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The effects of fishing have been documented across coral reefs worldwide. No-take
marine reserves do not only act as a conservation tool but also allow an opportunity to
study impacts of fishing, by acting as control sites. In addition, well-planned and well-
managed no-take marine reserves (NTRs) provide conservation benefits that are essential
to marine biodiversity and ecosystem-based management. The Abrolhos Marine National
Park, off the tropical Brazilian coast, protects part of the largest coral reef system in the
South Atlantic. To investigate the effects of fishing on reef fish richness, abundance,
biomass, and functional diversity of the fish assemblage, we compared sites across two
protection levels considering the variation in habitats (Fringing Reefs—Protected;
Pinnacles Reefs—Protected; and Coastal Reefs—Open Access), using Baited Remote
Underwater Stereo-Video systems (stereo-BRUVs). We adjusted generalized additive
mixed models of fish assemblage characteristics with protection levels and environmental
variables, such as topographic complexity (mean relief and relief variation), visibility, and
benthic cover percentage. Inside NTRs, we found higher total biomass and biomass of
fishery target species and carnivores, specifically for the Carcharhinidae (sharks) and
Epinephelidae (groupers) families, indicating direct fisheries effects on these groups. In
contrast, the ecological parameters of non-target fish were positively correlated with
habitat characteristics, including mean relief and variance of relief. Moreover, fish
functional diversity was higher within NTRs, demonstrating an even distribution of
functional entities. The presence of large mobile predators and the overall higher
biomass of carnivores inside the NTR indicate the effect of fishing exclusion. Our results
point to the value of NTRs to study the effects of fishing and achieve biodiversity
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conservation and suggest the importance of using remote sampling methods to assess
large mobile predators.
Keywords: marine protected area, MPA, stereo-BRUVs, South Atlantic, Chondrichthyes, Actinopterygii, reef
ecology, reef fish
INTRODUCTION

Since the mid-1980s, fisheries remove more than 100 million
tons of biomass from the ocean each year (Pauly et al., 2020) and
therefore play an important role in shaping the structure of
marine communities through both direct and indirect effects
(Crowder et al., 2008; Watson et al., 2009; Babcock et al., 2010;
Rolim et al., 2019). Direct effects include the decrease in biomass,
abundance, and size of target species and bycatch (Myers and
Worm, 2003; Crowder et al., 2008), while cascading effects
through the food web indirectly affect prey populations and
benthic assemblages (Sala et al., 1998; Claudet et al., 2011).
Understanding these processes helps determine and predict the
impact of fisheries to ecosystem structure and function and
therefore inform management measures to buffer against
such impacts.

No-take marine reserves (NTRs) have been established
worldwide aiming to protect biodiversity and critical habitats
and consequently provide experimental controls to study the
effects of fishing (Agardy, 1994; Hyrenbach et al., 2000; Roberts
et al., 2003; Claudet et al., 2011). When adequately planned and
well managed, NTRs promote the recovery of exploited marine
populations, habitats, and food webs and may ultimately
improve ecosystem services, such as recreational activities and
fisheries resources availability (Claudet et al., 2011; Leenhardt
et al., 2015). Despite few temporally and spatially controlled
experiments targeting investigations into the NTRs effects (e.g.,
Francini-Filho and Moura, 2008a), higher fish abundance,
richness, and biomass have been recorded within and around
NTRs, indicating that they can mitigate fisheries effects and
contribute to surrounding areas through biomass and larval
spillover (Abesamis and Russ, 2005; Francini-Filho and Moura,
2008b; Halpern et al., 2009; Di Lorenzo et al., 2016; Ohayon
et al., 2021).

Besides protection effects, different physical and biological
environmental characteristics have been demonstrated to affect
coral reef fish communities (Friedlander et al., 2003; Messmer
et al., 2011; Komyakova et al., 2013; McClure et al., 2021; Russ
et al., 2021). On a local scale, conditions such as wave exposure,
depth, distance from the coast, and topographic complexity have
shown to be the most influential physical factors to reef fish
assemblage structure. For example, distance from the coast,
depth, and topographic complexity have been shown to
increase richness, abundance, and biomass of reef fish
(Friedlander et al., 2003; Graham and Nash, 2013; Komyakova
et al., 2013; Morais et al., 2017; McClure et al., 2021). Moreover,
coral richness and complexity have influenced both small reef
attached fish species richness (Messmer et al., 2011; Komyakova
et al., 2013) and fisheries-targeted species (Graham, 2014; Rogers
in.org 2
et al., 2014). Therefore, it is relevant for any investigation of
fishing effects to control for covariates across NTRs and
open areas.

Abundance and biomass of target species are the most
frequent metrics used to assess NTR effectiveness (Lester et al.,
2009; Rolim et al., 2019; Goetze et al., 2021). Trait-based
approaches, including body-size (Bosch et al., 2021), have been
used to explore other dimensions of NTR effects (Coleman et al.,
2015; D’Agata et al., 2016). Functional diversity is measured
through a combination of behavioral, physiological, and
morphological attributes that are connected with the role that
each species plays in the ecosystem (Tilman, 2001). Additionally,
trait-based approaches may reveal changes that are not detected
by traditional metrics such as the relative abundance of different
fish species in the assemblage. For example, Coleman et al.
(2015) recorded higher values of community mean functional
traits within NTRs but no differences in fish taxonomic diversity
(species diversity and richness) that could be associated with
protection levels.

Functional diversity is not always linearly associated with
species diversity (Micheli and Halpern, 2005), and trait-based
approaches can be pivotal to measure ecosystem dynamics and
functioning (e.g., productivity and consumption) (Tilman,
2001), vulnerability and resilience, and the potential provision
of ecosystem services (Nyström and Folke, 2001; Villéger et al.,
2008). Reef fish functional diversity has been explored along the
Southwestern Atlantic (e.g., Halpern and Floeter, 2008; Bender
et al., 2017; Quimbayo et al., 2018; Lopes-da-Silva et al., 2021;
Medeiros et al., 2021; Waechter et al., 2021), but the direct and
indirect effects of fisheries on reef fish functional diversity is still
comparatively poorly studied (e.g., Rincón-Dıáz et al., 2021).

The region’s reefs are relatively isolated and encompass high
endemism levels within species-poor assemblages (Moura, 2000;
Rocha, 2003; Pinheiro et al., 2018; Soares et al., 2021). Despite
meeting international area targets for protected areas’
declaration (Silva, 2019), the Brazilian Exclusive Economic
Zone (EEZ) is subjected to multiple impacts, including high
levels of fishing pressure in coralline reefs (Francini-Filho and
Moura, 2008a; Freitas et al., 2011). The largest and richest
Southwestern Atlantic coralline reefs are located in the
Abrolhos Bank, a 46,000 km2 shallow water area between 17°S
and 20°S. The Abrolhos Bank comprises mangroves, seagrass,
macroalgae, rhodolith beds, and coralline reefs. The coral reef
complex covers approximately 8,800 km2 and includes fringing
reefs around a small archipelago and emergent and quasi-
emergent mushroom-shaped reef formations that are unique to
the region (Leão et al., 2003; Moura et al., 2013). The region has
been negatively affected by overfishing (Francini-Filho and
Moura, 2008a; Freitas et al., 2011), coastal development
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(Teixeira et al., 2021), coral bleaching and diseases (Francini-
Filho et al., 2008; Teixeira et al., 2019; Duarte et al., 2020), and
decreasing water quality (Bruce et al., 2012). The Abrolhos
Marine National Park was established in 1983 as Brazil’s first
National Marine Park, covering ~880 km2 of NTR.

Previous research in the Abrolhos Bank with underwater visual
census (UVC) showed higher biomass of small carnivorous fishes
that are targeted by fisheries inside the NTR than in areas open to
fishing (Francini-Filho and Moura, 2008a). However, UVC can
bias abundance and biomass estimates of some fish groups, such as
large mobile carnivores (underestimation) and small carnivores
(overestimation) (Chapman et al., 1974; Watson and Harvey,
2007; Goetze et al., 2015). With this, some fisheries effects,
especially in higher trophic groups, may have not yet been
detected. Large carnivores tend to be the group more rapidly
depleted by fisheries, and this functional group plays an important
role in the ecosystem being responsible for the top–down control
offish assemblages. Therefore, other methods need to be applied to
truly assess fisheries effects to this functional group.

Baited Remote Underwater Stereo-Video systems (stereo-
BRUVs) are becoming increasingly popular to assess the effects
of NTRs on different dimensions of fish assemblages, especially
fisheries target species, including changes in the functional
diversity (Lester et al., 2009; Coleman et al., 2015; Whitmarsh
et al., 2017). The typical stereo-BRUV setup consists of two
cameras installed in a baited structure that is laid in the seabed or
in the water column, allowing for accurate measurements of
organisms through photogrammetry (Harvey and Shortis, 1996).
Stereo-BRUVs sample a wide range of species, including
herbivores (Harvey et al., 2021), and can be applied across a
wide variety of habitats and depths (Whitmarsh et al., 2017). In
addition, as a remote sensing technique, it detects large and
mobile animals that usually avoid divers and active fishing gears
(Cappo et al., 2006; Goetze et al., 2015). Although stereo-BRUVs
are subject to caveats, such as difficulties in determining study
area, variable bait plume dispersal in currents, and
underestimation of cryptic species (Watson et al., 2005), this
method is suited to sampling predatory fish assemblages that are
often the target of fishing. For this reason, stereo-BRUVs have
been widely used and can accurately sample fish abundance over
reef-wide and global scales (e.g., MacNeil et al., 2020). Moreover,
the images produced by this method can provide valuable
information of the environment and have been used to
categorize the habitat type and determine reef structural
complexity (Cappo et al., 2011; Wilson et al., 2012; Bennett
et al., 2016; Rolim et al., 2019).

The present study aims to explore the ecological protection
effects of the Abrolhos Marine National Park using stereo-
BRUVs, comparing fish assemblage characteristics (abundance,
richness, biomass, and fish length), and the functional diversity,
among areas subjected to different management regimes
(Protected and Open Access areas). We hypothesize that (1)
abundance, biomass, and body size of target species will be
higher in NTR, (2) non-target species distribution will be
explained by habitat variables, and (3) fish functional diversity
will also be higher within NTRs.
Frontiers in Marine Science | www.frontiersin.org 3
MATERIAL AND METHODS

Study Area
The Abrolhos Marine National Park (Figure 1) comprises two
separate areas: the largest southern and more offshore area
encompasses the Abrolhos Archipelago and Parcel dos
Abrolhos reef, while the northern and more coastal area
encompasses the Timbebas reef. The NTR areas sampled by
the study focused only on the southern portion of the park. The
Abrolhos archipelago is composed of shallow coral formations
and rocky reefs surrounding the islands (fringing reefs), while the
Abrolhos parcels region is characterized by isolated mushroom-
shaped reefs (pinnacles) that can reach 25 m in height,
surrounded by unconsolidated sediments. The areas open to
fishing activities, Pedra de Leste e Sebastião Gomes, in the
nearshore arc present emerging shallow-reef formations where
pinnacles often coalesce as larger continuous banks. Fishing
activity, mainly large- and small-scale fisheries, such as hook-
and-line (hand lines and longlines), gillnets, and spearfishing, are
frequent in these areas, supplying the local and regional market
(Ferreira, 2005; Francini-Filho and Moura, 2008a; Freitas, 2009;
Giglio et al., 2015; Previero and Gasalla, 2018).

The Marine National Park is an NTR belonging to the
Category II of the International Union for the Conservation of
Nature (IUCN) (Dudley, 2008). In this category, no direct
exploitation of natural resources is allowed, and the main aim
of the NTR is to develop education and tourism activities. Within
the Marine Park, the Abrolhos parcels region was classified as
“Pinnacles Reefs—Protected” and the Abrolhos archipelago as
“Fringing Reefs—Protected”. The control areas open to fisheries
activity to test protection effects were located in the inshore arc
(Sebastião Gomes and Pedra de Leste), classified as “Open
Access” areas (Figure 1).

Sampling
Sampling was conducted in March 2017 using stereo-BRUVs.
The stereo equipment consists of two cameras (GoPro Hero3+)
that converge approximately 8°C inwardly, with a bait arm
placed 1.5 m from the cameras to attract fish. The calibration
process and equipment are described in detail in Harvey and
Shortis (1996, 1998). This process was performed before each
field trip. Stereo-BRUV samples (here referred as deployments)
were deployed for 30 min, during daylight (between 7:00 a.m.
and 4:00 p.m.), using 800 g of a mix of crushed fresh and salted
sardines (Sardinella brasiliensis) as bait. Deployments of 30 min
have been demonstrated to be sufficient for sampling a wide
range of species of finfish on shallow reefs (Bernard and Götz,
2012; Harasti et al., 2015), and oily baits, such as sardines, are
recommended (Dorman et al., 2012) due to the odor plume
dispersion. Deployments with <30 min, with very low visibility
(<2 m) and limited field of view were excluded from the analysis,
resulting in 73 stereo-BRUV deployments, of which 16 were in
the Fringing Reefs—Protected (Archipelago), 30 at the Pinnacles
Reefs—Protected (two different locations in the Abrolhos parcels
region), and 27 in Coastal Reefs—Open Access (10 at Pedra de
Leste reef and 17 at Sebastião Gomes reef) (more details in
May 2022 | Volume 9 | Article 701244
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Supplementary Figure S1 and Supplementary Table S1).
Between BRUV deployments, a minimum distance of 250 m
was adopted, which is indicated for 30-min deployments (Cappo
et al., 2001). The equipment was positioned above the reef or in
the interface with the sandy bottom to avoid large variations in
the deployment depths, which ranged from 2 to 14 m (however,
precise depth at each deployment was not measured).

Video Analysis
From each video, we recorded the abundance of each species using
MaxN, which is defined as the maximum number of individuals
appearing in the video in the same frame within 7 m from the
cameras (Priede et al., 1994; Langlois et al., 2020). MaxN is a
conservative approach in order to avoid counting and measuring
the same individual more than once (Schobernd et al., 2014). Fish
were identified to species according to Moura and Francini-Filho
(2005). The fork length of individuals was measured at the MaxN
using EventMeasure software, which was subsequently used to
calculate biomass using growth parameters available from the
Fishbase database (Froese and Pauly, 2018). The length was
measured when the fish was straight and no more than 45°C
perpendicular to the cameras, and only lengths with <20 residuals
mean square (RMS) of precision were considered in EventMeasure
software, also following all others length rules recommended for
configuring stereo measurements detailed in Langlois et al. (2020).
When the parameters for fork length were not available, length/
length conversions were made from total and standard length.
Frontiers in Marine Science | www.frontiersin.org 4
Fish were classified into trophic groups based on the main
diet components according to the literature (Ferreira et al., 2001;
Gibran and de Moura, 2012; Froese and Pauly, 2018; Pinheiro
et al., 2018; Quimbayo et al., 2021), resulting in carnivores,
mobile invertebrate feeders, sessile invertebrate feeders,
omnivores, roving herbivores, territorial herbivores, and
planktivores. Fish were also divided into fisheries target and
non-target according to the economic value in the region
(Carvalho-Filho, 1999; Francini-Filho and Moura, 2008a).

To categorize the habitat type of each sample, a 5 × 4 grid was
overlaid on a single high-definition image obtained from each
stereo-BRUV deployment following Langlois et al. (2020). This
method has shown to be effective to determine reef structural
complexity (Cappo et al., 2011; Wilson et al., 2012; Bennett et al.,
2016; Rolim et al. , 2019). Images were analyzed in
TransectMeasure software (www.seagis.com.au) (examples in
Supplementary Figure S2). Within each grid rectangle, the
dominant habitat type was characterized using the CATAMI
classification scheme (Althaus et al., 2015) and topographic
complexity on (Wilson et al. 2007). This resulted in the
coverage percentage for each deployment of broad habitat
types, relief levels (topographic complexity), and field of view
(Table 1). The complexity of each deployment was then
determined by the average number and standard deviation
estimate of the relief levels. The field of view of the cameras
(facing up, facing down, and open) and water transparency was
also estimated for each sample (deployment) from the footages,
A

B

FIGURE 1 | The study area (dotted rectangle) within the Abrolhos bank with the bathymetry data, highlighting the Abrolhos Marine National Park (no-take marine
reserve) in red (north portion—Timbebas; south portion—Abrolhos archipelago) and the reef area (shallow and mesophotic) in light gray (A). The study area in detail
with the shallow submerged coral reefs in dark gray and with the sample sites inside (Pinnacles and Fringing Reefs—Protected) and outside the no-take reserve
(Coastal Reefs—Open Access) (black and white dots) (B). More information on Supplementary Material (Supplementary Figure S1 and Supplementary Table S1).
May 2022 | Volume 9 | Article 701244
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in which the distance from the cameras of the farthest individual
observed in meters, measured on EventMeasure software, was
determined as water transparency.

Fish functional diversity was classified according to biological
functions using the following traits based on Halpern and Floeter
(2008), Pinheiro et al. (2018), and Quimbayo et al. (2021): size
category (small: <10, medium small: 10–25, medium: 25–50, and
large: >50 cm), maximum depth (very shallow: <10 m, shallow:
10–25 m, medium: 25–50 m, deep: 50–100 m, very deep: >100
m), trophic category (omnivore, herbivores, mobile invertivore
feeder, sessile invertivore feeder, planktivore, carnivore), and
mobility (sedentary, roving and highly mobile). In addition to
these categories, we added schooling behavior (solitary, pairing,
small groups of 3–20 individuals, medium groups of 20–50
individuals, or large groups of >50 individuals) and trophic
level [values ranging from 2 to 4.7, from Froese and Pauly
(2018). The lists of the fish species found and their respective
traits are in Supplementary Tables S4, S5. The combination of
traits for each species resulted in functional entities (FEs).

Statistical Analysis
To explore overall fish assemblage characteristics (abundance,
richness, and biomass) in relation to environmental variables, we
used Generalized Additive Mixed Models (GAMMs) with a full-
subsets model selection approach (Fisher et al., 2018). We chose
generalized additives models for our analysis because many
ecological relationships are inherently non-linear (Zuur et al.,
2007). Using a GAMM allowed us to explore potentially non-
linear predictors using smoothing splines to estimate non-
parametric additive functions, allowing for overdispersion and
correlation in the data (Lin and Zhang, 1999; Zuur et al., 2007),
without the need to define the exact functional form of the
relationships between the predictors and response. The use of the
mixed approach allowed us to analyze nested data (hierarchical data
—area and sites), including fixed and random effects to the models.
For each response variable of interest, we ran this subset GAMM
function to develop, fit, and compare a complete model set of
possible ecological or environmental predictors, starting from a
generalized additive (mixed) model fit. The main advantages are
that it does not require a complete model to be fit as the starting
point for candidate model set construction, which means that a
greater number of predictors can be explored, and the function
handles interactions between predictors (Fisher et al., 2018). This
Frontiers in Marine Science | www.frontiersin.org 5
analysis was run separately, i.e., for each variable of interest, for
target and non-target species, for functional groups, and for the
most conspicuous economically important families (Carcharhinidae
—sharks; and Carangidae, Haemulidae, Epinephelidae, and
Labridae—bony fishes). Exploratory analyses revealed levels of
high correlation (r > 0.7) between environmental variables. As a
result, reef, rock, octocoral, zoanthids, and depth were removed
from the analysis, and mean relief, relief variation, hard corals, sand,
and macroalgae were maintained as continuous factors. Random
factors included water transparency (m) and field of view, and the
fixed factor was Habitat/Protection (three levels: 1, Fringing Reefs—
Protected; 2, Pinnacles Reefs—Protected; and 3, Coastal Reefs—
Open Access).

Model selection was based on the second-order variant of
Akaike’s Information Criterion suited for small samples (AICc)
(Akaike, 1973) and on AICc weights (wAICc). We selected
models within two delta AICc (DAICc < 2), i.e., the difference
between the AICc of the best model (lower AICc) and AICc from
the other models. Models were then ranked according to
parsimony, in which the models with desired level of
explanation or prediction with as few predictor variables as
possible were placed in the top. The most parsimonious
models with >10% variance explained were chosen to be
plotted. Model validation was performed to verify the
assumptions of homogeneity and normality (Zuur et al., 2007),
and the plots are presented in the Supplementary Material.

Kernel Density Estimation (KDE) was used to estimate and
graphically compare the probability density of individual fish
lengths for key families among habitat/protection levels. The
distribution of fish lengths was also compared among protection
levels for these families using Kruskal–Wallis test, and post-hoc
test Multiple Comparisons Kruskal (KruskalMC), considering a
significant difference as p-values <0.05.

For functional diversity analysis, for each habitat/protection
level, the number of FEs (functional entities, i.e., the
combination of traits) present in the assemblage relative to
the number from the global pool (FE richness) and the volume
inside the convex hull surrounding the FEs present (functional
richness) were calculated. The number of species, number of
FEs, and functional volume filled by each assemblage (4D) were
expressed as a relative percentage of the global pool. The
Gower’s Distance (Gower, 1971) was used to calculate
pairwise functional distances between species pairs based on
TABLE 1 | Habitat classification based on broad CATAMI Classification scheme in Althaus et al. (2015) and Wilson et al. (2007).

Criteria Description

Relief 0—Flat substrate, sandy, rubble with few features. ~0 substrate slope
1—Some relief features among mostly flat substrate/sand/rubble. <45°C substrate slope

2—Mostly relief features among some flat substrate or rubble. ~45 substrate slope
3—Good relief structure with some overhangs. >45 substrate slope
4—High structural complexity, fissures and caves. Vertical wall. ~90 substrate slope
5—Exceptional structural complexity, numerous large holes and caves. Vertical wall. ~90 substrate slope
Unknown

Field of view Facing up Limited
Facing down Open

Broad/Benthos Ascidians Consolidated Zoanthids Stony corals Unknown
Bryozoa Macroalgae Sponges Unconsolidated Open water
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the six functional traits and build a functional space accounting
for trait values of FEs. This metric was selected because it
permits mixing different types of variables while giving them
equivalent weight. Then, a multidimensional functional space
was built using the first four principal axes of the principal
coordinates analysis (PCoA) computed on the functional
distance matrix, in which the position of FEs represents their
disparities. The number of axes needed to build a functional
space was selected according to the mean squared deviation
(mSD) index computed between initial functional distance
among FEs and final Euclidean distance in the functional
space. The functional space built with four dimensions
presented a low mSD (0.0024) and demonstrated an optimal
capacity to represent functional differences between species
while keeping computational time reasonable for functional
b-diversity analyses. Routine of the analysis and R script was
based on Teixidó et al. (2018).

All analyses were performed using R Language for Statistical
Computing (R Core Team, 2020), with the packages FSSgam
(Fisher et al., 2018), gamm4 (Wood and Scheipl, 2017), mgcv
(Wood, 2011), MuMIn (Barton, 2018), doParallel (Microsoft-
Corporation and Weston, 2017), dplyr (Wickham et al., 2018)
for tidying data, and ggplot2 (Wickham, 2016) for plotting.
RESULTS

A total of 3,109 fish individuals belonging to 27 families and 74
species were identified across all stereo-BRUV deployments
(Supplementary Table S2). Of these, the most abundant species
were yellowtail snapper (Ocyurus chrysurus = 32.1% of the
individuals recorded), tomtate grunt (Haemulon aurolineatum
= 14.1%), greenbeak parrotfish (Scarus trispinosus = 6.8%),
sergeant-major (Abudefduf saxatilis = 6.3%), ocean surgeon
(Acanthurus bahianus = 6.8%), and blue tang surgeon
(Acanthurus coeruleus = 3.4%). The most conspicuous species
were Ocyurus chrysurus (occurred in 93.1% of the footages), white
grunt (Haemulon plumieri, in 47.9%), Abudefduf saxatilis (in
46.6%), Acanthurus bahianus (in 46.6%), S. trispinosus (in
46.8%), and black grouper (Mycteroperca bonaci, in 43.8%).
Carnivores were the most abundant functional group,
representing 39.8% of the individuals, followed by mobile
invertebrate feeders (22.2%), roving herbivores (20.4%),
omnivores (9.8%), planktivores (4.8%), and sessile invertebrate
feeders (1%).

The GAMMs top models for each variable of interest are
listed in Supplementary Table S3. In a broader view,
differences in fish assemblage (biomass, abundance, and
richness) were predicted mostly by relief variation, followed
by mean relief, habitat/protection, macroalgae, sandy bottom,
and hard corals cover (Supplementary Table S3 and
Supplementary Figure 2). Protection was important to
predict biomass of the total sample, explaining 25% of total
variance, and for biomass of target species (22%), carnivores
(25%), and for the fish families Carcharhinidae (9%) and
Epinephelidae (9%) (Supplementary Table S3; Figures 2, 3F,
Frontiers in Marine Science | www.frontiersin.org 6
4A, 5A, B). For omnivores abundance, protection was also in
the most parsimonious model but with a negative correlation,
explaining 13% of total variance, showing higher abundance at
fished sites than in protected zones (Figure 4D).

Total abundance and richness were positively correlated with
increased relief variation (Figures 3A, B), explaining 22% and
52% of the variance, respectively, and for non-target species
abundance (35%) (Figure 2; Supplementary Table S3).
A positive correlation with relief variation and negative with
sandy bottom was the most parsimonious model that predicted
target species abundance (13%) (Figure 2; Supplementary Table
S3). Relief variation and sandy bottom were important
predictors positively correlated with non-target species biomass
(27%) (Figures 2, 3D, E). Concerning richness, non-target
species were positively explained by mean relief and negatively
with macroalgae (40%), while target species were positively
explained only by relief variation (54%) (Supplementary Table
S3; Figures 2, 3).

Carnivores and Lutjanidae family abundance were positively
explained by relief variation and hard corals coverage, with 29%
and 26%, respectively, of variance explained by the model
(Supplementary Table S3; Figure 2). Roving herbivore
abundance and biomass were also related to relief variation
and to hard corals and macroalgae coverage (31% and 13%,
respectively) (Figures 2, 4G–I). The most parsimonious model
explained 11% of the distribution and indicated a positive
correlation between both mobile invertebrate feeder biomass
and omnivore biomass in reefs with higher levels of mean
relief (Figures 2, 4B, E). This model also showed a negative
correlation between macroalgae cover and the biomass of both
mobile invertebrates and omnivores (Figures 4C, F).

The most parsimonious model for Lutjanidae biomass was
mean relief, with 22% of variance explained (Supplementary
Table S3, Figures 2, 5D). Labridae abundance and biomass were
higher in deployments in areas with larger variation in relief,
with abundance being also explained by sandy bottom (31% and
16%, respectively) (Supplementary Table S3; Figures 2, 5C).

In comparison to models of other groups of species, there
were no strong predictors across all possible models for mobile
invertebrate feeder, Haemulidae and Epinephelidae abundance,
territorial herbivores and Carangidae biomass, and for
planktivore abundance and biomass.

The economically important species greenbeak parrotfish (S.
trispinosus) presented the highest total biomass recorded
(25.8%), followed by black grouper (11.9%), Caribbean reef
shark (Carcharhinus perezi) (11.4%), yellowtail snapper
(10.1%), queen triggerfish (Balistes vetula) (7.8%), and sea
chub (Kyphosus spp.) (6.6%). The functional groups that
presented highest biomass were carnivores (43%), followed by
roving herbivores (36.7%), omnivores (15.1%), mobile
invertebrate feeders (4.5%), planktivores (0.4%), sessile
invertebrate feeders (0.1%), and territorial herbivores (0.01%).
Within the carnivores’ functional group, the Carcharhinidae
family presented the highest biomass and was only found in the
Pinnacles Reefs (Protected), while Dasyatidae stingrays’ family
was only found in the Fringing Reefs (Protected).
May 2022 | Volume 9 | Article 701244

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Rolim et al. Protection Effects in Reef Fish
Individuals from the economically important families
Lutjanidae and Carangidae showed significantly higher
proportions within both NTRs (p<0.001, H=190.19; p<0.001,
H=48.24, respectively) when compared to open-access areas.
However, Epinephelidae (p<0.001, H=19.31), Labridae (p=0.001,
H=13.53), and Haemulidae (p<0.001, H=27.79) presented
individuals with larger sizes only for the Fringing Reefs
(Protected) (Figure 6). Fish communities in NTRs filled a larger
volume of functional diversity, corresponding to a larger breadth
of functional roles, than fish communities in open-access areas
(Figure 7; Supplementary S3).

Protected areas (both Pinnacles and Fringing) showed higher
taxonomic diversity and functional diversity when compared to
open-access areas (Figure 7), with Fringing Reefs (Protected)
areas with a larger representation of species (75%) and the same
percentage of FE as the Pinnacles Reefs (Protected) area (66%),
occupying a similar area in the 4D space (73% and 79%,
respectively). The difference in functional diversity between
Frontiers in Marine Science | www.frontiersin.org 7
protected areas and open-access areas was more evident than
the taxonomic difference, with Fringing Reefs (Protected) areas
presenting 73% of the 4D functional space; Pinnacles Reefs
(Protected), 79%; and Open Access areas 52% (Figure 7).

Concerning the distribution of functional entities within the
functional space, the PCoAs showed that Fringing Reefs
(Protected) areas were more evenly distributed along the functional
space, showing higher representation of the different FEs, while Open
Access areas are concentrated in fewer FEs. Pinnacles Reefs
(Protected) areas also showed an even distribution of FEs, however
with a high concentration of certain FEs (Figure 8, more information
in Supplementary Figures S4, S5; Supplementary Table S4).
DISCUSSION

Our study found evidence for larger biomass of total fish,
targeted species, and economically important carnivore
FIGURE 2 | Variable importance scores from full-subset generalized additive mixed models’ analysis. X= Predictor variables within the most parsimonious model for
each response variable.
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families, such as Carcharhinidae and Epinephelidae, inside the
NTR at the Abrolhos reefs, Brazil. We have also found a higher
functional diversity of the fish assemblage and a more even
distribution of functional entities within NTR. This indicates that
the protection provided is attenuating the direct effect of fisheries
in the region and allowing the growth of target species, resulting
in larger fish within the marine park boundaries. Despite existing
evidence on how no-take zones could recover reef fish
populations at SWA, our study adds knowledge concerning
fish functional diversity, showing that fisheries can decrease
ecosystem functionality by removing whole functional entities
and, therefore, changing the entire fish assemblage.

In contrast to carnivores, omnivore abundance was negatively
correlated with protection, where these species occurred in
higher abundances in areas open to fisheries. There are some
possible scenarios that may be driving this relationship. The first
is that the species belonging to this functional group is not highly
targeted in the region compared to carnivores and roving
herbivores (Carvalho-Filho, 1999; Francini-Filho and Moura,
2008a). Second, this could be an indication of an indirect effect
of fisheries. Although the role of omnivores in the food web
within coral reefs is the subject of debate, some studies have
indicated that this trophic group is important to reduce the
likelihood of trophic cascades once top predators are removed
(Bascompte et al., 2005), especially as a consequence of fisheries
activities. Moreover, in an evolutionary view, omnivory indeed
appears to represent a transient state between high and low
Frontiers in Marine Science | www.frontiersin.org 8
trophic levels (Siqueira et al., 2021). These facts could indicate a
buffer reaction of highly fished reefs where the abundance of
omnivores has increased following predator removal. Finally,
omnivores are generalist feeders with plastic diets, which may
confer resistance to degraded environments compared to more
specialist species, such as herbivores or mobile invertebrate
feeders—e.g., Bellwood et al. (2006) and Pratchett et al. (2011).
As these scenarios have yet to be evaluated in the region, more
investigation is required to describe the role that omnivores play
in the Abrolhos reefs.

Even considering habitat differences, the effects of fishing
were detected for some fish groups, especially for biomass
estimates of fisheries target species (Carcharhinidae and
Epinephelidae). Similar patterns were also observed for coral
reef fish assemblages in McClure et al. (2021) and Castro-
Sanguino et al. (2017), in which protection status affected only
fishes targeted by fishers, while the other groups of fishes had
more influence of habitat variables, such as structural complexity
and coral coverage. Indeed, a higher biomass of target species
within NTRs has been registered worldwide (Lester et al., 2009)
and was also found in coral reefs in the Great Barrier Reef (Evans
and Russ, 2004; Castro-Sanguino et al., 2017) and in rocky reefs
in the Southwestern Atlantic, especially for groupers (Rolim
et al., 2019; Motta et al., 2021). This indicates that the effect of
fisheries in Abrolhos is also being manifested through a decrease
in biomass by direct removal of larger bodied individuals
targeted by fisheries.
A B

D E F

C

FIGURE 3 | Most parsimonious models for the overall characteristics of the fish assemblage, total abundance (A), total richness (B), and total biomass (grams) (C).
Plots of the most parsimonious models selected for biomass (grams) of fisheries non-target (D, E) and (F) target fish species. Each dot represents a sample, in
which the gray dots represent the Fringing Reefs, red dots the Pinnacles Reefs, and beige the Coastal Reefs.
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Most of the abundance and richness estimates of the fish
assemblage explored here were driven by habitat characteristics
and were not influenced by protection from fishing. Indeed,
habitat complexity has been shown to play an important role in
influencing different aspects of coral reef fish assemblage
(Friedlander et al., 2003; Messmer et al., 2011; Komyakova
et al., 2013; McClure et al., 2021; Russ et al., 2021). In the
present study, mean relief and relief variation explained
positively most of the abundance, richness, and biomass
estimates, especially for groups not targeted by fisheries. In
fact, a higher structural complexity has been related to a higher
fish richness, abundance, and biomass, especially for non-
targeted fish (McClure et al., 2021), mostly likely due to a
reduced competition (food and space) and predation
(predator–prey encounters and availability of refuges)
(Macarthur and Levins, 1964; Holt, 1987; Hixon and Menge,
1991). As fisheries are not directly removing biomass of these
Frontiers in Marine Science | www.frontiersin.org 9
groups, it is therefore expected that the main factors influencing
the assemblage is related to habitat characteristics (McClure
et al., 2021; Russ et al., 2021).

The influence of habitat characteristics on the fish assemblage
is scale dependent (Komyakova et al., 2018), in which fine scales
characteristics, such as coral species or shape (Messmer et al.,
2011; Komyakova et al., 2013; Castro-Sanguino et al., 2017), are
more likely to influence small fish species associated with the reef,
while larger-scale rugosity is indicated to have more influence on
mobile species, including fisheries-targeted species (Graham, 2014;
Rogers et al., 2014). In the present study, medium-scale
topographic complexity, measured here as mean relief, was an
important predictor to mobile invertebrate feeders biomass.
Species of this trophic group are both closely associated with the
reef and mobile around the reef (Quimbayo et al., 2021), especially
due to their diet and reef functional role, which therefore explains
the higher biomass in topographic complex reefs.
A B

D E F
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FIGURE 4 | Plots of the most parsimonious models for the biomass (grams) of carnivores (A), mobile invertebrate feeders (B, C), omnivores (E, F), and roving
herbivores (G–I), and abundance of omnivores (D). Each dot represents a sample: the gray dots represent the Fringing Reefs, red dots the Pinnacles Reefs, and
beige the Coastal Reefs.
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A B

DC

FIGURE 5 | Most parsimonious models for the biomass (grams) of fish families with high economic value in the region: Carcharhinidae (A), Epinephelidae (B),
Labridae (C) and Lutjanidae (D). Each dot represents a sample, in which the gray dots represent the Fringing Reefs, red dots the Pinnacles Reefs, and beige the
Coastal Reefs.
A B

D E

C

FIGURE 6 | Kernel density plots and boxplots with Kruskal–Wallis post-hoc test results (p-values < 0.05) for fish fork length (mm) (letters) for important fisheries
target families: Epinephelidae (A), Lutjanidae (B), Labridae (C), Haemulidae (D) and Carangidae (E). In the kernel density plots, the gray color represents the Fringing
Reefs, red the Pinnacles Reefs, and beige Coastal Reefs. Fish drawings based on Carvalho-Filho et al. (1999).
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For some fisheries target groups, habitat characteristics, such
as mean relief and macroalgae coverage, were more determinant
than protection (e.g., Haemulidae and Lutjanidae biomass). As
fisheries effects were primarily expected to influence these
groups, we could attribute this result to the high variation in
the habitats sampled, which could be masking fisheries effects,
and/or the low abundance of top predators in open-access areas,
allowing prey population to increase and indicating an indirect
effect of fisheries. Even though protection did not explain
variation in biomass and abundance of these targeted families,
we could observe fisheries effects for these groups related to fish
length, in which higher densities of larger individuals were
registered inside the NTRs. Similar results have been
previously found for target reef fish (Bianchi et al., 2000;
DeMartini et al., 2008; Watson et al., 2009; Harasti et al., 2018;
Rolim et al., 2019), representing also a positive effect of
protection allowing individuals to grow inside its boundaries.

Although in the present study, the greenbeak parrotfish (S.
trispinosus) presented the highest biomass and was also highly
Frontiers in Marine Science | www.frontiersin.org 11
abundant and frequent in the footages within the NTR,
protection was not an important factor to predict biomass of
the correspondent functional group (roving herbivores). Instead,
a combination of relief variation, hard corals, and macroalgae
coverage was correlated with their abundance and biomass. This
was not our primary hypothesis for this functional group, as
most species within this group are highly targeted by fisheries
(Ferreira, 2005; Francini-Filho and Moura, 2008a; Previero,
2014; Freitas et al., 2019). However, this result is likely due to
the greater availability of refuge and food resources in
topographic complex places mostly composed of macroalgae
(Ferreira and Gonçalves, 2006) both inside and outside the NTR.
The open-access areas assessed in this study are close to the
mainland, which has been shown to be preferable to the group
(Hoey and Bellwood, 2008; Roos et al., 2019). Moreover, coastal
areas in the region have an increased influx of sediments and
nutrients, and this probably leads to a high macroalgae cover in
some deployments in shallow coastal reefs and explains the
biomass outside the boundaries even with high fisheries
A

B

FIGURE 7 | Functional space filled by fish communities in areas with Fringing Reefs—Protected (gray), areas with Pinnacles Reefs—Protected (red), and Open
Access areas to fisheries (beige). Species and functional diversity changes among zones with different zones. (A) Barplots show species richness (Sp), number of
functional entities (unique trait combinations, FE), and functional richness, i.e., the volume filled by each assemblage in the four dimensions of the functional space
(Vol. 4D). Values are expressed as a relative percentage of the value for the total pool and are displayed above the bars. (B) Functional space filled by the functional
entities (FEs) present in species assemblages from each pH condition. Axes (PCoA1 and PCoA2) represent the first two dimensions of the 4D functional space.
Principal coordinate analysis (PCoA) was computed on functional-trait values.
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activity (Francini-Filho and Moura, 2008a; Bruce et al., 2012;
Francini-Filho et al., 2013). The influence of the rivers’ influx in
the areas is being represented in the models through the
environmental variables considered, such as topographic
complexity (relief and relief variation), visibility, and benthic
cover (ascidians, consolidated bottom, stony corals, bryozoa,
macroalgae, sponges, unconsolidated bottom, zoanthids).
Allied with that, it could be related to the lack of top predators
in fished areas as well, indicating an indirect effect of fisheries.
Finally, as a high biomass of these species is frequently removed
by fisheries in the region (Ferreira, 2005; Previero, 2014; Roos
et al., 2020), it could be a consequence of fisheries acting both
illegally within NTR’s boundaries and outside (Francini-Filho
and Moura, 2008a). Therefore, as environmental variables and
illegal fisheries of the species could be masking protection effects,
we recommend a more refined analysis focused on this species,
and also on the whole functional group, to detect the influence of
the park.

Our study showed an increased biomass of Carcharhinids
inside Pinnacle reefs, which are areas protected from fishing.
Even though environmental variables were considered in the
analyses (coral cover, topographic complexity, visibility, among
others), protection was the most important factor explaining
biomass of this family. This could either suggest direct fishing
effects on this group, by the direct removal of biomass, and/or an
indirect effect of protection. This means that the protected area
may be enabling a more conserved reef (Claudet et al., 2011) and
therefore probably providing a higher availability of refuge and
food resources in those areas. Pinnacle reefs are the furthest area
from the continent that were assessed in the present study;
therefore, another possible explanation is the distance from the
coast. As we were not able to have a before–after control
assessment with baselines before the establishment of the NTR,
we suggest more investigation concerning fisheries effects in this
family for the region.
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This assessment of mobile predators was enabled by the use of
diver-less sampling methods, which overcame behavioral biases
that are common to other sampling methods, such as UVC
(Ferreira, 2005). Furthermore, the presence of large predators
only within both protected regions (Pinnacles Reefs and Fringing
Reefs) found in the present study, such as Caribbean reef shark
(Carcharhinus perezi) and nurse shark (Ginglymostoma cirratum),
indicates that they may be responding positively to the protection.
The dominance of carnivores was also registered in the region by
Moura and Francini-Filho (2005)and points to a healthier
ecosystem, since top predators can both be benefitted by healthy
ecosystems (Espinoza et al., 2014), as they can maintain it not only
by controlling the abundance but also the diet, genetics,
movement, condition, behavior, and morphology of their prey
(Ruppert et al., 2013; Ruppert et al., 2016). On a global scale, a
recent analysis of shark abundance using BRUVs detected low
abundances of reef sharks within protected areas on Brazilian
reefs, in comparison with reefs around the globe, and considered
this group to be depleted in the region (MacNeil et al., 2020). This
highlights the importance of obtaining benchmarks to effectively
manage the already highly exploited reef shark populations
present in these areas. To maximize any protection afforded by
NTRs to shark species, it is also important to consider the species-
specific movement traits of more mobile species (e.g., nurse shark
mean dispersal distance, 8.02 ± 5.03 km) compared to more site-
attached species (e.g., Caribbean reef shark mean dispersal
distance 3.97 ± 4.35 km), as more mobile species will require
larger NTRs to encompass their home range (Bryars et al., 2012;
Dwyer et al., 2020; Bonnin et al., 2021). As a result, NTRs are
required to encompass 20 km of continuous habitat to conserve
50% of Caribbean reef shark movements, whereas 50 km of
continuous reef habitat is required to encompass the same
proportion of nurse shark movements (Dwyer et al., 2020). Not
considering the mesophotic reefs at the Abrolhos Bank, the
emergent or quasi-emergent reef formations within the Abrolhos
A B C

FIGURE 8 | Overall distribution of functional entities (unique trait combinations, FE) abundance across the functional space for areas with Fringing Reefs—Protected
(A), areas with Pinnacles Reefs—Protected (B), and areas open to fisheries (C). Each point represents an FE, and the size of the circles is proportional to the relative
cover of the species belonging to a certain functional entity. Number of species = 86; number of FEs = 59.
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Marine National Park encompasses at least 30 km of continuous
reef, and therefore, it is likely to protect most of Caribbean reef
sharks’ home range, but not as much of nurse sharks’. Therefore,
compliance with Brazilian legislation that prohibits the capture of
the species must be encouraged in the vicinity of the park.

The present study showed a higher density of larger individuals
of target species, such as for the families Lutjanidae, Haemulidae,
Labridae, Epinephelidae, and Carangidae, within protected areas.
The effect offisheries on the size distribution offisheries target fish
have been well documented, where targeted species reach larger
sizes within NTRs (Bianchi et al., 2000; DeMartini et al., 2008;
Watson et al., 2009; Harasti et al., 2018; Rolim et al., 2019). Similar
results were also previously found for the Abrolhos region
(Ferreira and Gonçalves, 1999; Ferreira, 2005). This can also
indicate a likely decrease in reproduction capacity in fished
areas, once larger individuals usually present higher fecundity
(Jennings et al., 2009). As within the Abrolhos Marine Park, there
were larger bodied fish (fork length); this increases the probability
of exporting larvae and juveniles to adjacent areas (Francini-Filho
and Moura, 2008a), repopulating fished reefs, and consequently
ensuring fishing activity in the area.

Functional diversity differences between open-access and
protected areas were also indicated by our study. Fish trait entities
were more diversified and more evenly distributed within protected
areas, indicating that these areas present higher chances of ensuring
ecosystem functionalities, i.e., ecosystem dynamics, stability,
productivity, nutrient balances, and other aspects (Tilman, 2001).
Although it is not possible to relate these solely to the effect of
protection because of differences in habitat, the lower functional
diversity in open-access areas could indicate a fisheries pressure,
mainly because of the lack of larger bodied target species functional
entities. Indeed, fishing activity has the potential to remove whole
functional groups from marine ecosystems (Micheli and Halpern,
2005), with a preference for predatory species (Myers and Worm,
2003) and species that grow larger (Genner et al., 2010). More
importantly, a lower and uneven functional diversity can indicate
also a lower resilience to environmental changes, both of natural or
anthropogenic causes (Nyström and Folke, 2001; Raymundo et al.,
2009; Naeem et al., 2012). Therefore, it highlights the importance of
these NTRs in terms of maintenance of natural ecological processes
and buffering of impacts, and allied with the other results presented
in this study, it supports the need to maintain the protection.
Conclusions
The present study showed effects of management regimes and
habitat variation in the reef fish assemblage using baited stereo-
video in the Abrolhos bank, generating important information
about fisheries effects in the region. Although our results showed
a strong effect of habitat variation on diverse aspects of fish
assemblage, we also found clear, direct effects responses to
fisheries activities in the region. These effects included an increase
in the biomass and size (fish fork length) of commercially important
species. Collectively, our results indicate a positive response to the
protection and importance of this NTR for reeffish biodiversity in a
region that is home to the largest coral reef in the South Atlantic.
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Ferreira, C. E. L., and Gonçalves, J. (1999). The Unique Abrolhos Reef Formation
(Brazil): Need for Specific Management Strategies. Coral Reefs 18, 352–352.
doi: 10.1007/s003380050211
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Ferreira, C. E. L., Gonçalves, J. E. A., and Coutinho, R. (2001). Community
Structure of Fishes and Habitat Complexity on a Tropical Rocky Shore.
Environ. Biol. Fishes 61, 353–369. doi: 10.1023/A:1011609617330

Fisher, R., Wilson, S. K., Sin, T. M., Lee, A. C., and Langlois, T. J. (2018). A Simple
Function for Full-Subsets Multiple Regression in Ecology With R. Ecol. Evol 8,
6104–6113. doi: 10.1002/ece3.4134

Francini-Filho, R. B., Coni, E. O. C., Meirelles, P. M., Amado-Filho, G. M.,
Thompson, F. L., Pereira-Filho, G. H., et al. (2013). Dynamics of Coral Reef
Benthic Assemblages of the Abrolhos Bank, Eastern Brazil: Inferences on
Natural and Anthropogenic Drivers. PloS One 8, e54260. doi: 10.1371/
journal.pone.0054260

Francini-Filho, R. B., and Moura, R. L. (2008a). Dynamics of Fish Assemblages on
Coral Reefs Subjected to Different Management Regimes in the Abrolhos Bank,
Eastern Brazil. Aquat. Conserv. 18, 1166–1179. doi: 10.1002/aqc.966

Francini-Filho, R. B., and Moura, R. L. (2008b). Evidence for Spillover of Reef
Fishes From a No-Take Marine Reserve: An Evaluation Using the Before-After
Control-Impact (BACI) Approach. Fish. Res. 93, 346–356. doi: 10.1016/
j.fishres.2008.06.011

Francini-Filho, R. B., Moura, R. L., Thompson, F. L., Reis, R. M., Kaufman, L.,
Kikuchi, R. K. P., et al. (2008). Diseases Leading to Accelerated Decline of Reef
Corals in the Largest South Atlantic Reef Complex (Abrolhos Bank, Eastern
Brazil). Mar. Pollut. Bull. 56, 1008–1014. doi: 10.1016/j.marpolbul.2008.02.013

Freitas, M. O. (2009). Pesca Artesanal E Biologia Reprodutiva do Ariocó Lutjanus
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