.0, p < 0.05) were

identified in the mangrove soil, river sediment and overlying water

respectively and the discriminative taxa are shown in Figure 3C.

Moreover, the phyla Deltaproteobacteria, Gammaproteobacteria and

Alphaproteobacteria, were themain biomarkers in the mangrove soil,

river sediment and overlying water microhabitats respectively.

The biogeochemical cycling potential mediated by bacterial

community in the three microhabitats were predicted using

PICRUSt, and the genetic potential of the conversion steps

associated with carbon cycle (Figure 4, Supplementary

Table 2). The abundance of genes related to carbon cycling

processes in mangrove soils was similar to that in river

sediments. Compared to mangrove soil, only aerobic CH4

oxidation was significantly (p < 0.05) enriched in river

sediments (Figure 4A). Moreover, all genes for the carbon

cycle except for aerobic respiration in water were significantly

(p < 0.05) lower than genes in mangrove soil and river sediment,

indicating distinct patterns in overlying water (Figure 4B). The

aerobic respiration of overlying water showed the highest

abundance in the carbon cycles in the three microhabitats. In
Frontiers in Marine Science 06
addition, the relative abundance of aerobic CH4 oxidation in

river sediment was higher than that in mangrove soil, which

might imply methane production potential in the two

microhabitats (Figures 4C, D).
Assembly processes and
co-occurrence networks

The community assembly mechanism comprised of stochastic

and deterministic processes was further revealed in the three

microhabitats (Figure 5). The main ecological processes of

overlying water were driving by the undominated and

homogeneous selection processes (Figure 5). Homogeneous

selection and dispersal limitation were the main processes for

both river sediment and mangrove soil, revealing higher

deterministic components for sedimentary substances rather than

fluidwater. Furthermore, the assemblymechanisms of the bacterial

communities in mangrove soil and river sediment microhabitats

were similar, but there were some differences. A higher proportion

of the deterministic component (heterogeneous selection and

homogenous selection) was found in river sediment than

mangrove soil (Figure 5). Thus, the bacterial community

assembly mechanism may be more complicated due to

plant establishment.

To investigate the potential interactions between microbial

communities of different microhabitats, three co-occurrence
FIGURE 2

Principal Coordinate Analysis (PCoA) analysis of taxonomic composition of bacterial communities using Bray–Curtis dissimilarity based on the
relative abundance of OTUs. Adonis test: p < 0.001, R =0.61.
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B

CA

FIGURE 3

Relative abundances of bacterial phyla in distinct microhabitats (A). The cladogram of bacterial communities obtained using LEfSe analysis (B).
The lineages with linear discriminant analysis (LDA) score of the abundance of taxa (C). Letters (a, b, and c) indicate significant difference of p <
0.01 between the sources (one-way ANOVA test). Only the taxa that LDA value above 4.0 are shown.
B

C D

A

FIGURE 4

Relative abundance of genes response to carbon processes for bacterial communities (A). The genetic potential for each conversion step in the
carbon cycles in overlying water (B), mangrove soil (C) and river sediment (D) microhabitats. The width of each arrow line is proportional to the
relative abundance of the KEGG orthologies associated with the pathways. The dotted lines represent the conversion step without marker genes
being detected.
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networks were constructed (Figure 6), and the topological

characteristic parameters were calculated (Table 1). The network

edge and node number of the three microhabitats gradually

declined from the river sediment and mangrove soil to the

overlying water, indicating that the complexity of community

networks is different in the whole estuarine ecosystem. The

overlying water network had the highest clustering coefficient

and the lowest average path length, which suggests that the

overlying water bacterial network was more complex with the

OTUsmore interconnected thanmangrove soil and river sediment

networks (Figure 6C). The network complexity (represented by the

number of edges and nodes) was different between the mangrove

soil and river sediment networks, with the river sediment network
Frontiers in Marine Science 08
showing the highest complexity (Figure 6B). The average degree

was higher in river sediment than in mangrove soil (Table 1).

Meanwhile, the average path length andmodularity were higher in

mangrove soil than in river sediment, indicating that themangrove

soil bacterial network had a more clustered topology (Figure 6A).
Environmental drivers

The community diversity and composition revealed the

discrepancy of bacterial communities in the three microhabitats,

and the effects of physiochemical factors on bacterial communities

in each microhabitat were further revealed by db-RDA (Figure 7).
B CA

FIGURE 6

The co-occurrence networks of bacterial communities colored by phylum in mangrove soil (A), river sediment (B) and overlying water (C) microhabitats.
FIGURE 5

Relative importance of different ecological processes to bacterial community assemblies in different microhabitats.
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Asa result (SupplementaryTable2),TC(p<0.05)were identifiedas

key drivers affecting the bacterial communities in mangrove soil

and positively correlated with RDA1. Moreover, the EC (p < 0.05)

and TN (p < 0.05) showed significant effects on bacterial

communities in river sediment. For overlying water, EC (p <

0.05) and TP (p < 0.05) had significant effects on bacteria. The

two axes explained 69.02%, 71.35% and 84.51% of the relationship

between environmental parameters and the bacterial communities

in the mangrove soil, river sediment and overlying water

samples, respectively.
Discussion

The mangrove soil, river sediments, and overlying water

microenvironments are nearby and highly interconnected

microhabitats in the estuarine ecosystem. In these microhabitats,

microorganisms play key roles in the function of biogeochemical

and hydrological cycles. It is, therefore, important to understand

how bacterial communities inhabiting different microhabitats, and
Frontiers in Marine Science 09
how distinct environmental conditions drive assemblymechanisms

in each microhabitat. In this study, we systematically investigated

the diversity, community composition, assembly process and

function of bacterial communities in mangrove soil, river

sediment and overlying water in a subtropical estuary.
Variations in bacterial diversity, structure
and function

As expected, distinctions in bacterial communities in the

three microhabitats were found, indicating that the diversity and

composition of microbial communities were substantially

different in distinct microhabitats (mangrove soil, river

sediment and overlying water). In our study, the mangrove

soil and river sediment microhabitats shared the highest OTUs

in the estuarine ecosystem (Supplementary Figure 2). The

bacterial communities in these two microhabitats had

significantly higher alpha-diversity than in those in overlying

water samples, which was in agreement with previous studies
B CA

FIGURE 7

Distance-based redundancy analyses (RDA) of bacterial communities in mangrove soil (A), river sediment (B) and overlying water (C).
TABLE 1 Major topological properties of the ecological networks of bacterial communities three microhabitats.

Topological Parameters Mangrove soil River sediment Overlying water

Num. nodes a 941 1191 296

Num. edges b 4087 8471 1550

Average degree c 8.687 14.225 10.473

Average path length d 12.562 10.354 5.260

Average clustering coefficient e 0.724 0.742 0.919

Modularity f 0.819 0.760 0.561
aNumber of OTUs after dataset filtration.
bNumber of significant (p < 0.05) correlations between nodes.
cNumber of connections (on average) each node has to the other nodes in the network.
dThe capability of the nodes to form highly connected communities.
eThe degree to which nodes tend to cluster together.
fModularity indicate that the network has a modular structure.
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(Liu et al., 2021; Zhang et al., 2021b; Dang et al., 2022; Zhang

et al., 2022). Soils and sediments recruit and subsequently

exchange microbes with surrounding areas, which are

considered to be the cause of the main discrepancy between

watery and sedimentary (soil and sediment) microhabitats in

aquatic systems (Zhang et al., 2021b; Zhang et al., 2022).

However, it was interesting that there was no significant

difference in alpha diversity between mangrove soil and river

sediment microhabitats in this study (Figure 1). Due to tidal

processes, the sediment microhabitats are kept submerged but

the soil microhabitats were alternately exposed and submerged

in estuarine ecosystems (Liu et al., 2018b). In our study area, the

sediment samples were collected in the river center, which is in

perpetual anaerobic conditions. Consequently, the results

suggested that the submerged condition had no significant

effects on the bacterial alpha diversity but may have effects on

the composition of bacterial community. Previous studies have

demonstrated that nutrients and environmental variables

significantly drive microbial community diversity and

composition in aquatic environments (Kaestli et al., 2017;

Jones et al., 2018). In our study, the major bacterial phyla of

the mangrove soil, river sediment and overlying water

microhabitats were similar, while their relative abundances

differed in distinct microhabitats (Figure 3A). The

Proteobacteria and Bacteroidetes phyla are known to be

dominant surface colonizers in aquatic ecosystems, and are

involved in the cycle of carbon rich substances in aquatic

habitats (Chaudhry et al., 2012; Jiang et al., 2019; Ren et al.,

2022). Furthermore, Actinobacteria was identified as a specific

phylum in water, which was proven in other aquatic ecosystems

(Hoshino et al., 2020; Chao et al., 2021). In addition, we observed

that Bacteroidetes was significantly enriched in the mangrove

soil samples, which may be due to the plant rhizosphere effect

(Chaparro et al., 2014; Chen and Gu, 2017).

The diversity patterns of bacterial communities in different

microhabitats also influence microbial carbon metabolism (Yu

et al., 2022). In overlying water, the enrichment of aerobic

respiration genes is likely a reflection of high cyanobacteria

(Ren et al., 2022). Due to the turbulent flow of the estuary and

the oxygen exchange of water-air, the genes related to the

aerobic carbon respiration process are enriched in overlying

water compared to the soil and sediment (Figure 4). In

contrast, based on the absence of light and isolation from the

atmosphere, the bacteria in river sediment microhabitats

exhibited strong anaerobic carbon fixation and fermentation

processes. The microorganisms of soil and sediment are usually

supplied by heterotrophic and lithotrophic metabolisms in

natural ecosystems (Bond-Lamberty et al., 2018; Liu et al.,

2021). The chemolithotrophy might supplied for the anaerobic

carbon fixation in river sediment microhabitats, and

particulate organic carbon would be decomposed into smaller

molecules by bacteria, ultimately to CO2 (Christner et al.,

2014). Finally, the bacteria in river sediments showed higher
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the methane production potential than those in mangrove

soils, which might decrease the carbon function of

estuarine ecosystems.

Assembly processes and species
interactions of the bacterial communities

Unravelingthecommunityassemblyof communities is a critical

topic in microbial ecology, especially for different habitats (Ning

et al., 2020). Microhabitat shifts could cause distinct community

diversity and structure of bacterial communities as previously

proven in our study, and change the balance between stochastic

and deterministic community assembly processes (Zhong et al.,

2022). The contribution of deterministic components to the

assembly of overlying water, mangrove soil, and river sediment

bacterial communities increased in turn (Figure 5). This might be

mainly due to the fluidity differences of the three environmental

media (Zhang et al., 2022). Estuarine ecosystems are highly

connected with river and marine ecosystems, and the fluidity of

microorganisms in water microhabitats leads to the highest

contribution of homogeneous selection and the lowest dispersal

limitation compared to mangrove soil and river sediment

microhabitats (Wang et al., 2015; Isabwe et al., 2018).

Furthermore, we found that the contribution of dispersal

limitation to the assembly of the sediment microbial community

was lower than that in the mangrove soil. This may be attributed to

themoderate mobility of sediments due to the transporting effect of

overlyingwaterflow (Wu et al., 2013; Liu et al., 2018a). Additionally,

the rhizosphere effects in mangrove soil microhabitats play

important roles in community assembly mechanisms. The

bacterial communities in river sediments were structured more by

heterogeneous selection processes than those inmangrove soil. This

difference could be explained by the riparian vegetation; the higher

heterogeneous selection processes in sedimentmicrohabitats lead to

increased dissimilarity between bacterial communities (Vieira et al.,

2020; Ma et al., 2022; Zhong et al., 2022). Consequently, the fluidity

of microorganisms and the vegetation rhizosphere effect playmajor

roles in bacterial community assembly in different microhabitats in

estuarine ecosystems.

Microbial networks are useful for exploring potential

interactions between species (Freilich et al., 2018). In the present

study, the co-occurrence patterns of microbial communities in

mangrove soil, river sediment and overlying water microhabitats

were explored (Figure 6). Significant differences were found in the

compositions and structures of the three microbial co-occurrence

networks, suggesting that microhabitats had significant influence

on the co-occurrence networks of bacteria. Based on the analysis of

the overall network topology, overlying water had the highest

connectance property in the estuarine ecosystem, which indicated

that the water microhabitat had more efficient biochemical cycles.

The highest modularity of the mangrove soil microhabitat

suggested more complexity and stability of vegetation ecosystems

(Zhong et al., 2022). Thus, this implied that the rhizosphere effect of
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mangroves improved the stability of bacterial communities (Shi

et al., 2016; Poosakkannu et al., 2017; Tian et al., 2018).

Impacts of physicochemical factors on
estuarine bacteria

The environment of the estuarine system is affected by the

interaction of the sea and land (Wang et al., 2019). Previous studies

have shown that physicochemical factors regulate the community

diversity, structure and function of microorganisms (Ren et al.,

2019; Sun et al., 2020). In this study, different significant factors

were found in distinct microhabitats (Figure 7). Along the river

estuary, bacteria are highly controlled by the EC and nutrients,

which is in agreement with other estuaries (Chi et al., 2021; Liu

et al., 2021; Zhang et al., 2021a). Interestingly, TC and TN were

important variables in shaping the bacterial communities of

mangrove soil microhabitats, whereas EC and TP were the main

factors of river sediment and overlying water microhabitats. There

may be two reasons for this result. First, the plant growth of

mangrove soil microhabitats requires more nutrient substances

and further influences the microbes by the rhizosphere effect

(Zhuang et al., 2020; Zhong et al., 2022). In addition, compared

to mangrove soil, the sediment microhabitat is submerged

continually, and more susceptible to the salinity of the tidal

overlying water in the estuarine system (Xu et al., 2020; Zhang

et al., 2021c). These findings suggest that the microhabitat

discrepancy was the largest source of the variations in bacterial

diversity and community composition.

Conclusion

Our study revealed that bacterial communities from adjacent

microhabitats have differential patterns and assembly processes

in a subtropical estuary. It was found that similar profiles of

bacterial communities existed in the mangrove soil and river

sediment and the overlying water had the lowest alpha diversity.

Functional potentials suggested that the aerobic carbon

respiration would be more enriched in water than in the other

two microhabitats based on the oxygenated environment.

Bacterial communities in river sediments were enriched for

genes associated with aerobic methane oxidation. The results

indicated distinct taxonomic and functional composition in

mangrove soil, river sediment and overlying water. Moreover,

the plant rhizosphere effect increased the proportion of the

dispersal limitation processes in mangrove soils compared to

that in river sediments, while the overlying water was fluid and

had less environmental selection processes compared to that in

mangrove soil and river sediment. The bacteria of the river

sediment microhabitat construct a clustered network, while the

overlying water network showed the highest complexity in the

estuarine ecosystem. The contrasting bacterial diversity and

structure reflected that the strong environmental heterogeneity

of the three microhabitats shapes the function and community
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assembly of the bacterial community. Overall, our study reveals

differential patterns and assembly mechanisms of bacterial

communities in distinct microhabitats of estuarine ecosystems,

and improves comprehensive understanding of maintaining

estuarine wetland conservation under environmental changes.
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