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4Plymouth Marine Laboratory, Plymouth, United Kingdom, 5National Centre for Earth Observation,
Plymouth, United Kingdom, 6Marine Autonomous and Robotic Systems, National Oceanography
Centre, Southampton, United Kingdom, 7Mercator Océan International, Toulouse, France
This study presents a proof-of-concept for a fully automated and adaptive

observing system for coastal ocean ecosystems. Such systems present a viable

future observational framework for oceanography, reducing the cost and

carbon footprint of marine research. An autonomous ocean robot (an ocean

glider) was deployed for 11 weeks in the western English Channel and navigated

by exchanging information with operational forecasting models. It aimed to

track the onset and development of the spring phytoplankton bloom in 2021. A

stochastic prediction model combined the real-time glider data with forecasts

from an operational numerical model, which in turn assimilated the glider

observations and other environmental data, to create high-resolution

probabilistic predictions of phytoplankton and its chlorophyll signature. A

series of waypoints were calculated at regular time intervals, to navigate the

glider to where the phytoplankton bloom was most likely to be found. The

glider successfully tracked the spring bloom at unprecedented temporal

resolution, and the adaptive sampling strategy was shown to be feasible in an

operational context. Assimilating the real-time glider data clearly improved

operational biogeochemical forecasts when validated against independent

observations at a nearby time series station, with a smaller impact at a more

distant neighboring station. Remaining issues to be addressed were identified,

for instance relating to quality control of near-real time data, accounting for

differences between remote sensing and in situ observations, and extension to
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larger geographic domains. Based on these, recommendations are made for

the development of future smart observing systems.
KEYWORDS

autonomous observations, operational forecasting, ocean gliders, data assimilation,
phytoplankton bloom, smart observing system, adaptive sampling, path planning
1 Introduction

The coastal ocean is fundamental to the world’s health,

wealth, and security. Shelf seas support over 90% of global

fisheries (Pauly et al., 2002), and play a crucial role in

biological and carbon cycles (Jahnke, 2010). Tourism and other

commercial and leisure activities contribute to the rapidly

expanding ocean economy (OECD, 2016). It is therefore vital

to monitor and forecast the physical and biogeochemical state of

the coastal marine environment, and to understand the extent of

human impact on the ecosystem services it provides.

The western English Channel (WEC), situated in the

Northwest European Shelf Seas (NWS), presents one area that

contributes significantly to the regional economy and is of

scientific importance. The WEC exhibits strong seasonal and

interannual variability, including a well-marked spring

phytoplankton bloom (Smyth et al., 2010) that underpins

much of the ecosystem health and productivity in regional

waters. It is also home to the Western Channel Observatory,

one of the longest-running and most comprehensive ocean

monitoring systems in the world (Smyth et al., 2010; Smyth

et al., 2015), which includes Smart Sound Plymouth as an area

for designing, testing, and developing new marine technologies

and methodologies (https://www.smartsoundplymouth.co.uk).

Oceanmonitoring can be performed using in situ observations,

satellite observations, and models. Unlike observations, ocean

models can be continuous in space and time, and simulate past,

current, and future conditions. Models may have large

uncertainties and therefore benefit from observations for

initialization, forcing, validation, and calibration. Satellite

observations provide wide and routine geographic coverage. Still,

information is restricted to the ocean surface, with a limited

number of measurable parameters, and often limited to cloud-

free conditions. In situ observations are comparatively the most

accurate option, but can be expensive to collect and coverage is

typically sparse. Long-established observing platforms such as

moored buoys, research ships, and profiling floats offer a broad

range of capabilities. More recently, autonomous underwater

vehicles (AUVs) such as ocean gliders have been growing in

popularity (Rudnick, 2016; Testor et al., 2019).

Ocean gliders are relatively inexpensive compared to ship

and satellite-based platforms, provide high-resolution 4D data in
02
near-real time, and can be controlled remotely. Such attributes

make them an attractive option for evolving observing systems

to adaptive sampling capability. Ocean gliders commonly

navigate autonomously using waypoints provided by a human

pilot, who periodically provides updated coordinates based on

experience and the mission’s scientific objectives. Alternatively, a

predefined series of waypoints can be set.

Given the complex, natural variability of ocean currents and

structure, ocean gliders often depend on the skill or intuition of

the pilot or science team selecting its series of waypoints. There

is, therefore, the potential for significant improvements to

navigation to increase the efficiency and effectiveness of

meeting data collection objectives. Such improvements could

be achieved using intelligent autonomous approaches, which

automatically calculate and set optimal trajectories based on

current and predicted ocean conditions (Lolla, 2016; Lermusiaux

et al., 2017). This would increase the potential for reactive or

adaptive sampling to provide observations where they would

have the most impact. It would also present a considerable cost

saving by reducing the need for human input. The major cost

associated with operating ocean gliders is the need for around-

the-clock monitoring by human pilots. This would then enable

the management of greater numbers of vehicles, increasing in

situ coverage and coordination between observing platforms.

Increased efficiency and less reliance on ships would also reduce

the associated carbon footprint. Such capability may be referred

to as a “smart observing system”.

This study provides a proof-of-concept of such an approach.

Models and observations were integrated to predict where a

phytoplankton bloom was most likely to be observed, and an

ocean glider was directed accordingly by regularly updating its

trajectory in real time. The glider was deployed in the WEC in

the spring of 2021, and autonomously controlled by a stochastic

prediction model, which took the most recent glider

observations and forecasts from an operational numerical

model as inputs. This, in turn, assimilated the glider data

along with other in situ and satellite data. The study was

undertaken as part of the UK NERC-funded CAMPUS project

(Ciavatta et al., 2022). A small number of previous studies have

investigated adaptive sampling strategies for ocean physics

(Ramp et al., 2009; Mourre and Alvarez, 2012), but this study

is understood to be the first real-world application of an
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autonomous and adaptive ocean observing system using gliders

and models to study marine ecosystems.

The overall aim of the study was to demonstrate the

feasibility of integrating observations and predictive models in

real time to better track and measure features of interest and

extreme events, using spring phytoplankton blooms as a case

study. The specific objectives of the work presented here were to:
Fron
1. Investigate the readiness of ocean gliders for use in

operational monitoring and forecasting.

2. Assess the added value of assimilating those data into an

operational physical-biogeochemical ocean forecasting

model.

3. Intercompare the information on the spring

phytoplankton bloom provided by the individual models

and observing platforms, and by the integrated system.

4. Investigate the sensitivity of the system to how the

components interconnect.

5. The results are discussed to provide recommendations

for the future development of smart observing systems.
2 Materials and methods

The integrated observing and forecasting system is shown

schematically in Figure 1, and each component described in turn

below. Relevant domains and locations are shown in Figure 2.
tiers in Marine Science 03
2.1 Ocean glider

This study used a Slocum Glider (Teledyne Webb Research,

Falmouth, USA) named Frazil (unit 438) from the Marine

Autonomous and Robotic Systems facility at the National

Oceanography Centre, UK (https://mars.noc.ac.uk). Slocum

Gliders are AUVs that are propelled forwards in an up-down,

“saw-tooth” profiling mode by controlling their buoyancy

(Schofield et al., 2007). These mobile platforms are

programmed to travel to prescribed locations (waypoints),

with shallow water models typically sampling up to 200 m

depth across coastal and shelf seas. Such missions enable the

measurement of hydrographic and biogeochemical parameters

with relatively little cost and power consumption (Testor

et al., 2019).

Glider 438 was equipped with a Sea-Bird SBE42

conductivity, temperature, and depth (CTD) sensor to

measure temperature, salinity and pressure (accuracy ±0.1%),

an Aanderaa 4831 oxygen optode to measure dissolved oxygen

concentration (O2) (precision 0.2 mmol kg-1, accuracy ±5%), a

WETLabs triplet “puck” (with optical wavelengths optimized for

chlorophyll-a (chl-a), colored dissolved organic matter, and

backscatter fluorescence), and a Sea-Bird photosynthetically

active radiation sensor.

Glider 438 was deployed by the Plymouth Marine

Laboratory (PML) research vessel RV Plymouth Quest on 22

March 2021 at 50.042°N, -4.3712°W, and recovered on 8 June

2021 at 50.074°N, -4.4761°W. The glider moved through the
frontiersin.org
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Schematic showing the integrated observing and forecasting system.
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water column with a nominal horizontal speed of 1.2 km h-1,

varying from 0.5 to 1.5 km h-1, and an ascent/descent angle of

26°. Inflection points were set to 5 m from the surface and 5 m

from the seabed with each yo-yo profile taking approximately

20 min. Every 90 min between 07:00 and 22:00 UTC the glider

surfaced, relayed its latest real-time observations to the British

Oceanographic Data Centre (BODC, https://www.bodc.ac.uk),

and was able to receive new waypoints to direct the next part of

the glider mission trajectory (see Section 2.4). Observations were

made every 10 seconds.

The glider operation was constrained to the region of the

WEC shown by the red polygon in Figure 2, approximately

18 km by 19 km, to minimize the risk of collision with heavy

regional shipping and fishing traffic. The glider’s trajectory was

guided by waypoints provided by a stochastic prediction model

(see Section 2.4). The waypoints were provided automatically to

a human pilot, who manually relayed them to the glider via

satellite communication during regular surface intervals. While

it was feasible to automate this relaying process direct to the

glider machine-to-machine, regulatory requirements mandated

that human control and oversight of the glider was required, to

avoid collisions with ships in the busyWEC area. This restriction

is discussed further in Section 4.

A subset of variables collected by the glider was transmitted

via satellite communications on each surfacing interval and

made publicly available online in NetCDF and png format by

BODC, typically within 150 min of the glider surfacing. Users

needed to perform their own near-real time (NRT) quality

control (QC) and processing of these data, as detailed in

Sections 2.3 and 2.4.

Following recovery, the complete dataset collected by the

glider, commonly referred to as delayed mode (DM) data,
Frontiers in Marine Science 04
underwent separate QC protocols. It was noted on recovery

and in the quality of data collected that glider 438 had

substantial biofouling, resulting in some data from 9 May 2021

onwards being deemed of insufficient quality for scientific use.

This particularly affected salinity and O2 measurements, as

detailed in Section 3.1.

Coincident with the deployment on 22 March 2021, PML

conducted CTD profiles from the RV Plymouth Quest at station

E1 (Figure 2), measuring temperature, salinity, photosynthetically

active radiation, fluorescence, and O2. A CTD profile was

conducted near the glider (0.75 km away) soon after

deployment, enabling glider sensors (temperature, salinity, O2)

to be calibrated against CTD profile data and associated discrete

water samples collected within 30 min and 0.75 km of glider

deployment. Additional routine PML CTDs were conducted

throughout the glider mission, but were considered unsuitable

for glider calibration purposes, as they were too far from the glider

location given the large regional horizontal gradients.

Increased seasonal solar heating at the end of May prompted

an increase in surface mixed layer water temperature (>14°C)

and vertical density stratification. Such conditions presented

processing requirements to account for thermal inertia in the

glider conductivity cell, which can potentially lead to errors in

deriving salinity from the glider CTD data (Garau et al., 2011).

Biofouling further reduced the thermal “connectivity” of the

glider sensors with the surrounding seawater, increasing the

thermal inertia effects and reducing data quality. Thermal inertia

corrections (Garau et al., 2011) were applied to the DM data.

Where such corrections did not significantly improve salinity

data quality, by reducing the difference between consecutive

ascending and descending profiles, the DM salinity data were

deemed irrecoverable. This was most relevant to data collected
A B

FIGURE 2

(A) AMM7 model domain and (B) close-up on the WEC, colored by the model bathymetry. In (B), the solid black box shows the area for which
the stochastic prediction model produced chl-a forecasts. The red polygon shows the region in which the glider was allowed to travel and in
which waypoints could be calculated. The stars show the location of the E1 and L4 time series stations.
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towards the end of the deployment when biofouling had a clear

and dramatic impact on data quality.

Compared with other oxygen optodes, the AA4831 has been

documented by various scientific studies as being extremely

stable with low detectable drift (<0.5% yr-1) and high precision

(<0.2 mmol kg-1) (Champenois and Borges, 2012). However, a

downside with the AA4831 oxygen optode is a potentially severe

time response lag across strong O2 gradients. O2 data were

therefore corrected where possible for optode membrane lag

following Bittig et al. (2014). The previously mentioned

biofouling in the latter stages of deployment prevented cross-

calibration with RV Plymouth Quest CTD data collected prior to

glider recovery, so O2 optode drift could not be calculated. The

manufacturer’s quoted downward drift value of 0.001% d-1 was

therefore used for O2, which has been shown to be suitable in a

similar coastal sea environment (Williams et al., 2022).

No calibration of fluorescence against other in situ data was

performed during the experiment, so default factory calibrations

were used to estimate total chl-a. Fluorescence calibration is

discussed in more detail in Section 4. Proposed corrections for

fluorescence quenching (Xing et al., 2012), which impacts the

estimation of chl-a during the daytime, were not applied. Apart

from near the beginning of the experiment, as detailed in the

following sections, this study just used the nighttime chl-a data

to avoid this issue.
2.2 Operational forecasting system

The Met Office runs two operational ocean forecasting

systems for the NWS, delivering products to the Copernicus

Marine Environment Monitoring Service (CMEMS), which are

freely accessible for public use (Le Traon et al., 2019). A coupled

physics-waves system is run on the ~1.5 km resolution Atlantic

Margin Model (AMM15) domain (Tonani et al., 2019), and a

physics-biogeochemistry system on the ~7 km resolution

AMM7 domain (Edwards et al., 2012; McEwan et al., 2021).

The AMM7 domain and its bathymetry is shown in Figure 2.

The systems form part of the Forecasting Ocean Assimilation

Model (FOAM) suite (Blockley et al., 2014), and at the time of

the experiment the versions in operation were FOAM-AMM15

v2 and FOAM-AMM7 v11. Hereafter, these will be referred to as

AMM15-OPER and AMM7-OPER, respectively.

The ocean physics model used is v3.6 of the Nucleus for

European Modelling of the Ocean (NEMO). AMM7-OPER uses

the CO6.2 configuration, which is a development of the CO5

configuration described by O'Dea et al. (2017). AMM15-OPER

uses the CO8 configuration, similar to that described by Graham

et al. (2018). Details of the physics atmospheric, river, and

boundary forcing are given by Tonani et al. (2019).

The biogeochemistry model used is v19.04 of the European

Regional Seas Ecosystem Model (ERSEM), a development of the

v15.06 configuration described by Butenschön et al. (2016).
Frontiers in Marine Science 05
ERSEM models the biogeochemistry and lower trophic levels of

the pelagic and benthic ecosystem (Baretta et al., 1995; Blackford,

1997), including four phytoplankton types, three zooplankton

types, and heterotrophic bacteria. ERSEM uses variable

stoichiometry, representing biomass in carbon, phosphorus, and

nitrogen constituents and, for diatoms, silicon. ERSEM is coupled

to NEMO using the Framework for Aquatic Biogeochemical

Models (FABM) (Bruggeman and Bolding, 2014). The coupling

is one-way, so the physics affects the biogeochemistry but not vice

versa. Details of the biogeochemical atmospheric, river and

boundary forcing are given by McEwan et al. (2021).

AMM15-OPER and AMM7-OPER both assimilate

observations using a 3D-Var configuration of NEMOVAR

(Mogensen et al., 2009; Mogensen et al., 2012; Waters et al.,

2015). Physics observations assimilated are satellite and in situ

sea surface temperature (SST), in situ temperature and salinity

profiles, and satellite sea level anomaly, as detailed by King et al.

(2018) and Tonani et al. (2019). Chl-a derived from satellite

ocean color is assimilated into the biogeochemical component of

AMM7-OPER (McEwan et al., 2021), using the method

described by Skákala et al. (2018; 2021). Prior to assimilation,

a background check is performed on the ocean color data (Ford

et al., 2012). This compares the observations to the latest model

background field, and rejects observations with too large a

departure from the background, given estimates of the

observation and background error standard deviations

(Ingleby and Huddleston, 2007). The remaining observations

are then median averaged to a radius of 7 km (Ford et al., 2012;

Skákala et al., 2018).

The forecasting systems are run daily. In each cycle, analyses

are produced for the preceding two days, to maximise the

number of observations available for assimilation. Due to the

availability time of ocean color data from CMEMS, ocean color

observations are only assimilated into the first day’s analysis,

referred to as the “best estimate” of the ocean state. Following the

two analysis days, a six-day forecast is produced.

Postprocessing is then performed to convert from the

terrain-following coordinates of the native model grid

(Siddorn and Furner, 2013) to a standard grid with

geopotential levels (Tonani et al., 2019), and data uploaded to

CMEMS. Daily mean and hourly instantaneous fields are

available from AMM15-OPER, and daily mean fields from

AMM7-OPER. Products are typically updated at 12:00 UTC.
2.3 Pseudo-operational forecasting
system

For the duration of the experiment, an alternative version of

AMM7-OPER was run pseudo-operationally. This was

essentially a copy of AMM7-OPER, modified to assimilate

observations from the glider, and provide bespoke outputs.

The system will be referred to as AMM7-CAMPUS.
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AMM7-CAMPUS assimilated chl-a and O2 observations

from the glider, into both analysis days, using the method

described by Skákala et al. (2021). Assimilating glider chl-a

also required a modification to the ocean color assimilation, as

discussed by Ford (2021) and Skákala et al. (2021). In AMM7-

OPER, 2D chl-a increments are calculated by NEMOVAR, and

applied equally through the mixed layer. In AMM7-CAMPUS,

3D chl-a increments were calculated by NEMOVAR, using flow-

dependent vertical correlation length scales as detailed by King

et al. (2018) and Skákala et al. (2021). To test the impact of this

modification, a further system was run assimilating ocean color

with 3D increments from NEMOVAR, but not assimilating

observations from the glider. This showed minimal differences

from AMM7-OPER in the WEC, giving confidence that any

differences in results between AMM7-OPER and AMM7-

CAMPUS can be fully attributed to assimilating the glider

observations. Temperature and salinity observations from the

glider were not assimilated, in order to preserve operational

observation preprocessing procedures, and because the impact

on biogeochemical forecasts has previously been shown to be

small (Skákala et al., 2021).

Prior to assimilation each day, AMM7-CAMPUS

downloaded the latest glider observations from BODC, and

applied some preprocessing. This consisted of a file format

conversion, O2 unit conversion, log-transformation of chl-a,

and median averaging. Log-transforming chl-a is required by the

assimilation (Skákala et al., 2021), as it makes the error

distribution more Gaussian (Campbell, 1995). Median

averaging is common practice in data assimilation (Skákala

et al., 2021), to avoid assimilating many high-resolution

observations representing small-scale processes the model

cannot resolve, which can lead to instabilities in the model.

Initially, the median observation value in each model grid cell

between 00:00-23:59 UTC each day was used. From 8 April

2021, the change was made to reject glider chl-a data between

06:00-20:00 UTC, as daytime data may be affected by

fluorescence quenching (Xing et al., 2012). Rather than a

single median daily value being assimilated per grid cell, two

values were now assimilated (if observations available): the

median observation between 00:00-06:00 UTC, and the

median observation between 20:00-23:59 UTC.

For use by the stochastic prediction model, hourly mean chl-

a was output on the native model grid, for a region in the WEC

around where the glider was being operated, covering an area

surrounding the black box in Figure 2. Initially, this region

covered 4.72°W to 4.28°W, 49.90°N to 50.30°N. From 6 April

2021, the region was enlarged to 4.83°W to 4.17°W, 49.90°N to

50.30°N. These outputs were automatically placed on an FTP

server, and most days were updated between 11:00-12:00 UTC.

While the glider was recovered on 8 June 2021, AMM7-

CAMPUS was kept running until 24 June 2021, to assess the

lasting impact of assimilating the glider data.
Frontiers in Marine Science 06
2.4 Stochastic prediction model

A stochastic prediction model was used to predict chl-a at high

resolution and calculate waypoints for the glider. The model will be

fully described and validated in a separate paper byMenon et al. (in

prep.), and will hereafter be referred to as STOCHASTIC. It uses

the integrated nested Laplace approximation (INLA) (Rue et al.,

2009; Lindgren et al., 2011) to approximate Bayesian inference,

which can be downloaded from https://www.r-inla.org. Chl-a was

modelled using the stochastic partial differential equation approach

inferred using the INLA method. Given observations of chl-a at

different locations the unknown 2D chl-a was considered as a

Gaussian field. The Matérn covariance function was used to model

spatial autocorrelation and uncertainty. The correlation among the

cells in the modelling can often contribute to computational

complexity. From the analysis of several potential influencing

variables such as radiation, mixed layer depth, wind stress, chl-a,

current velocity, nitrate, O2, phosphate, temperature, and turbidity,

it was found that only temperature and chl-a had direct influence

contributing to the prediction of chl-a. Therefore, chl-a and SST

inputs were used.

STOCHASTIC took as inputs the latest glider chl-a

observations, hourly-resolution analyses and forecasts of SST

from AMM15-OPER, and hourly-resolution analyses and

forecasts of chl-a from AMM7-CAMPUS. In the event of any

delay in the production of AMM7-CAMPUS forecasts due to the

research nature of the system, STOCHASTIC would use daily-

resolution chl-a data from AMM7-OPER. A subset of AMM7-

CAMPUS was passed to STOCHASTIC, as detailed in Section

2.3, as information was only required for the region in which the

glider was permitted to travel, plus the surrounding area in case

the glider left the permitted region. As discussed in Section 3.1,

on 2 April 2021 the glider drifted outside this area, so from 6

April 2021 a larger area was passed, as detailed in Section 2.3.

Each time STOCHASTIC was run, it was trained using the

glider chl-a and model chl-a and temperature analyses for the

previous 72 hours (prior to 5 May 2021) or 120 hours (5 May

2021 onwards), and then used to produce a 24-hour chl-a

forecast at 4-hourly resolution by combining the input forecast

data with random effects. The chl-a forecast was produced on a

0.0014° longitude by 0.0009° latitude (approximately 100 m by

100 m) resolution grid covering the region in which the glider

was permitted to travel (Figure 2). The forecast was 2D at a

depth of 10 m until 14 April 2021, after which it was calculated at

the mean depth of maximum chl-a from the glider observations,

up to a maximum of 30 m. During the training stage, the model

chl-a and temperature analyses were interpolated onto the

location of the glider chl-a observations in spacetime, using

quadrilinear interpolation, which is similar to that used by Dai

and Sweetman (2016). During the forecast stage, the model chl-a

and temperature analyses were interpolated onto the forecast

grid, using quadrilinear interpolation.
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Prior to 14 April 2021, all glider chl-a observations in the

training period were used. After this date, only nighttime data

were used due to potential fluorescence quenching as discussed

in Sections 2.1 and 2.3. This reduction in the number of data

points per day led to the later increase in the length of the

training period from 72 to 120 hours to compensate.

From the forecast a set of six waypoints was calculated, one at

each 4-hourly interval of the 24-hour forecast, giving a series of

locations to direct the glider towards over the next 24 hours. These

were calculated as the locations where the maximum chl-a in the

region was most likely to be, based on the predicted mean value and

variance of chl-a on the forecast grid. Movement constraints were

also accounted for. The waypoints were then communicated via

email to the glider pilot in a fully automated process using a Linux

bash script. Following an initial validation period, these waypoints

were used to steer the glider from 26 March 2021 onwards.

After the glider deployment was completed, a set of offline

sensitivity experiments was performed. For a selection of times

during May 2021, STOCHASTIC was rerun three times using

different model chl-a inputs. First, using AMM7-CAMPUS chl-

a, as was done during the deployment. Second, using AMM7-

OPER chl-a, which did not assimilate the glider data. Third, not

using any model chl-a, only the glider chl-a. In each case the

initial glider position was that during the deployment, so these

experiments give a snapshot of the sensitivity of predictions and

waypoints to the input data sources, as detailed in Section 3.4.
2.5 Other observations

For validation and intercomparison, this study also used chl-

a derived from satellite ocean color, and in situ observations

from the Western Channel Observatory (Smyth et al., 2010;

Smyth et al., 2015).

Ocean color data were taken from the CMEMSNorth Atlantic

NRT product (https://doi.org/10.48670/moi-00284), which

provides level 3 daily merged chl-a from the MODIS-Aqua,

VIIRS, and OLCI-3A sensors. This is the same ocean color

product as assimilated by AMM7-OPER and AMM7-CAMPUS.

During the experiment, single-sensor ocean color data for the

WEC was emailed daily to teammembers by NEODAAS (https://

www.neodaas.ac.uk/), for monitoring purposes.

In situ chl-a observations from the E1 and L4 stations

(Smyth et al., 2010; Smyth et al., 2015) in the WEC (Figure 2)

were used for validating the differences between AMM7-OPER

and AMM7-CAMPUS. These stations form part of the Western

Channel Observatory, and physical and biogeochemical

parameters are sampled approximately weekly by PML.
3 Results

The results are split into four subsections, linked to the

objectives of the study detailed in Section 1. The first subsection
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details the path taken by the glider, the glider observations, and

differences between the NRT and DM data. The second

subsection assesses differences between AMM7-OPER and

AMM7-CAMPUS results due to assimilating the glider data.

The third subsection intercompares chl-a estimates from the

glider, ocean color, AMM7-OPER, AMM7-CAMPUS, and

STOCHASTIC. The fourth subsection assesses the sensitivity

of STOCHASTIC to different inputs.
3.1 Glider observations

The course taken by the glider is shown in Figure 3. The

glider covered most of the region of interest during the

experiment, though never sampled the most northern

latitudes. Its position was focused on different areas in

different periods, as directed by STOCHASTIC.

The glider was constrained to remain within the area

marked in Figure 3, and all waypoints calculated by

STOCHASTIC were similarly constrained to this area as

required. Occasionally though, strong east-west tidal currents

carried the glider outside of the intended control area. One

such breach occurred on 2 April 2021 when the glider drifted

beyond the region being supplied to STOCHASTIC by AMM7-

CAMPUS, causing STOCHASTIC to fail. To compensate,

STOCHASTIC was temporarily set to use AMM7-OPER data

for 72 hours, and the area supplied from AMM7-CAMPUS was

later expanded, as detailed in Sections 2.3 and 2.4. In future,

information on currents could be added to the movement

constraints considered by STOCHASTIC, as discussed in

Section 4.

Plots along the glider transect are shown in Figure 4 for

temperature, salinity, chl-a, and O2, from the NRT and DM

glider data. One of the key objectives of the experiment was to

capture details of the spring bloom, and bloom events were

observed in April (Figures 4E, F). An initial near-surface bloom

was observed on 20-21 April 2021, followed by a larger bloom

throughout the water column on 25-27 April 2021. This was

associated with sudden changes in temperature and salinity

(Figures 4A–D), related to precipitation and wind conditions

(not shown). An imprint could also be seen on O2 (Figures 4G,

H), driven by changes in solubility.

From late May the water column began to stratify

(Figures 4A, B), and at the very end of the experiment a

corresponding deep chlorophyll maximum (DCM) appeared

to be forming below the base of the mixed layer (Figure 4F).

As mentioned in Section 2.1, significant biofouling occurred,

particularly affecting the O2 and salinity measurements. This

resulted in extremely noisy values in the NRT data for these

variables towards the end of the experiment (Figures 4C, G), and

the removal of these from the DM data (Figures 4D, H). Near-

surface values from these variables were also removed from the

DM data, as these depths were not properly resolved. Additional
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biofouling appeared to occur at the very end of the experiment

for all sensors, but this could be corrected for in the DM data.

A further issue with the NRT O2 data was the apparently

unnaturally high magnitude of the observed values. It was

discovered after deployment that the O2 sensor had been

default calibrated for freshwater rather than seawater,

providing apparent O2 values that were significantly higher

than expected. An offline correction was applied during the

experiment based on the observed salinity, and these corrected

values are shown in Figure 4G, but further correction was

required during DM processing (Figure 4H). The erroneous

NRT O2 data were assimilated into AMM7-CAMPUS for the

whole duration of the experiment, and this adversely affected

model O2 values (not shown). Fortunately for the purposes of

this experiment, the impact on other model variables, including

chl-a, was negligible. This is because there is only very weak

feedback from O2 to ecosystem variables in ERSEM (Butenschön

et al., 2016; Skákala et al., 2021).

In both the NRT and DM data, chl-a values are highly

variable throughout the water column (Figures 4E, F). This is

possibly due to the presence of phaeocystis colonies, which have

been observed to cause spikes in vertical profiles of fluorescence

(Tarran and Bruun, 2015).
3.2 Impact of glider data assimilation on
forecast model

To assess the impact of assimilating the glider data on

AMM7-CAMPUS, plots of chl-a are shown in Figure 5. These

show the assimilated satellite and glider data, and the AMM7-

OPER and AMM7-CAMPUS best estimate and six-day

forecasts. Satellite chl-a (Figure 5A) within the glider region
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(after background check and median averaging) is plotted to the

depth of the AMM7-CAMPUS mixed layer, using the definition

of Kara et al. (2000) as is used in calculating the vertical

correlation length scales in the data assimilation (King et al.,

2018). Glider chl-a (Figure 5B) is equivalent to that plotted in

Figure 4E, but after median averaging. The model chl-a

(Figures 5C–F) is the mean over the nine AMM7 grid squares

covering the glider region, on the standard geopotential levels

provided to CMEMS (Tonani et al., 2019), and includes a period

after the glider deployment ended, as described in Section 2.3.

Glider chl-a values were typically higher than satellite chl-a,

but with similar temporal variability. This difference carried

through to the AMM7-CAMPUS best estimate, which

assimilated both data sources, compared with AMM7-OPER

which only assimilated the satellite data. Both models

reproduced the observed blooms in late April, but these were

much more prominent in AMM7-CAMPUS, especially the

larger bloom in the glider data. Throughout the glider

deployment, the water column was mostly well-mixed in the

glider and model data, apart from some dates in mid-April and

mid-May. Around the end of the deployment, near-surface chl-a

reduced in both AMM7-OPER and AMM7-CAMPUS, and a

DCM formed, as started to be seen in the glider data (Figure 4F).

This DCM persisted until the end of the model run.

The initial spring bloom activity around 20 April 2021 appears

to have been well forecast six days out by both AMM7-OPER and

AMM7-CAMPUS, with increased magnitude in AMM7-

CAMPUS. The larger bloom seen in the glider observations a few

days later was missing from the AMM7-OPER forecasts, and in

AMM7-CAMPUS it was forecast six days too late, suggesting that it

was merely persisted from the analysis after those observations were

assimilated. The formation of a DCM at the end of the glider

deployment was also present in both sets of forecasts. As with the
FIGURE 3

Reported surface positions of the glider (colored dots). The black polygon shows the region to which the glider waypoints were restricted.
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FIGURE 4

Plots along the glider transect for different variables, from the NRT glider data (left column) and DM quality-controlled glider data (right column).
(A) NRT temperature, (B) DM temperature, (C) NRT salinity, (D) DM salinity, (E) NRT chl-a, (F) DM chl-a, (G) NRT O2, (H) DM O2.
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best estimate, chl-a values were typically higher in the AMM7-

CAMPUS forecasts than in AMM7-OPER. Correspondingly,

depth-integrated net primary production was 20-50% higher in

AMM7-CAMPUS (not shown).

To assess the wider spatial impact of assimilating the glider

data, the mean absolute difference in surface chl-a between

AMM7-OPER and AMM7-CAMPUS in the WEC during the

glider deployment is plotted in Figure 6. For the best estimate

(Figure 6A) the biggest differences are found in the immediate

vicinity of the glider, with smaller differences locally in the WEC.

In part, this limited spatial impact will be due to the ocean color

assimilation also acting to constrain chl-a in both systems. In the
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six-day forecasts (Figure 6B), the biggest differences remain in

the vicinity of the glider and immediately to the east, and are

smaller in magnitude. The extent of the spatial differences across

the WEC is much larger, however.

To validate against independent in situ data, AMM7-OPER

and AMM7-CAMPUS chl-a values have been compared with

fluorescence profiles at station E1, situated just outside the glider

region (Figure 2). Profiles at E1 were conducted on four dates

during the glider deployment: 7 April 2021, 21 April 2021, 26

May 2021, and 8 June 2021. The observations were at very high

vertical resolution (0.25 m) and very noisy. Therefore, a 2.5 m

rolling mean was applied to each profile, before a cubic spline
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FIGURE 5

Plots of chl-a (mg m-3) from (A) assimilated preprocessed satellite data within the glider region plotted to the AMM7-CAMPUS mixed layer
depth, (B) assimilated preprocessed glider data, (C) AMM7-OPER best estimate averaged over the glider region, (D) AMM7-CAMPUS best
estimate averaged over the glider region, (E) AMM7-OPER six-day forecast averaged over the glider region, (F) AMM7-CAMPUS six-day forecast
averaged over the glider region.
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interpolation was performed to map the observations onto the

geopotential levels of the CMEMS products. This gave a total of

40 observation points to compare against across the four dates.

Model values were then linearly interpolated in the horizontal to

the E1 location to create model-observation matchups.

Validation was performed using robust statistics, due to the

lognormal distribution of chl-a (Campbell, 1995). Following

McEwan et al. (2021), the metrics used were median bias,

median absolute difference, and Spearman rank correlation

coefficient. Validation results for the best estimate and six-day

forecasts from AMM7-OPER and AMM7-CAMPUS are shown

in Table 1. All metrics were improved in AMM7-CAMPUS

compared with AMM7-OPER, for both analysis and forecast.
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This provides confidence that assimilating the glider data

improved model results.

At station L4, situated further from the glider region

(Figure 2), profiles were conducted on 11 dates during the

glider deployment. The observations and models were treated

in the same way as for the E1 data, giving a total of 88 model-

observation matchups. Validation results for the best estimate

and six-day forecasts from AMM7-OPER and AMM7-

CAMPUS are shown in Table 2. The differences between the

two forecasting systems were smaller than at E1, consistent with

the spatial extent of differences shown in Figure 6. For the best

estimate, median absolute difference was slightly improved in

AMM7-CAMPUS compared with AMM7-OPER, while median
TABLE 1 Validation statistics for AMM7-OPER and AMM7-CAMPUS chl-a against E1 data.

Analysis/forecast Model Median bias
(mg m-3)

Median absolute difference
(mg m-3)

Spearman rank correlation
coefficient

Best estimate AMM7-OPER -0.516 0.759 0.183

AMM7-CAMPUS -0.121 0.377 0.385

Six-day forecast AMM7-OPER -0.561 0.758 0.036

AMM7-CAMPUS -0.040 0.430 0.095
TABLE 2 Validation statistics for AMM7-OPER and AMM7-CAMPUS chl-a against L4 data.

Analysis/forecast Model Median bias
(mg m-3)

Median absolute difference
(mg m-3)

Spearman rank
correlation
coefficient

Best estimate AMM7-OPER -0.487 0.580 0.233

AMM7-CAMPUS -0.497 0.537 0.218

Six-day forecast AMM7-OPER -0.064 0.655 0.197

AMM7-CAMPUS -0.023 0.621 0.208
A B

FIGURE 6

Mean absolute difference in surface chl-a (mg m-3) between AMM7-CAMPUS and AMM7-OPER during the glider deployment, computed for
(A) the first analysis day and (B) the six-day forecast. The black polygon shows the region in which the glider was permitted to travel. The stars
show the location of the E1 and L4 time series stations.
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bias and Spearman rank correlation coefficient were slightly

degraded. For the six-day forecasts all metrics were improved in

AMM7-CAMPUS, but by a smaller margin than at E1.
3.3 Intercomparison of models
and observations

In this subsection, the temporal and spatial representation of

chl-a in the glider region is compared between the different

observation and model products. It should be noted that none of

the data sources are independent, and all have uncertainties, so

this is an intercomparison rather than validation.

Figure 7 shows a time series of near-surface chl-a in the

glider region from each data source. Shown are the nighttime

glider observations in the upper 10 m, the daily mean of these

observations, ocean color observations, hourly AMM7-OPER

surface best estimate, hourly AMM7-CAMPUS surface best

estimate, and four-hour predictions from STOCHASTIC. The

glider observations show extremely large sub-daily variability,

possibly due to the presence of phaeocystis colonies as discussed

in Section 3.1, with less variability in the daily mean. As seen in

Figure 4, the highest chl-a was a bloom in late April. The ocean

color observations were all smaller than the glider daily mean,

and mostly outside the range of variability in the nighttime

glider data. The ocean color satellites are heliocentric, sampling

at approximately local noon, when glider data have been

excluded as they may be affected by fluorescence quenching.

AMM7-OPER closely matched the ocean color data, except in
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June, while AMM7-CAMPUS was usually between the ocean

color and glider observations in magnitude. STOCHASTIC was

usually close to the glider daily mean. After the glider

deployment ended, surface chl-a in the region in AMM7-

OPER and AMM7-CAMPUS converged within a week, as

soon as ocean color data were available and the analyses were

being constrained by the same observations.

The spatial distribution of chl-a in the region in each data

source is shown for two dates, one during each of the bloom

events, in Figures 8, 9.

Figure 8 shows 20 April 2021, during the first chl-a peak seen

in Figures 4, 7. The ocean color data (Figure 8A) showed a

certain amount of spatial variability, with the highest chl-a just

to the west of the center of the region. Significantly, this broadly

matches where the glider was sampling that day (Figure 8B).

AMM7-OPER (Figure 8C) and AMM7-CAMPUS (Figure 8D)

lack the spatial resolution to fully resolve the region, but did

show some spatial variability. AMM7-OPER had higher chl-a in

the south and west than the north and east, in broad agreement

with the ocean color. AMM7-CAMPUS had the highest chl-a in

the center of the region, reflecting the location of the glider data,

which were higher in magnitude than the ocean color.

STOCHASTIC (Figure 8E) had a zonal line of high chl-a

across the lower center of the region, with lowest chl-a in the

corners, broadly reflecting AMM7-CAMPUS.

Figure 9 shows 26 April 2021, during the second chl-a peak

seen in Figures 4, 7. In those plots, a peak was seen in the glider

data but not the ocean color. This is also seen in Figure 9. The

ocean color (Figure 9A) had low chl-a across the region,
FIGURE 7

Time series of near-surface chl-a in the glider region from the nighttime glider observations, ocean color, AMM7-CAMPUS best estimate,
AMM7-OPER best estimate, and STOCHASTIC four-hour predictions.
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slightly higher in the east. The glider (Figure 9B) sampled

throughout the center of the region, with much higher

magnitudes. AMM7-OPER (Figure 9C) reflected the ocean

color data. AMM7-CAMPUS (Figure 9D) had highest chl-a

north of the center, and lowest chl-a to the south, beyond the

area where the glider could sample. STOCHASTIC (Figure 9E)

was broadly comparable to AMM7-CAMPUS, but more

homogeneous. A critical aspect of using quadrilinear

interpolation for the model inputs to STOCHASTIC is that

no additional new information is generated at the data point

locations. The data values are only being smoothed between

data points. However, by also including the glider chl-a

observations in the model, the forecasts are affected by the
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assimilation of the observations in the vicinity of these

locations, as can be seen in Figures 8, 9. This is most useful

in improving the path planning, as well as reducing the level

of uncertainty.

During the experiment, there was full coverage of the glider

region by ocean color on 16 days. To compare the glider’s

sampling positions with the location of maximum chl-a

estimated from ocean color data, for each of these 16 days the

ocean color chl-a is shown in Figure 10, overlaid with the glider

positions during that day. The ocean color chl-a is not the

“truth”, but is an alternative observational estimate of the spatial

variability of chl-a. While ocean color data were assimilated by

AMM7-CAMPUS, which was used in navigating the glider, the
D
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FIGURE 8

Chl-a in the glider region on 20 April 2021, from (A) ocean color (white area is missing data due to cloud), (B) glider observations in the upper
10 m, (C) AMM7-OPER surface best estimate, (D) AMM7-CAMPUS surface best estimate, (E) STOCHASTIC, first four-hour prediction of the day.
The solid black lines denote the region the glider was constrained to stay within. The dotted black lines denote the AMM7 model grid. Note the
use of a log color scale.
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observations for a given day had not yet been assimilated at that

point so can be considered semi-independent.

On none of the days did the glider sampling coincide with

the ocean color pixel of maximum chl-a, though on many

occasions this occurred on the very border of where the glider

could be sent. Even if the glider did not sample the highest chl-a

estimated from ocean color, it did often – though not always –

sample in the vicinity of patches of higher rather than lower chl-

a. Qualitatively, the impression is also given from Figure 10 of

the glider successfully chasing around the area of highest chl-a,

even if it did not manage to reach it. The comparison is

complicated by the merging of different ocean color sensors,

which may not always agree, in the ocean color product used.

For instance, the sharp gradient seen on 1 May 2021 (Figure 10)

represents the edge of a satellite swath. Furthermore, the ocean

color data provides a snapshot in time, while the glider was
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iteratively directed towards different potential chl-a maxima

throughout each day, with strong tidal currents continually

advecting any phytoplankton.
3.4 Sensitivity of stochastic prediction
model to inputs

For select times in May 2021, STOCHASTIC was rerun

using different inputs, as described in Section 2.4, to assess the

sensitivity of the calculated waypoints to the use of model data. A

representative example is shown in Figure 11, showing the 24-

hour chl-a predictions for 20:05 on 14 May 2021, using AMM7-

CAMPUS chl-a (Figure 11A), AMM7-OPER chl-a (Figure 11B),

and only glider chl-a (Figure 11C). Overlaid are the set of 6

waypoints to which the glider would be successively directed
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FIGURE 9

Chl-a in the glider region on 26 April 2021, from (A) ocean color, (B) glider observations in the upper 10 m, (C) AMM7-OPER surface best
estimate, (D) AMM7-CAMPUS surface best estimate, (E) STOCHASTIC, first four-hour prediction of the day. The solid black lines denote the
region the glider was constrained to stay within. The dotted black lines denote the AMM7 model grid. Note the use of a log color scale.
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based on the predictions, with 0 showing the starting location of

the glider. When using AMM7-CAMPUS, as was done during

the deployment, the highest chl-a was predicted to be in the

current vicinity of the glider, and the glider was directed to stay

around that location. If AMM7-OPER data were used instead,

there was less variability in the predictions, with highest chl-a in

the opposite corner of the domain outside of where the glider

could be directed. The glider would instead be directed toward

the centre of the domain. In the case where no model chl-a was

provided the prediction was extremely homogeneous, and the

glider would be directed to the northwest of its current location.
4 Summary and discussion

This study has introduced and demonstrated, as a proof-of-

concept, an automated and adaptive ocean observing system
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integrating an ocean glider with operational ocean model

forecasts. The glider was deployed in the western English

Channel (WEC) during the spring bloom period of 2021 and

directed by waypoints autonomously provided by a stochastic

prediction model. This combined the glider observations with

forecasts from a numerical model, which in turn assimilated the

glider observations and other data, to create high-resolution

probabilistic predictions of chl-a. From these, a set of waypoints

was calculated, to direct the glider to where a phytoplankton

bloom was most likely to be found. Optimised adaptive sampling

strategies were therefore provided via a continuous feedback

loop frommachine-to-machine. The glider successfully captured

details of the spring bloom in the WEC at unprecedented

temporal resolution. Furthermore, assimilating these

observations appeared to have a positive impact on

operational forecasts in the region, consistent with the

previous work of Skákala et al. (2021), although the region of
FIGURE 10

For each day with complete ocean color coverage, maps of chl-a (mg m-3) from ocean color overlaid with the glider positions that day (grey
dots, getting darker from white to black between 00:00 and 23:59) and position of maximum chl-a estimated from ocean color (red crosses).
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influence was limited and few independent observations were

available for validation. When comparing the predicted bloom

locations with ocean color data the results were ambiguous,

perhaps due to the small study region and differences between

remotely sensed and in situ chl-a measurements, as

discussed below.

Traditionally, a glider is directed by a human based on

scientific judgement, or set on a predefined course. The system

trialled in this study offers an alternative and arguably improved

method, where the locations of features of interest are predicted

by models based on all available sources of information, and the

glider is directed accordingly with no human decision being

made other than oversight for safety. This has the potential to

better ensure observations are made where they will be of most

use and have the most impact. Cost savings are also likely by

reducing the need for human input and potentially making

efficiencies where multiple autonomous underwater vehicles

(AUVs) are deployed, making a glider-based ocean observing

system more affordable. Currently, in situ monitoring of coastal

seas is sparse, and largely limited to static buoys and moorings,

research vessel campaigns, and satellite data. Autonomous

marine technologies such as the glider trialled present an

affordable and scalable alternative or complementary

framework that could significantly increase the density and

effectiveness of coastal ocean observing networks.
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Several challenges remain before such a system is ready for

operational implementation. One relates to near-real time (NRT)

versus delayed mode (DM) quality control (QC). Biofouling

became a major issue in this study towards the end of the 11-

week deployment. Unless solutions are found, biofouling will always

be a concern in shallow, well-lit, productive waters such as theWEC

that are typical of coastal and shelf seas. This will likely limit future

glider missions to shorter durations. Automated QC would help

with identifying when this is affecting data quality and could be used

to flag the need for glider recovery and replacement. This study also

shows that care and consideration need to be taken around

calibration, to enable the maximum opportunities to cross

calibrate with other available data sources throughout

deployments. In this study, the DM O2 values were significantly

different to the NRT values after QC, leading to inaccurate results

when used for monitoring and assimilation in NRT. Calibration of

fluorescence and its translation to total chl-a biomass also remains a

challenge for the observing community, in both NRT and DM

mode, and is reflected in challenges faced in operational QC of

Biogeochemical-Argo floats (Roemmich et al., 2019). A comparison

and collaboration on QC methods between the glider and

Biogeochemical-Argo communities may be desirable, for instance

within the framework of the Ocean Best Practices System of the

Intergovernmental Oceanographic Commission (Pearlman

et al., 2019).
A B

C

FIGURE 11

24-hour chl-a predictions for 20:05 on 14 May 2021 from STOCHASTIC using different model chl-a inputs: (A) glider and AMM7-CAMPUS,
(B) glider and AMM7-OPER, (C) glider only. The black lines denote the region the glider was constrained to stay within.
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Similarly, differences between chl-a estimates derived from

satellite ocean color and gliders pose challenges when

assimilating both data types into operational models.

Resolving differences in sampling frequency, coverage, and

sensor optical frequency ranges presents issues, and even

collocated satellite and in situ estimates can present

significantly different values as they are not designed to

measure the same volumes of water. Furthermore, this study

only used nighttime glider data to avoid contamination due to

fluorescence quenching, while ocean color sensors take

measurements at approximately midday. This timing offset can

lead to differences due to advection and changes in biological

production. Very high-resolution variability in vertical profiles

of fluorescence (Tarran and Bruun, 2015) can exacerbate these

issues further. Some account of this is taken during the

assimilation process, for instance through median averaging

and assigning different errors to each observation type, but

more work is required to develop this. Intercomparisons of

models, ocean color, and bio-optical observations from

Biogeochemical-Argo floats have been investigated (IOCCG,

2011; IOCCG, 2020), and such efforts should be extended to

emerging autonomous monitoring systems. It would be possible

to perform vicarious calibration to “correct” one set of

observations based on the other, but this would need to be

done carefully to avoid making inappropriate assumptions about

the relative accuracy of each dataset. Furthermore, DM ocean

color products can come with bias and uncertainty information

provided (Jackson et al., 2017), allowing the ocean color data to

be bias-corrected prior to assimilation (Ciavatta et al., 2016;

Skákala et al., 2018). This information is not currently available

for the NRT product assimilated operationally.

Scaling up the observing system to include multiple AUV

platforms presents further challenges. In this study, a single

glider was deployed, and restricted to a relatively small region.

To provide wider geographic improvement to operational model

forecasts, and provide more comprehensive monitoring, a much

larger region would feasibly need to be covered by multiple

AUVs. A more complex stochastic prediction model would

therefore be required to consider, for example, that multiple

AUVs are not sent to the same location, AUVs are only directed

to locations they can reach in a reasonable time, and that moving

one AUV doesn’t improve predictions in a small area to the

detriment of the wider regional forecast. This would need to

account for both the AUVs’ nominal speed and the ocean

currents. The inability in this study to constrain a single glider

to a control area due to regionally typical tidal currents

highlights the complexity of controlling multiple autonomous

platforms within the natural variability of coastal ocean currents

and density structure. The relatively small size of the region,

covered by only a few grid cells of the operational forecasting

model, meant that spatial variability in the forecasts was limited.

The interactions between the different data sources in a larger
Frontiers in Marine Science 17
domain, and how this may impact the path planning, requires

further investigation.

The stochastic prediction model used operational ocean

forecasts as inputs, as well as the glider observations. The use

of model as well as observation data adds a layer of complexity,

especially when the glider data is also being assimilated. Whether

a model was used, and whether it assimilated the glider data or

not, was shown to significantly alter the results, suggesting this

added complexity to be worthwhile. Care should be taken

though not to introduce an inadvertent positive feedback loop,

where biases between the glider observations and other data

sources act to keep the glider in one small area, because all glider

observations are systematically higher in magnitude than the

other sources. This did not appear to be the case in this study,

but was difficult to assess given the small area. A way to mitigate

this risk might be through online bias correction, or weighting

the different data sources based on estimates of their errors. A

further issue is the relatively low spatial resolution of the model

forecasts, especially given the limited study area over which the

model could not fully resolve spatial gradients. Higher model

resolution is ideally required, but this is computationally

challenging and innovative solutions may be needed.

Operational biogeochemical models can play a crucial role in

monitoring and decision making (Fennel et al., 2019), but are

not always used to their full potential (Hyder et al., 2015).

Initiatives to promote such systems are to be supported

(ETOOFS, 2022).

In this study, the stochastic prediction model aimed to direct

the glider towards the maximum chl-a in the region, as a

measure for the most likely location of a potentially harmful

algal bloom. Other criteria could be used, and these might be

more appropriate in other studies. For instance, an algorithm

was also developed to follow a contour of a given variable, to

allow the extent of a bloom or anomalous temperature spot to be

mapped. The stochastic prediction model can also calculate the

uncertainty in chl-a or another variable given the input data, and

an alternative strategy could be to direct the glider to the location

of the highest uncertainty. In deciding the appropriate strategy,

there may be a tension between different applications. For

monitoring bloom activity, tracking the maximum or a

contour might be favoured. For improving model forecasts,

sampling areas of highest uncertainty might be favoured.

With any glider deployment, pragmatic trade-offs are

required between scientific interest, safety, and battery life.

These become paramount in an automated system with more

limited human monitoring. Shelf seas often contain busy

shipping lanes, and a glider is unlikely to survive a collision

with a ship. The more often a glider surfaces to transmit and

receive data, or the closer its inflection point is to the surface, the

more likely such collisions become. The scientific desire for

near-surface data and regular communication needs to be

balanced with maritime safety and regulations. Furthermore,
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increasing the data transmission frequency and sampling

resolution will provide more detailed data, but can

significantly reduce the endurance of AUVs, which have

limited power supply.

A final challenge relates to regulation and legislation of

autonomous ocean vehicles. Such regulation is still under

debate and largely driven by considerations of Marine

Autonomous Surface Ships, with a general expectation that

regulations relating to marine vehicles apply regardless of

whether there are humans on board or not (Klein, 2019). In

this study, communication from the stochastic prediction model

to the glider was therefore not fully automated, in accordance

with considered best practice to provide continuous human

oversight of glider operations. While such regulations are

unclear, this is likely to be a common restriction in many

jurisdictions as legislation adapts to technological advances in

autonomous vehicles. Those involved in ocean monitoring must

therefore suitably engage with policy and law makers to ensure

future legislation takes ocean monitoring requirements into

account alongside those of marit ime industry and

military concerns.

All these challenges are inherently surmountable, and there

is great potential for a revolution in how coastal oceans are

observed and monitored. This can complement the advent of

Argo and Biogeochemical-Argo (Roemmich et al., 2019) in the

deep ocean, to which such integrated approaches could

theoretically be extended. Furthermore, the approach is highly

aligned with the digital twin of the ocean concept, the

development of which is currently an increasing international

priority (https://ditto-oceandecade.org/).
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