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The scale of the Deepwater Horizon disaster was and is unprecedented: geographic
extent, pollutant amount, countermeasure scope, and of most relevance to this Research
Topic issue, range of ecotypes affected. These ecotypes include coastal/nearshore,
continental shelf, deep benthic, and open-ocean domains, the last of which is the
subject of this synthesis. The open-ocean ecotype comprises ~90% of the volume of
the Gulf of Mexico. The exact percentage of this ecotype contaminated with toxins is
unknown due to its three-dimensional nature and dynamics, but estimates suggest that
the footprint encompassed most of its eastern half. Further, interactions between the
water column and the deep benthos may be persistent, making this synthesis one of time
(a decade) rather than event conclusion. Here we examine key elements of the open-
ocean ecosystem, with emphasis on vulnerability and resilience. Of paramount
importance relative to the Gulf nearshore and shelf ecotypes, pre-disaster baseline data
were lacking for most of the fauna. In such cases, inferences were drawn from post-
disaster assessments. Both phytoplankton and mesozooplankton vulnerabilities were
quite high, but resilience appeared equally so. The phytoplankton situation was a bit more
complex in that toxin-imposed reductions may have been offset by nutrient injection via
high freshwater discharge in 2010. Intermediate trophic levels exhibited population-level
depressions, ostensibly due to high vulnerability and low resilience. Apex predator
impacts were variable. Certain large epipelagic fishes may have avoided the highest
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concentrations of hydrocarbons/dispersant, and thus larval abundances returned to pre-
disaster levels of variability and abundance within a few years after a steep initial decline.
Oceanic cetaceans, particularly shallow-diving stenellid dolphins, did not appear to avoid oiled
waters and exhibited strong declines in the northern Gulf. Given that population declines of
many open-ocean taxa appear to be ongoing a decade later, we conclude that this largest of
Gulf ecosystem components, like its deep-benthic counterpart, is as fragile as it is voluminous.
This is particularly concerning given the rapid, and likely irreversible, shift to deeper waters by
the US and Mexican oil industries in concert with the higher likelihood of accidents with
increasing platform depth.
Keywords: epipelagic, mesopelagic, bathypelagic, oil spill accident, pollution, deep sea
1 INTRODUCTION

The spatiotemporal scope of the Deepwater Horizon oil spill
disaster (DWH) has been well characterized (Murawski et al.,
2020 and references therein). By several key metrics it stands as
the worst aquatic disaster to date; the disaster discharged 4.0-4.9
million barrels of oil, oiled 2,113 km of coastline, contaminated
110,000 km2 of benthic area, produced a deep-water plume ~400
km in length, and introduced a large amount of dispersant to the
system [~2.1 million gallons] (Hsieh, 2010; Du and Kessler, 2012;
McNutt et al., 2012; Payne and Driskell, 2015; U.S. District
Court, 2015; Nixon et al., 2016; Romero et al., 2017; NASEM,
2020). In addition to these metrics, DWH was unique in the
depth of ecosystem impact (~1500 m to the surface), the nature
of mitigation measures (i.e., sub-sea dispersant injection;
NASEM, 2020), and the magnitude of an unexpected oil-
sed imenta t ion event (MOSSFA: Mar ine Oi l Snow
Sedimentation and Flocculent Accumulation; Brooks et al.,
2015; Romero et al., 2015; Daly et al., 2016; Diercks et al.,
2021). While the surface manifestation of the oil spill and its
subsequent coastal/nearshore impact received the most public
attention and concern, the open-ocean pelagic domain received
the most toxic pollutants due to the multiple fates of the released
oil (Camilli et al., 2010; Ryerson et al., 2012; Wade et al., 2016;
Romero et al., 2017). For example, some discharged oil ascended
through the water column to the surface as buoyant droplets
(~20%), some formed deep-sea plumes of dispersed and
dissolved oil between ~1000-1300 m depth (~48%), and some
sank from the surface to deep-sea plumes and the seafloor as
contaminated particles (~4-9%) (Ryerson et al., 2012; Chanton
et al., 2015; Romero et al., 2017). From a marine ecosystem
perspective, the largest portion of the Gulf of Mexico (GoMex
hereafter, to differentiate from the Gulf of Maine) affected by
DWH, the deep (> 200 m) water column, was and still is its least
understood portion - a hindrance to both the natural resource
damage assessment process (NRDA) (Deepwater Horizon
Natural Resource Damage Assessment Trustees, 2016) and the
construction of this synthesis.

The strategy devised for a synthesis of ecological research
relative to DWH (i.e., Gulf of Mexico Research Initiative
[GoMRI] Core area 3; https://gulfresearchinitiative.org/gomri-
synthesis/) was to subdivide the DWH-affected GoMex into four
ontiersin.org 2
‘ecotypes,’ each addressed in this Frontiers in Marine Science
Research Topic on Vulnerability and Resilience of Marine
Ecosystems Affected by the Deepwater Horizon Oil Spill: 1)
coastal/nearshore habitat (Murawski et al., 2021); 2)
continental shelf habitat (Patterson et al., in prep.); 3) the deep
benthos (Schwing et al., 2020); and 4) the open ocean (this
paper). In addressing the open-ocean GoMex, we must first
consider ways in which it differs from the other ecotypes. The
most obvious differentiating aspect is size. The pelagic domain -
the water-column habitat in waters deeper than 200 m (i.e.,
seaward of the shelf-break) - contains ~97% of the GoMex’s total
volume, with 90.4% accounted for by the “deep-pelagic” portion,
i.e. the mesopelagic and bathypelagic zones (Figure 1). A second
differentiating aspect is that the primary physical drivers of the
GoMex pelagic ecosystem are the fluid features of water (e.g.,
temperature, density/stratification, light attenuation, pressure)
and mesoscale oceanographic features (e.g., the Loop Current, its
associated eddies, and frontal features; Biggs and Ressler, 2001;
Muhling et al., 2013; Vecchione et al., 2015; Johnston et al., 2019;
Boswell et al., 2020; Milligan and Sutton, 2020). In terms of
research and synthesis, this structuring requires a sampling/analysis
philosophy that is framed in a 4-D Lagrangian sense as much as,
or more than, a geographical perspective. It is critical that
both spatial and temporal aspects of variability be considered
carefully when evaluating the effects of a point-source disturbance
on a pelagic ecosystem, even a prolonged event such as DWH.
A third primary difference between the open-ocean ecotype
and the other three ecotypes is the degree to which the biota
partition themselves vertically (i.e., by water column depth). As a
rule, in the pelagic ocean the vertical scale of faunal distributions
is finer by three to five orders of magnitude than the horizontal
scale (i.e., 10’s to 100’s of meters vs. 10’s to 1000’s of kilometers,
respectively; Angel, 1993; Sutton, 2013). This is not to say
that the vertical strata are not highly connected, as we will
see in the following discussions of vertical migration, but
that low-latitude pelagic ecosystems such as the GoMex
appear to be highly structured vertically in time and space
(Hopkins et al., 1996).

Like pelagic ecosystems globally (Angel, 1993; Angel, 1997;
Herring, 2002; Robison, 2004; Priede, 2017), the open-ocean
GoMex is subdivided into three ecological depth realms based on
the penetration of sunlight; the epipelagic, mesopelagic, and
May 2022 | Volume 9 | Article 753391
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bathypelagic (Figure 2), each with a characteristic daytime fauna
(reviewed in Sutton, 2013). The epipelagic zone (0-200 m)
contains all phytoplankton production and most of the
zooplankton production, including larval and juvenile fishes
and invertebrates. Most of the larger, highly mobile oceanic
predators are centered in this layer, either by the need for air
(cetaceans, seabirds, sea turtles) or by the reliance on vision to
locate patchy food resources. The mesopelagic zone (200 –
1000 m depth) of the GoMex contains a highly diverse and
specialized fauna during daytime, with much of this fauna
migrating into the epipelagic zone at night to feed on plankton
or on those organisms feeding on plankton (Hopkins et al., 1996;
Frontiers in Marine Science | www.frontiersin.org 3
Sutton and Hopkins, 1996a; D’Elia et al., 2016; Boswell et al.,
2020; Frank et al., 2020; Judkins and Vecchione, 2020). Research
since DWH has identified the GoMex as one of the most diverse
mesopelagic ecosystems in the World Ocean (Sutton et al.,
2017a; Sutton et al., 2020). The bathypelagic zone (below
1000 m) supports a wide variety of fauna adapted for life in
total darkness (excepting the light from bioluminescence, which
is contributed by many taxa). This fauna in the GoMex was
almost completely unknown prior to DWH (Burghart et al.,
2007). Summarizing the ecotype, the open-ocean GoMex
contains a rich panoply of taxonomic and behavioral diversity,
with the biota highly connected vertically through active and
FIGURE 1 | High-resolution hypsography of the Gulf of Mexico, with delineation of total volume by depth zones. Figure created from ETOPO1 data (https://ngdc.
noaa.gov/mgg/global//global.html) at 1 arc minute resolution.
FIGURE 2 | Schematic of the open-ocean ecosystem of the northern Gulf of Mexico. Solid arrows associated with key taxa represent active flux (vertical migrations);
dashed arrows indicate passive flux (sinking). Nekton = fishes, cephalopods, and large pelagic crustaceans. Note: seabirds not treated in synthesis due to lack of
time-series data but included here to represent aerial-to-deep-pelagic connectivity.
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passive flux and horizontally through coupled behavior and
current-mediated translocation (Milligan and Sutton, 2020;
Timm et al., 2020a). This pelagic connectivity links the four
subject ecotypes (most deep-benthic and demersal taxa have
pelagic larvae, and many coastal and shelf taxa use the open
ocean as nursery habitat) and ocean basins.

In this paper, we present synopses of research on key
ecological taxa of the open-ocean GoMex, with summaries of
patterns of abundance, taxonomic composition, and behavior (if
known) relative to the timing and extent of DWH and ensuing
offshore mitigation measures. We evaluate the vulnerability of
these taxa to DWH effects, as well as their realized or
hypothetical resilience and recovery potential.
2 SYNTHESIS APPROACH
The synthesis approach adopted herein generally follows that of
Murawski et al. (2021), and Schwing et al. (2020), with
modifications as necessary in cases of data deficiency. As with
those papers, several “key taxa” (Figure 2; Table 1) were
identified and investigated in detail. These taxa were chosen
based on their ecological and/or economic importance, vertical
distribution representation, and the availability of information
with which to assess or infer DWH impact. The seven key taxa
discussed in this synthesis include: 1) oceanic phytoplankton, 2)
mesozooplankton, 3) early life history stages of large epipelagic
fishes (billfishes, dolphinfishes, tunas, and swordfish), 4) deep-
pelagic fishes, 5) deep-pelagic macrocrustacea (euphausiids,
decapod shrimps, and lophogastrids), 6) deep-pelagic
cephalopods, and 7) oceanic marine mammals. Core papers
summarizing methods of data collection and analysis for key
taxa include but are not limited to Quigg et al. (2021)
[phytoplankton], Daly et al. (2021) [mesozooplankton],
Meinert et al. (2020) [ichthyoplankton], Cook et al. (2020)
[micronekton], Boswell et al. (2020) [acoustic sensing of deep-
scattering layers], Frasier et al. (2019) [oceanic cetaceans], and
Johnston et al. (2019) [pelagic habitat characterization].
Frontiers in Marine Science | www.frontiersin.org 4
2.1 Vulnerability-Resilience Analyses
In keeping with the Vulnerability-Resilience (V-R) approach used in
the companion syntheses in this Research Topic (see Schwing et al.,
2020; Murawski et al., 2021), we evaluated the vulnerability of key
taxa to DWH based on 13 attributes (Table 2). These attributes,
related to distributional overlap (time and space), ability to detect
and/or avoid toxicants, exposure, sensitivity to toxins and/or
response measures (if known), and effects on trophic linkages,
were selected by a 30-member panel of oceanic ecology experts
during two GoMRI synthesis workshops in 2019 (attendees
included authorship and additional subject matter experts [SMEs]
listed in Acknowledgments). Vulnerability was qualitatively scored
by SMEs for each taxon on a scale of low, medium, and high for
each attribute. Resilience potential was likewise scored by the SME
panel for 11 attributes (Table 2) relating to the proportion of
population exposure, generation time, rate of production,
reproductive ecology, population connectivity with other regions,
known co-varying stressors, and capacity for restoration. The
overall vulnerability and resilience of each taxon was then
assessed, taking into account the distribution of high, medium,
and low attribute scores, uncertainty regarding specific attributes
(i.e., data gaps), and the relevance of specific attributes to
specific taxa.

3 IMPACTS OF THE DEEPWATER
HORIZON DISASTER ON OPEN-OCEAN
COMMUNITIES
3.1 V-R Analysis Summary
Abundance declines in the open-ocean GoMex biota after
DWH ranged from imperceptible (mesozooplankton) to
ephemeral (phytoplankton) to extensive (deep-pelagic fishes,
macrocrustaceans). Of those taxa that demonstrated declines,
none could be ascribed unequivocally to DWH due to (1) lack of
pre-spill data, (2) confounding effects of co-stressors and/or spill
countermeasures (e.g., opening Bonnet Carré spillway), and/or
(3) massive data gaps regarding organismal biology and ecology.
TABLE 1 | Gulf of Mexico open-ocean biota selected as “key taxa” for vulnerability/resilience (V/R) analyses relative to the Deepwater Horizon disaster (DWH).

Taxon Code Comments on available data

Phytoplankton Ph Community composition well known, before and after DWH
Mesozooplankton Mz We now have more information about faunal inventory and quantitative abundance data than we did before DWH (zero baseline),

but these data are still incomplete. Synthesis largely based on inference post-DWH abundance patterns.
Early life history stages (larvae
and juveniles) of large
epipelagic fishes

EF Quantitative abundance data available for early life stages of large, highly migratory species pre- and post-DWH. Epipelagic taxa
quantified in pre- and post-DWH ichthyoplankton surveys often limited to key components of this assemblage (e.g., billfishes,
dolphinfishes, swordfish, and tunas).

Deep-pelagic fishes DpF Faunal inventory and quantitative abundance data incomplete prior to DWH, particularly for bathypelagic fauna. Ecological rates
poorly or unknown for most fauna. Synthesis largely based on inference from post-DWH surveys.

Deep-pelagic
macrocrustacea

DpM Faunal inventory and quantitative abundance data only available for one station pre-DWH, which was last sampled in 2000.
Ecological rates poorly known or unknown for most fauna. Synthesis largely based on inference from post-DWH surveys.

Deep-pelagic cephalopods DpC Faunal inventory and quantitative abundance data incomplete prior to DWH, particularly for bathypelagic fauna. Only one cruise
series (SWAPS) prior to spill and that used an open net. Ecological rates essentially unknown for most taxa. Synthesis largely
based on inference from post-DWH surveys.

Oceanic cetaceans OC Pre-DWH visual surveys provide context but were too infrequent to estimate population baselines or trends. Synthesis largely
based on early captive studies from the 1980s, comprehensive post-DWH studies of nearshore proxies, and inference from
post-DWH monitoring.
May 2022 | Volume 9 | Article 753391
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This is not to say that DWH was not the primary or contributing
cause of these declines. Encapsulation of what has been learned
to date is important as a benchmark for future resource
management in the GoMex. We conducted V-R analyses to
Frontiers in Marine Science | www.frontiersin.org 5
provide a means of comparing the relative risks of oil spills to key
taxa, populations, and ecological assemblages. This information
can then guide near-field mitigation efforts and predict far-field
consequences. In the open-ocean case, the execution of the V-R
FIGURE 3 | Summary Vulnerability-Resilience matrix, with cumulative attribute designation of high, moderate, and low for key open-ocean taxa of the northern Gulf
of Mexico. D-P, deep-pelagic (residing in water column below 200 m depth during daytime).
TABLE 2 | Attributes used for evaluating the vulnerability (V) and resilience (R) of the Gulf of Mexico open-ocean fauna to the effects of the Deepwater Horizon disaster.

V/RA Attribute Ph Mz EF DpF DpM DpC OC

V1 Ontogenic shifts in habitat specificity NA NA M NA NA NA NA
V2 Ability to detect and respond to (avoid) toxicants H H H H H ID H
V3 Site fidelity L L L M M L L
V4 Spatial/temporal overlap of taxon with toxic exposures H H H H M H H
V5 Exposure vectors (inhalation/respiration, ingestion, prey, dermal) H H H H H H H
V6 Duration and frequency of acute/chronic exposure (persistence) H H H H ID H M
V7 Sensitive life stages present H H H H H H L
V8 Detoxifying capacity and tolerance of exposure (e.g., depuration rates) NA ID M M ID L M
V9 Sensitivity to management interventions (e.g., scrubbing) NA NA H NA NA NA M
V10 Sensitivity to oil spill countermeasures (e.g., dispersant, burning) H H H H H H M
V11 Effects on trophically linked resources L H H H H H H
V12 Degree of diet specificity (e.g., is taxon a specialist or generalist)? NA L H H ID ID M
V13 Pre-exposure condition of taxon (physiology/adaptability) L L H H ID H M
Voverall Overall vulnerability H H H H H H M
R1 Abundance relative to carrying capacity, K H H M M ID ID ID
R2 Life span H H M M L H L
R3 Age at first reproduction H H M M L H L
R4 Frequency/timing of division/spawning/reproduction H H M M M L L
R5 Fecundity NA H H M M ID L
R6 Adult dispersal/larval life span L M H H H M L
R7 Modularity/connectivity with other ecoregions H H H H ID M M
R8 Level of population depletion and changes in density-dependent population demographics due to injury H H M L H L M
R9 Potential for regime shifts or alternate stable states H H M M M M L
R10 Co-varying stressors (e.g., fishing, climate change, other pollutants) L L M NA ID ID L
R11 Capacity for restoration approaches NA NA M NA NA L L
Roverall Overall resilience H H M L M L L
Ma
y 202
2 | Volu
me 9 | A
rticle 753
V/RA, vulnerability or resilience attribute number. Taxon abbreviations are as defined in Table 1. L, low; M, moderate; H, high; NA, attribute not applicable to taxon; ID, insufficient data to
score attribute.
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analysis also highlighted critical data gaps, particularly among
the deeper-living fauna.

Results (Figure 3; Table 2) are briefly summarized here,
followed by more detailed treatment by taxon. From the lower
right corner of the V-R matrix (Figure 3), a counter-clockwise
progression relating to body size and generation time was
apparent. The drivers of oceanic phytoplankton production
over time were difficult to disarticulate because of the interplay
of physical forcing, riverine nutrient input, and DWH effects.
Some phytoplankton taxa (e.g., chain diatoms) appear to have
been stimulated after DWH due to several factors, while other
taxa may have been depressed (inferred from lower satellite-
sensed surface chlorophyll values). Overall, vulnerability was
classified as high, but resilience also high due to short
generation times, influx from surrounding waters, and
potential enhancement by countermeasure activity .
Mesozooplankton vulnerability was classified as high due to
overlapping spatial distributions, limited avoidance capacity,
consumption of oil-droplet-sized particles, and the laboratory-
demonstrated lethal/sublethal effects of oil/dispersant on the
fauna. Likewise, mesozooplankton resilience was also
considered high, with high oceanic connectivity and fecundity,
ergo rapid replenishment, considered most responsible for the
lack of population declines after DWH. Vulnerability of the early
life history (ELH) stages of large epipelagic fishes was classified as
high but taxon-specific, with shelf-associated species (e.g.,
blackfin tuna, Thunnus atlanticus) being more vulnerable than
offshore-spawning species (e.g., blue marlin, Makaira nigricans)
due to greater overlap of high-quality ELH stages habitat of the
former with the DWH footprint. Where ELH stages and oil/
dispersant co-occurred, all taxa were considered highly
vulnerable due to toxicity effects. Low inherent resilience of
ELH stages to direct mortality or sublethal effects may have
been offset by higher sensing and avoidance capacity of adult
spawning stock, resulting in moderate net resilience of the taxa in
total. Deep-pelagic fishes were classified as highly vulnerable to
DWH given the prolonged exposure to oil/dispersant throughout
the water column, the known deleterious effects of DWH-derived
toxins on fishes (especially ELH stages), the likely consumption
of contaminated food (zooplankton) by the assemblage, the
tight linkages of predators and prey in the system, and the low
resilience attributes of the assemblage. Pelagic macrocrustaceans
and cephalopods were likewise classified as highly vulnerable due
to similar reasons, with cephalopod vulnerability heightened by
reduced depuration capacity. Classification of resilience of
macrocrustaceans was problematic due to the large variations
in lifespans, brooding behavior (spawners vs. brooders, large
numbers of tiny eggs vs. small numbers of large eggs), and
vertical migration behavior (non-migrators vs. weak migrators
vs. strong migrators) within each taxon. However, as no
macrocrustacean family has shown evidence of recovering to
2011 levels as of this writing, we conclude that resilience of the
assemblage as a whole is relatively low. Cephalopods were
considered moderately resilient due to shorter life spans, hence
potentially faster replenishment. Oceanic cetacean vulnerability
was classified as moderate, with multiple contamination vectors
Frontiers in Marine Science | www.frontiersin.org 6
(cutaneous contact, respiration of volatile fraction, consumption
of tainted prey) potentially offset by higher sensing and
avoidance capacity and lower site fidelity. Cetacean resilience
to DWH was difficult to assess given the number of co-stressors
and the uncertainties regarding abundance trajectories but was
tentatively classified as low given the high number of ‘low’ scores
with respect to resilience attributes (e.g., long generations times,
low fecundity).

3.2 Detailed Synopses of Key Taxa
3.2.1 Phytoplankton
Phytoplankton form the base of the food web in ocean
ecosystems and their productivity constrain the potential for
productivity at higher trophic levels (Marshak and Link, 2021).
Under the influence of remote and local forcing, phytoplankton
in surface waters of the GoMex are dynamic in both assemblage
composition and abundance. Remote forcing mechanisms
include the Atlantic Multidecadal Oscillation (AMO) and El
Nino Southern Oscillation (ENSO), while local forcing
mechanisms include upwelling, river and non-point source
nutrient inputs, vertical mixing, the Loop Current, and ocean
eddies (Muller-Karger et al., 2015). Phytoplankton in the GoMex
include a wide range of taxa, from diatoms and dinoflagellates to
cyanobacteria (Dortch, 1997; Paul et al., 2013). Because all
phytoplankton contain the photosynthetic pigment chlorophyll
a (Chl a), and because it is more difficult to measure the
abundance of individual phytoplankton taxa than Chl a, the
latter is used to estimate phytoplankton biomass and
distributions in surface waters.

Satellite-derived Chl a concentrations (Chl a in mg m-3) in
the open-ocean GoMex are driven mainly by wind-induced
mixing and ocean eddies, with winter highs of 0.2 – 0.4 mg m-

3 and summer lows of ~ 0.1 mg m-3, corresponding to a winter
mixed layer depth (MLD) of ~ 100 m and summer MLD of 20 –
30 m (Muller-Karger et al., 2015). One exception is the northern
and eastern portions of the GoMex (north of 27.8°N and east of
89.9°W), where Mississippi River plumes often cause a secondary
Chl a peak during summer. Offshore transport of river plumes is
well known (e.g., Hu et al., 2003; Hu et al., 2005). The influence
of the river plume on shelf waters (< 1000 m isobath) is stronger
in this region, as shown in the satellite images of Figure 4.
Indeed, the northern intrusion of the Loop Current, together
with its eddies, can move nutrient-rich coastal waters offshore,
enriching offshore waters with nutrients and higher Chl a
(Androulidakis et al., 2019). This is especially true for the
northeastern GoMex, where DWH occurred.

Vulnerability of phytoplankton to the DWH event, at least
initially, was deemed high; six of nine scored vulnerability
attributes were scored as such, namely due to high spatial
overlap, no ability to detect and avoid pollutants, and
susceptibility to toxicants and countermeasures. Resilience was
more complicated due to confounding factors, detailed as
follows, but was ultimately deemed high as well (seven of nine
attributes scored as such). An initial assessment of the potential
influence of DWH on surface water phytoplankton suggested
that Chl a in the impacted area was significantly higher
May 2022 | Volume 9 | Article 753391
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immediately after the oil spill and during August 2010 than all
previous August months since 2002. To our knowledge, no
samples of phytoplankton were collected off-shelf during the
oil spill in spring 2010 due to the difficulty of sampling through
surface oil. A Shadowed Image Profiling and Evaluation
Recorder (SIPPER) camera system was used to collect images
of large phytoplankton, along with data from environmental
sensors (e. g., CTD, chlorophyll fluorescence) on a cruise during
May and June 2010 (Daly et al., 2021). Large chain diatoms were
relatively abundant with the highest concentrations in the upper
50 m. Physical samples collected during summer 2010 indicated
that chain diatoms dominated the phytoplankton community,
and included Thalassionema nitzschioides, Pseudo-nitzschia sp.,
Dactyliosolen fragilissimus, Leptocylindrus danicus, Leptocylindrus
minimus, Dactyliosolen fragilissimus, Chaetoceros spp., Eucampia
spp., and Cyclotella sp. (Quigg et al., 2021). Trichodesmium also
was relatively abundant during late spring and summer.
Subsequent analysis by O’Connor et al. (2016) confirmed the
Hu et al. (2011) finding of Chl a anomalies, although O’Connor
et al. (2016) attributed some of the anomalies to the river plume
and to the opening of the Bonnet Carré spillway, which increased
nutrient concentration and fluxes to the area. It is not possible to
isolate the cause of increased Chl a. Observations of chlorophyll
concentrations in this off-shelf region in follow-on years differ.
Integrated chlorophyll fluorescence obtained from in situ
samples and fluorescence sensors off-shelf in spring 2010 were
not significantly different (p > 0.001) from that in spring 2011,
2012, and 2014, but were significantly lower (p < 0.001) than
integrated chlorophyll fluorescence in spring 2013 when
Mississippi River discharge was relatively high (Quigg et al.,
2021). In contrast, Li et al. (2019) reported that time-series
satellite data showed depressed solar-stimulated surface
phytoplankton fluorescence in 2011 – 2014 in the vicinity of
DWH, possibly due to inhibition of phytoplankton growth,
altered nutrient inventories, or some combination of factors.
After 2015, surface Chl a in the area, as revealed by satellites,
returned to normal levels with natural variations similar to those
before DWH (Li et al., 2019). Furthermore, Parsons et al. (2015)
observed lower Chl a in 2010 on the Louisiana shelf than the
previous 20 years. DWH may have stimulated some
phytoplankton while inhibiting others (Ozhan and Bargu,
2014; Ozhan et al., 2014). In particular, large chain forming
diatoms bloomed in the summer of 2010 (Quigg et al., 2021) and
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bloom-associated materials, including diatom remnants and oil
components, were captured in deep sediment traps in the fall of
2010 (Yan et al., 2016).

3.2.2 Mesozooplankton
The mesozooplankton community consists of a diverse array of
marine organisms, ranging from 0.2 to 20 mm in size. In addition
to holoplankton, this category includes larvae of diverse pelagic
and benthic animals. Zooplankton are a key component of
marine food webs as the primary grazers on phytoplankton
and other microplankton and as prey for higher trophic levels,
including commercially important fishes (Banse, 1995; Cushing,
1995). Zooplankton also play other important roles in
biogeochemical cycles in marine systems, contributing fecal
pellets, feeding structures (e.g., larvacean houses), exuviae, and
dead organisms to sedimenting marine snow (Longhurst and
Harrison, 1989).

The mesozooplankton species composition and spatial
distribution in the GoMex was reviewed in Iverson and
Hopkins (1981) and Biggs and Ressler (2001). In general,
zooplankton abundance and biomass are relatively low off-
shelf, where > 50% of the zooplankton biomass occurs in the
upper 200 m, typical of oligotrophic waters (Hopkins, 1982). The
highest zooplankton abundances in the northeastern quadrant of
the GoMex occur in the productive regions of high outflow of the
Mississippi, Atchafalaya, Mobile, and Apalachicola River systems
and downstream river plumes and in the vicinity of the De Soto
Canyon (Okolodkov, 2003). This region frequently also has
cyclonic or anticyclonic eddies that persist for weeks to several
months (Jochens and DiMarco, 2008; Schiller et al., 2011). These
eddies influence biological productivity via cross-margin flow,
entrainment of low-salinity shelf water, and uplift of isopycnals
and nutrient fields by cyclonic eddies as well as uplift at the
periphery of anticyclonic eddies (Belabbassi et al., 2005). River
plumes, fronts, and eddies all act to retain and aggregate
phytoplankton, zooplankton, and fish larvae, resulting in
trophic hot spots (Grimes and Finucane, 1991).

While there was some information on zooplankton in this
region prior to DWH (e.g., Turner, 1987; Ortner et al., 1989;
Dagg and Whitledge, 1991; Dagg, 1995, in addition to the papers
mentioned above), there were no baseline data on open-ocean
zooplankton abundance and distribution based on systematic
surveys over multiple years in the northeastern GoMex. The
FIGURE 4 | Distributions of surface chlorophyll a fronts (using a color index as the proxy) in July – September 2016 showing offshore advection and entrainment of
nutrient-rich coastal and shelf waters by anti-cyclonic eddies, which influences both the eastern and western Gulf of Mexico. Figure adapted from Zhang and Hu (2021).
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SEAMAP Program (NOAA/NMFS) has collected zooplankton
along stations in the GoMex for several decades and NOAA/
NRDA funded zooplankton surveys during and after DWH, but
most of these data are not publicly available. Results from a
spring 2010 NRDA survey, GoMRI-funded zooplankton surveys
between 2010 and 2014, and selected SEAMAP samples collected
between 2005 and 2009 are summarized below. The dominant
open-ocean mesozooplankton taxa were copepods, larvaceans,
and chaetognaths, with episodically high abundances of
ostracods, and gelatinous zooplankton, such as hydromedusea,
siphonophores, and doliolids (Daly et al., 2021). Euphausiids,
pelagic shrimps, pteropods, heteropods, and echinoderm larvae
were relatively common. The dominant off-shelf epipelagic
copepods were variable seasonally and interannually, and
included Centropages velificatus, Oithona spp., Corycaeus spp.,
Oncaea spp., Clausocalanus furcatus, Subeucalanus pileatus,
Temora turbinata, Acartia danae, Ctenocalanus furcatus,
Nanocalanus minor, and Paracalanus spp. Mesozooplankton
abundances were spatially variable, with the highest densities
typically in the upper 50 m, particularly during summer.
Multivariate analyses indicated that river discharge, wind speed
and direction, seawater temperature, and Chl a concentrations
were the environmental factors that had the strongest impact on
mesozooplankton community dynamics. The two years with the
highest river discharge rates (2010 and 2013) also had the highest
zooplankton abundances.

Vulnerability of mesozooplankton to DWH effects was
deemed high, particularly regarding spatial overlap of exposure
and sensitivity to toxins. Total polycyclic aromatic hydrocarbon
(PAH) concentrations greater than 0.5 mg L-1 (ppb) are
considered toxic to marine zooplankton; concentrations of
PAH reached toxic levels in the upper 20 m of the water
column for extended periods across much of the region
affected by DWH (Deepwater Horizon Natural Resource
Damage Assessment Trustees, 2016). The Trustees Report
(2016) also estimated that 37 to 68 trillion zooplankton were
killed over the entire oil spill region, including 4–6% of the
zooplankton community in open-ocean waters. Since
mesozooplankton are typically most abundant in the upper
50 m off shelf (Hopkins, 1982; Daly et al., 2021), there was
persistent and significant overlap between zooplankton and toxic
concentrations of spilled oil. Based on field data, about 40% of
the zooplankton community in the upper 100 m of the water
column may have been affected by the highest concentrations of
oil during May and June 2010 (Daly et al., 2021). Laboratory
experiments demonstrated that copepod and gelatinous
zooplankton species exposed to Louisiana Sweet crude oil, a
surrogate for Macondo (MC252) crude oil released during
DWH, resulted in mortality or sublethal effects, such as
reduced rates of feeding, growth, egg production, egg hatching,
development time, and fecal pellet production, as well as
impaired swimming behavior (Almeda et al., 2013a; Almeda
et al., 2013b; Almeda et al., 2014b; Almeda et al., 2014c; Cohen
et al., 2014; Lee et al., 2017) by zooplankton ingesting physically
and chemically dispersed oil or through exposure to dissolved oil
compounds. (Almeda et al. 2013b; Almeda et al. 2013a) found
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dispersed oil at the 1∶20 dispersant to oil ratio commonly used in
the treatment of oil spills was 2-3 times more toxic than oil alone
to stages of scyphozoans, Pelagia noctiluca and Aurelia aurita,
the ctenophore, Mnemiopsis leidyi, and the copepod, Acartia
tonsa. Almeda et al. (2014a) also determined that dispersant-
treated crude oil was 1.6 times more toxic when ingested by
adults and nauplii of the copepods, Acartia tonsa, Temora
turbinata, and Parvocalanus crassirostris, than crude oil alone.
The doliolid, Dolioletta gegenbauri, was shown after ingesting
crude oil to release oil in fecal pellets (Lee et al., 2012), which
then could be ingested by particle feeding zooplankton deeper in
the water column. Furthermore, the dynamic nature of the
northern GoMex, including interactions of the Loop Current,
Mississippi River plume, fronts, and eddies, acts to retain and
aggregate surface oil, particles, and zooplankton (Daly et al.,
2020), increasing the opportunities for exposure to oil. Similarly,
closer to the surface, toxicity of DWH oil to zooplankton
increased in the presence of sunlight (Almeda et al., 2013b;
Barron, 2017), further exacerbating the vulnerability of shallow-
water zooplankton to oil spill impacts. Deeper dwelling
zooplankton could have been exposed to DWH oil through
several different pathways: interaction with the rising column
of oil and gas from the wellhead before it was capped, predation
on oil-affected prey in surface waters during vertical migration
(Quintana-Rizzo et al., 2015), and consumption of oiled marine
snow (Daly et al., 2016) and carcasses (Tolan, 2020) from
surface waters.

As with phytoplankton, post-DWH surveys indicated a high
degree of resilience of the open ocean mesozooplankton to DWH
effects. Daly et al. (2021) showed that the abundance of
zooplankton during the oil spill (spring 2010) was not
significantly different from following springs (2011 and 2012)
and summer 2010 abundances were the highest observed for the
2005 - 2014 period, likely due to high river discharge during the
oil spill. Although experimental results indicated that all tested
zooplankton experienced lethal or sublethal effects, net
community impacts could not be detected in the months and
years following DWH. Daly et al. (2021) concluded that
zooplankton community resilience in the vicinity of the oil
spill was primarily due to ecosystem connectivity (transport of
zooplankton into the oil spill area), refuge in deeper waters, high
fecundity, and relatively short generation times.

Although the mesozooplankton community appeared to be
resilient to the oil spill, it should be noted that zooplankton may
have contributed to other ecosystem impacts of oil. Some
zooplankton, such as dinoflagellates (Noctiluca), copepods, and
doliolids, ingest oil droplets and egest them in fecal pellets, which
may be re-ingested by other particle feeders (Lee et al., 2012;
Almeda et al., 2014a; Almeda et al., 2016). Fecal pellets and other
zooplankton products may have contributed to the significant
sedimentation of marine oil snow to the seafloor (Daly et al.,
2016; Yan et al., 2016) and corresponding impacts on the
benthos (White et al., 2012; Schwing et al., 2015). Zooplankton
also may have contributed to bioaccumulation in upper-trophic-
level animals through ingestion of oil or ingestion of suspended
particulate matter. Carbon isotopic depletion in suspended
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material indicated that oil carbon was incorporated into the
lower-trophic food web through biodegradation by bacteria
(Graham et al., 2010; Chanton et al., 2012; Fernández-Carrera
et al., 2016).

3.2.3 Early Life History Stages of Large Epipelagic
Fishes
Large, highly migratory species of fishes that occupy the
epipelagic (upper 200 m) zone of the water column play an
important ecological role in the global open ocean and are
important economically in the GoMex. Shifts in distribution,
abundance, and assemblage diversity are known to be important
determinants of ecosystem productivity and stability (Lindegren
et al., 2016). Investigations centered on their ELH stages (larvae
and early juveniles) are less common than those on the
subadults/adults, but the former are critical for understanding
population dynamics, spawning stock biomass (reproductive
capacity), essential spawning and nursery areas (Rooker et al.,
2012; Richardson et al., 2016), and environmental conditions
that support early-life survival and recruitment (Rooker et al.,
2012; Pritt et al., 2014; Houde, 2016; Richardson et al., 2016).

The larval epipelagic fish community of the GoMex is
taxonomically diverse and comprises many species found
throughout the larger Atlantic Ocean basin (Lyczkowski-Shultz
et al., 2013; Randall et al., 2015; Cornic et al., 2018). In outer shelf
and slope waters of the northern GoMex, Meinert et al. (2020)
reported over 99 families of fish larvae in summer
ichthyoplankton surveys, indicating a remarkably diverse
assemblage. Numerically dominant taxa in the surface layer of
the water column (upper 1 m) include several taxa that are also
common in the epipelagic zone as adults. Apart from the
numerically dominant family, Carangidae (jacks), which
represented nearly one-third of the catch, other core
components of the surface ichthyoplankton assemblage
included families Clupeidae (herrings), Exocoetidae
(flyingfishes), Hemiramphidae (halfbeaks), Istiophoridae
(billfishes), and Scombridae (mackerels and tunas) (Rooker
et al., 2013; Randall et al., 2015; Cornic and Rooker, 2018;
Meinert et al., 2020; Pruzinsky et al., 2020; Cornic and Rooker,
2021). All of these taxa also occurred below the surface layer of
the epipelagic zone. However, several deep-pelagic taxa not
detected near the surface were common deeper in the
epipelagic zone (mixed layer) down to 200 m; these included
families Myctophidae (lanternfishes), Gonostomatidae
(bristlemouths), and Sternoptychidae (marine hatchetfishes). In
fact, myctophids were the most abundant family of fish larvae
collected in oblique bongo tows within the mixed layer during
surveys in the both the northern (Meinert et al., 2020) and
southern (Daudén-Bengoa et al., 2020) GoMex. Similar results
were reported by Wang et al. (2021) in their analysis of depth-
discrete ichthyoplankton data collected during six NRDA
plankton cruises in 2010 and 2011, which included tows down
to depths of 1500 m. Four families (Myctophidae,
Gonostomatidae, Sternoptychidae, Phosichthyidae) comprised
the majority of the catch in both the epipelagic (63%) and
combined mesopelagic and bathypelagic (97%) regions, and
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assemblage structure across all regions was largely determined
by depth and seasonality. The high abundance of mesopelagic
fish larvae within the epipelagic zone clearly signifies well-
developed ecological connectivity between the epi- and deep-
pelagic zones in the open GoMex, and this finding also highlights
the value of the epipelagic zone as an essential nursery habitat of
deep-pelagic fishes prior to ontogenic shifts to deeper habitats.

Time-series data from ichthyoplankton surveys of the
epipelagic zone are limited in scope and nearly all
investigations have focused on specific taxonomic groups
rather than the entire epipelagic fish assemblage. Recent efforts
in the northern GoMex have focused on species or taxa that are
important to recreational or commercial fisheries in this region,
including billfishes, dolphinfishes, tunas, and swordfish
(Muhling et al., 2012; Kitchens and Rooker, 2014; Cornic et al.,
2018; Meinert et al., 2020; Pruzinsky et al., 2020). Rooker et al.
(2013) characterized the relative abundance of blackfin tuna
(Thunnus atlanticus), blue marlin (Makaira nigricans),
common dolphinfish (Coryphaena hippurus), and sailfish
(Istiophorus platypterus) larvae pre- (2007-2009) and post-
(2010) DWH to assess potential impacts of this event on early
life survival and recruitment potential. The mean abundance for
each species was lowest post-DWH in 2010, though the observed
declines were often statistically similar to at least one year in the
baseline surveys (i.e., pre-DWH years) for certain taxa and often
within the range of expected natural variation for occurrence
and/or mean density of these taxa (Rooker et al., 2013). More
recent sampling through GoMRI’s DEEPEND Consortium has
indicated a return to pre-spill abundances for nearly all of species
assessed, although abundances of certain taxa (e.g., billfishes)
remained low relative to mean abundances pre-DWH for several
years after the event (Meinert et al., 2020).

The overall vulnerability of epipelagic fish ELH stages was
deemed high due to acute sensitivity to DWH toxins and
moderate spatial/temporal overlap of their habitats with areas
impacted by DWH. Reductions in the abundance of pelagic fish
larvae post-DWH are in accord with the premise that PAHs and
other toxic components resulting from DWH negatively
impacted the early life survival of these taxa (Berenshtein et al.,
2020). Physical processes that move oil and dispersants also
transport epipelagic fish larvae (Jolliff et al., 2014), increasing
their exposure to these toxins. Larvae of epipelagic fishes exposed
to toxic components of oil experienced a wide range of
deleterious effects on an assortment of physiological
parameters (Grosell and Pasparakis, 2021), including growth
(Mager et al., 2017), sensory function (Xu et al., 2016; Xu et al.,
2017), cardiac development and function (Incardona et al., 2014;
Perrichon et al., 2018), metabolic demand (Pasparakis et al.,
2016), and buoyancy control/swimming performance (Mager
et al., 2014; Pasparakis et al., 2016). Moreover, sensitivity to oil
toxicity is an order of magnitude higher for early life stages
(larvae) compared to adults of these pelagic species (Pasparakis
et al., 2019). Regarding spatiotemporal exposure, high-quality
habitat for several species common in the surficial epipelagic
zone during the first few weeks of life overlapped with the areal
coverage of surface oil from DWH. Rooker et al. (2013) observed
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that high-quality spawning and/or nursery habitat of billfish,
dolphinfish, and tuna larvae were impacted by DWH, with
surface oil occurring across approximately 10-20% of available
high-quality habitat in the northern GoMex used by these taxa
during early life. In general, the degree of overlap between
surface oil and high-quality habitat was markedly higher for
species commonly inhabiting waters on the continental shelf
(e.g., blackfin tuna, common dolphinfish) relative to open-ocean
species on the continental slope and beyond (e.g., blue marlin),
suggesting that species spawning farther offshore were less likely
to be impacted by surface oil or associated toxins (e.g., from
dispersants) from the DWH event.

The return of epipelagic fish ELH stages to pre-spill
abundances after a several-year period of lower abundances
indicates a moderate level of resilience for these taxa, with the
proviso that the abundances of these fishes are impacted by a
number of factors other than DWH, both natural (e.g., Loop
Current position) and anthropogenic (e.g., fishing pressure on
spawning stock). It is possible that resilience of epipelagic fish
ELH stages is enhanced by the oil detection and avoidance
capabilities of the adult spawning stock. Documented shifts in
the spatial distribution of certain taxa (e.g., blue marlin) away
from the northern GoMex in summer 2010, possibly due to
DWH remediation activities, may have resulted in short-term
reductions in ELH stage abundances (Rooker et al., 2013), but
their return afterward may have helped offset initial losses.

3.2.4 Deep-Pelagic Fishes
The deep-pelagic (meso- and bathypelagic combined) fish
assemblage of the GoMex is one of the most species-rich in the
World Ocean (Gartner et al., 1987; Sutton and Hopkins, 1996a;
Sutton et al., 2017a; Moore et al., 2020). This high species count
results from both natural factors and sampling/analysis intensity.
Natural factors include the GoMex’s ecotonal location (tropical
influence from the south paired with winter cooling in the north
accommodates a mix of tropical, subtropical, and temperate
species), well-oxygenated conditions throughout the deep water
column (a limiting factor in other low-latitude ecoregions; Sutton
et al., 2017a), the use of deep-pelagic habitat by early life stages of
coastal and deep-demersal taxa (Moore et al., 2020), and resource
partitioning among its members (Hopkins et al., 1996; Hopkins and
Sutton, 1998; McEachran and Fechhelm, 1998). Additionally, the
mesopelagic zone of the GoMex is one of the world’s most
intensively studied (Hopkins et al., 1996 and references therein),
particularly since DWH (Cook et al., 2020; Sutton et al., 2020). The
number of quantitative, discrete-depth net samples from the
GoMex’s bathypelagic zone collected since DWH likely exceeds
the sum of all other such sample sets in oceanographic history.

The majority of the deep-pelagic fish species occurring in the
GoMex are widely distributed, many circumglobal. The
mesopelagic ichthyofauna is similar to those of the connected
Caribbean and Sargasso Seas, with alterations in the rank order of
dominants rather than species replacements (Gartner et al., 1987;
Craddock et al., 1992; Ross et al., 2010; Sutton et al., 2010). This
similarity is derived from ocean circulation (Caribbean
Current!Loop Current!Florida Current!Gulf Stream; Maul,
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1977; Sturges and Evans, 1983; Gallegos, 1996) coupled with the
ethology/ecology of the fauna (e.g., diel vertical migration, early
life stage development in the epipelagic promoting dispersal;
(Daudén-Bengoa et al., 2020; Milligan and Sutton, 2020).
Though there are less data for the GoMex bathypelagic zone,
some evidence indicates that the GoMex may house a unique
assemblage, with the numerically dominant species (Cyclothone
obscura; Sutton et al., 2017b; Sutton et al., 2017c; Cook and Sutton,
2017a; Cook and Sutton, 2017b; Cook and Sutton, 2018; Cook and
Sutton, 2019) differing from that of the adjacent Sargasso Sea
(Cyclothone braueri; Sutton et al., 2010), albeit with much deeper
sampling in the Sargasso Sea (to 5000 m).

Given the full-water-column nature of DWH, the vertical
migratory behavior of most of the fauna, and the aforementioned
deleterious effects of oil/dispersants on fishes, the vulnerability of
deep-pelagic fishes to DWH was rated high. Vertical migrations
attuned to solar cycle are a defining feature of GoMex deep-pelagic
fishes (and macrocrustaceans and cephalopods, see below); more
species migrate than do not, including the vast majority of the
mesopelagic (during daytime) taxa (Gartner et al., 1987; Boswell
et al., 2020; Milligan and Sutton, 2020). The ecological,
biogeochemical, and subsurface-oil-spill-exposure ramifications of
vertical migration are profound. Diel vertical migration turns a
relatively depauperate daytime epipelagic zone (from an abundance
and diversity perspective) into a dynamic and species-rich
subsystem during nighttime. Sunrise then cues a massive
migration back to depth. At the same time, this behavior
ostensibly amplified the exposure of the migrating taxa to DWH
toxins. As layered plumes formed during the initial high-pressure
ejection of hydrocarbons, later mixed with dispersant, lateral
advection of these features expanded the footprint of DWH in the
deep-pelagic domain well beyond the immediate vicinity of
Macondo. If a taxon were to stay within one depth stratum, it
might have been “lucky” enough to not contact a subsurface plume,
but vertically migrating fauna would not have been so fortunate.
This applies even to the fauna below the major subsurface oil plume
centered at 1100 m (Camilli et al., 2010), as post-DWH sampling
revealed that the upper bathypelagic fauna can and do migrate
vertically into the mesopelagic, and perhaps the epipelagic, zones
(Sutton et al., 2020).

In terms of detection and avoidance of DWH toxins by deep-
pelagic fishes, the current thinking regarding their behavior is that
movements are primarily vertical, not horizontal (Pearcy and Laurs,
1966; Benoit-Bird et al., 2009), though evidence of horizontal
migrations has been reported near oceanic islands (Benoit-Bird
and Au, 2006) and cannot be discounted in the GoMex, especially
above the continental slope. That said, vulnerability to large-scale
water column pollutants was putatively high due to extended spatial
overlap for long periods of time (Romero et al., 2018) combined
with likely consumption of contaminated prey (Quintana-Rizzo
et al., 2015). Berenshtein et al. (2020) reported that the water-
column manifestation of DWH toxins was much larger than the
surface footprint, meaning that the total portion of the fish
assemblage exposed may have been substantial.

Of all the global mesopelagic ecoregions (sensu Sutton et al.,
2017a), the trophic ecology of the GoMex is among the best
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known, due largely to the work of T.L. Hopkins and colleagues
(see Hopkins et al., 1996 for an extensive listing of published
information). These studies reported a high-degree of ecological
niche partitioning among the GoMex deep-pelagic fish taxa,
which the authors posit as a mechanism for high species
diversification and maintenance in a relatively featureless,
food-limited, but highly stable low-latitude ecosystem
(Hopkins and Sutton, 1998, and references therein). This
finding, coupled with highly selective feeding and increasing
tightness of trophic linkages between predators and prey as
trophic levels increase (Sutton and Hopkins, 1996b; Davison
et al., 2013), suggests that GoMex deep-pelagic fishes are highly
vulnerable to sudden variations in prey abundance and/
or composition

Given the data gaps related to the population dynamics and
long-term abundance variation of most deep-pelagic fishes, the
overall characterization of resilience of this taxon was heavily
weighted by inferences based on post-DWH sampling and
analysis. These data revealed an extensive and persistent
decline in abundance of both meso- and bathypelagic fishes
between 2011 (NOAA-supported NRDA sampling) and 2015-
2018 (GoMRI-supported DEEPEND sampling) (Cook et al.,
2020; Sutton et al., 2020; Sutton et al., in review). These
declines have been detected separately via direct net sampling
and multi-frequency acoustic sensing (Sutton et al., in review).
Because pre-DWH data were not available, direct ascription of
the declines to DWH is not possible. However, Romero et al.
(2018) demonstrated large increases in PAH concentrations in
mesopelagic species following DWH, and in particular,
concentrated in gonads. No other known environmental or
ecological (see plankton treatments above) correlates would
explain this community-level decline. That 2011 abundances,
representing a period from 6-14 months after the Macondo
wellhead was capped, were higher than abundances from 2015-
2018 suggests that the sharpest population declines after DWH
were delayed, putatively due to recurrent recruitment failure
rather than immediate spawning stock mortality. Similar lags in
fish population declines have been noted after other large marine
oil spills (e.g., Barron et al., 2020).

The ecological concept of “life in the slow lane” is often
applied to deep-sea fishes, especially to deep-benthic and deep-
demersal fishes (Drazen and Haedrich, 2012), to explain low
resilience in the face of human disturbance (mainly fishing). This
concept does not necessarily apply to deep-pelagic fishes, at least
to those few for which age and growth information is available. A
summary based on extrapolation from available information
suggests that deep-pelagic fish generation times and
replacement rates in the GoMex are intermediate, with
planktivorous fishes living approximately one to a few years,
and higher order predators living a few years to over a decade
(but not as long as some large epipelagic apex predators or deep-
demersal and benthic fishes). The data gap regarding
reproduction dynamics of GoMex deep-pelagic fishes parallels
that of age and growth. Available information suggests spawning
in most taxa is protracted, with multiple stages of egg
development year-round, with little evidence of seasonality
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(Marks et al., 2020). Thus, we tentatively rank this attribute of
resilience as moderate – presumably higher than that of deep-
demersal fishes, but not high enough to rapidly replace losses due
to mortal i ty . The aforementioned protracted PAH
contamination via maternal deposition in eggs (Romero et al.
(2018) in combination with tight trophic coupling among
assemblage members suggests low resilience to disturbance.
This follows a global-scale analysis of marine fish foods webs
that found open-ocean community resilience to be lower than
that of coastal systems due to lower food-web interaction
redundancy (Albouy et al., 2019).

3.2.5 Deep-Pelagic Macrocrustaceans
Deep-pelagic macrocrustaceans (decapod shrimps, lophogastrids,
and large euphausiids), like their fish counterparts, are major
components of the GoMex and global oceanic ecosystems, playing
an important role in trophic dynamics as both predators of
phytoplankton and zooplankton (Roe, 1984; Hopkins et al.,
1994 and references therein) and prey for cephalopods,
cetaceans, seabirds, deep-pelagic fishes, and many species of
commercially important fishes (Borodulina, 1972; Deagle et al.,
2007; Schramm, 2007; Jayalakshmi et al., 2011). Of the GoMex
open-ocean macrocrustaceans, five families comprise 95% of the
assemblage numbers: Oplophoridae (31%), Benthesicymidae
(21%), Euphausiidae (17%), Sergestidae (16%), and Eucopiidae
(10%). For two of the three families for which statistical analyses
have been completed, Oplophoridae and Euphausiidae, both the
abundance and biomass of the respective assemblages were
significantly higher landward of the 1000-m isobath than
seaward, but the faunal compositions were largely the same
(Burdett et al., 2017; Frank et al., 2020).

In a recurrent theme, lack of pre-spill data for the deeper-
living macrocrustaceans, coupled with data gaps regarding life-
history dynamics, made it difficult to assess vulnerability to and
resilience from DWH. Much of these characterizations are based
on what is known regarding similar taxa, and on post-DWH
population level assessments. Regarding vulnerability to toxins,
we do know that both crude oil and dispersants can have
deleterious effects on crustaceans. both lethal and sublethal,
including altered reproduction, respiration rates, growth,
feeding and locomotion (Almeda et al., 2013a; Peiffer and
Cohen, 2015). One study that tested the effects of crude oil
(specifically, 1-methylnaphthalene) on deep-sea crustaceans
showed a higher sensitivity than that expressed in coastal
species (Knap et al., 2017). That, plus extensive spatiotemporal
overlap to oil/dispersant as described for deep-pelagic fishes, led
us to rank pelagic macrocrustacean vulnerability as high.

Regarding resilience, there is less life history information on
this taxa than even deep-pelagic fishes, again requiring inference
from post-DWH sampling results. These analyses revealed that
the abundance of pelagic macrocrustaceans declined markedly
between 2011 and 2015-2018, with a decline onset lag like that
seen in fishes, and with the decrease statistically significant at all
depths and times of day (Sutton et al., in review). The severity of
decline was taxon-specific – the Benthesicymidae, Sergestidae,
Oplophoridae and Eucopiidae decline was sizeable, but the
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Euphausiidae decline was major (Sutton et al., in review). Timm
et al. (2020b) analyzed genetic connectivity of two species of
Oplophoridae and one species of Sergestidae between the GoMex
and the Atlantic proper. They concluded that hydrographic flow
interacting with life history (vertical migration behavior,
brooders vs. spawners, ontogenetic migrations) likely
determines taxon-specific resilience to disturbances such as
DWH. Overall, as with fishes, the preponderance of evidence
suggests that pelagic macrocrustacean resilience to DWH
was low.

3.2.6 Deep-Pelagic Cephalopods
Judkins (2009) documented 131 species in the Wider Caribbean
region (GoMex plus Caribbean Sea and eastern Florida
seaboard). Records of other species from the northern GoMex
have since been added (Judkins et al. 2016a; Judkins et al., 2016b;
Judkins et al., 2020), indicating that more cephalopod species
may yet be discovered in the region’s deep-pelagic environment.
The deep-pelagic cephalopod assemblage of the GoMex includes
muscular families (e.g., ommastrephids, onychoteuthids) as well
as gelatinous representatives such as the pelagic octopods (e.g.,
Japetella diaphana) and the vampire “squid” (Vampyroteuthis
infernalis). Cephalopods are aggressive predators of fishes,
crustaceans, and other molluscs (Leite et al., 2016; Hoving and
Haddock, 2017; Olmos-Perez et al., 2017). In turn, they are food
for larger fishes, marine mammals, and birds (Croxall and
Prince, 1996; Clarke, 1996; Logan et al., 2013; Xavier et al.,
2013). Due to their importance in the oceanic GoMex food web,
cephalopods are potentially important vectors not only for
carbon transfer through the water column but for petroleum
contaminants as well (Bustamante et al., 2006; Unger et al., 2008;
Arkhipkin, 2013; Romero et al., 2020).

Prior to DWH, one cruise series, the Sperm Whale Acoustic
Prey Survey (SWAPS, Jan-Mar, 2010), collected over 3000
midwater cephalopods to examine cephalopod species richness
in the potential prey field of northern GoMex sperm whales.
Before that survey, deep-pelagic cephalopods were collected from
the GoMex, but only ancillary to other research (e.g., Voss, 1956;
Lipka, 1975; Cairns, 1976; Passarella, 1990; Passarella and
Hopkins, 1991; Judkins et al., 2009; Judkins at al., 2010). Our
knowledge of cephalopods in the deep GoMex has advanced
substantially since 2010, including valuable insights into their
diversity, ecology, genetics, population connectivity, and
potential to be vectors of contaminants. Zapp Sluis et al.
(2021) used a generalized additive modeling framework on
mesozooplankton data (bongo samples) collected during 2015-
2017 to characterize the summer daytime distribution and
abundance of squid paralarvae in the epipelagic zone of the
northern GoMex. Thirteen families were broadly distributed
over the sampling area and paralarvae were present in ~76% of
the stations sampled, meaning that this region may be an
important spawning area for oceanic squid species. At the
population level, Timm et al. (2020a) found evidence of
homogeneous populations and significant inbreeding in
Cranchia scabra and Pyroteuthis margaritifera, both diel
vertical migrators. Conversely, Vampyroteuthis infernalis, a
Frontiers in Marine Science | www.frontiersin.org 12
deep-living non-migrator, exhibited population structure that
did not appear to be related to geography.

While cephalopods are highly mobile, the deep-pelagic
species were classified as highly vulnerable to DWH based on
spatial exposure and duration, particularly related to the
suspended oil plume located between 900-1200 m depth.
Vertical-distribution analyses showed that 37 species utilize the
900-1200 m depth zone, either by migration through it or by
living within it (Judkins and Vecchione, 2020). Some species
(e.g., bathyteuthids, bolitaenids, mastigoteuthids) remain at that
depth for most of their adult lives. Molluscs have a higher
tendency to bioaccumulate and concentrate contaminants than
other groups (Gomes et al., 2013; Semedo et al., 2014) because of
their lack of a highly developed hepato-billary system (unlike for
fishes), further increasing vulnerability. This is alarmingly
relevant in the GoMex, as deep-pelagic cephalopods were
exposed to PAHs for an extended period. In a study of five
GoMex species (Japetella diaphana , Abralia redfieldi,
Histioteuthis corona, Leachia atlantica, and Onychoteuthis
banksii) Romero et al. (2020) found a shift in the composition
of PAHs in the tissue of all cephalopods after 2010, with a more
petrogenic source in 2011 that weathered and mixed with other
sources in 2015–2016.

Regarding resilience, cephalopods’ rapid growth rates and
short lifespans (Wells and Clarke, 1996; Wood and O’Dor, 2000;
Jackson and O’Dor, 2001) have been interpreted as an
evolutionary response to high mortality rates (primarily
predation; O’Dor and Webber, 1986). For deep-pelagic species
this may not be the case. For example, Hoving and Robison
(2017) examined three deep-pelagic species in Monterey Canyon
and found they had increased lifespans as well as slower growth
rates than their shallow relatives; therefore, their population
dynamics may be quite different than the well-known coastal
species. These attributes of resilience were not scored due to
insufficient data. Aspects of life histories, including life span, are
still unknown for many deep-sea cephalopod species. Because of
the dearth of detailed information about most oceanic
cephalopod species, they are often treated as a single “black
box” in most ecosystem models (de la Chesnais et al., 2017). We
know enough about the variability among species and higher
evolutionary groups to be confident that this “black-box”
approach is inadequate. Because cephalopods are central
components of oceanic food webs, impacts on this group likely
had important repercussions for both their predators (e.g., fishes,
mammals, birds) and their prey (fishes, crustaceans, other
cephalopods, and possibly other taxa).

3.2.7 Shallow- and Deep-Diving Oceanic Cetaceans
At least 17 species of oceanic cetaceans are regularly found in the
deep GoMex beyond the continental shelf break (Würsig et al.,
2000). The only mysticete (baleen whale) regularly observed in
the GoMex is the newly defined Rice’s whale, Balaenoptera ricei
(Rosel et al., 2021), which while critically endangered, does not
venture far beyond the continental slope into deep water. This
leaves only odontocetes (toothed whales) that fit broadly into two
categories: shallow divers, including various dolphin species in
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the genus Stenella and other smaller delphinids, and deep divers,
including sperm, pygmy sperm, beaked, and pilot whales.
Shallow divers feed nocturnally on vertically migrating
mesopelagic cephalopods and myctophids (Robertson and
Chivers, 1998), and some may also forage opportunistically on
epipelagic prey. Deep divers routinely prey primarily on meso-
and bathypelagic cephalopods (Fertl et al., 1997; Judkins et al.,
2013; West et al., 2017). Due to their high caloric needs, which
require elevated prey consumption (Benoit-Bird, 2004; Farmer
et al., 2018), these top predators serve as sentinel species whose
population declines or spatial shifts may reflect broader but less
readily observable changes in deep-pelagic ecosystems.

Shipboard visual surveys for oceanic cetaceans have been
irregularly conducted in the GoMex since the since the early
1990’s (Mullin and Hoggard, 2000; Jochens et al., 2008). Oceanic
GoMex cetaceans are designated as separate stocks from
conspecifics in the broader Atlantic due to an overall lack of
evidence of gene flow between the two systems. Pantropical
spotted dolphins (Stenella attenuata) have historically been the
most commonly observed offshore species during visual surveys,
with stock size estimates near 50,000 (Waring et al., 2016),
followed by spinner dolphins (S. longirostris) and oceanic
bottlenose dolphins (Tursiops truncatus), with stock sizes
estimated in the thousands to tens of thousands (Waring et al.,
2013). Deep-diving odontocete stock sizes are generally smaller,
the largest being approximately 2,000 pilot whales (Globicephala
macrorhynchus) and fewer than 1,000 sperm whales (Physeter
microcephalus) (Waring et al., 2016). Beaked whale (Ziphiidae)
and pygmy/dwarf sperm whale (Kogia spp.) stock sizes have
typically been estimated in the low hundreds, but these may be
underestimates due to the cryptic surface behaviors of these
species (Cholewiak et al., 2017; Hildebrand et al., 2019).
Although survey efforts have documented cetacean diversity
and spatial distributions in the region (Davis et al., 2002),
resulting stock size estimates have high associated
uncertainties, and estimates have been too infrequent to infer
population trends. A lack of survey data from the Mexican
portion of the GoMex further compounds overall uncertainty
for these highly mobile species. Prior to 2018, surveys were
primarily conducted in summer, and did not capture
information relating to seasonal cycles or distributional shifts
in response to oceanographic conditions. Intensive visual survey
effort across seasons was conducted in 2018-2019 to address this
data gap, however pre-DWH baseline measurements for
comparison are lacking.

As part of the NRDA in 2010, a passive acoustic monitoring
program was initiated to assess long-term trends in cetacean
occurrence following DWH (Hildebrand et al., 2015;
Sidorovskaia et al., 2016). This and other programs
demonstrated the high temporal resolution needed to
investigate long-term trends in species occurrence. Pre-DWH
passive acoustic monitoring data are extremely limited. However,
the passive acoustic monitoring record since 2010, in
conjunction with increased visual survey effort, strongly
suggests long-term declines in offshore Stenella dolphin
occurrence within the US EEZ in the GoMex (Frasier et al.,
Frontiers in Marine Science | www.frontiersin.org 13
2019). Due to lack of spatial coverage across the GoMex, we
cannot discern whether observed declines represent a spatial
shift or mortality.

The available information on the impacts of oil on
odontocetes has been largely focused on coastal species and
environments, specifically killer whales following the Exxon
Valdez Oil Spill (EVOS; Matkin et al., 2008) and GoMex Bay,
Sound, and Estuarine (BSE) bottlenose dolphins following DWH
(Deepwater Horizon Natural Resource Damage Assessment
Trustees, 2016; Schwacke et al., 2017). In both cases, long-term
impacts on the observed populations were high, with elevated
rates of chronic disease and mortality, and suppressed long-term
reproductive capacity (Dahlheim and Matkin, 1994; Matkin
et al., 2008; Schwacke et al., 2013; Schwacke et al., 2017; Smith
et al., 2017; Takeshita et al., 2017). Population recovery time for
Barataria Bay bottlenose dolphins following DWH is estimated
to be 39 years (Smith et al., 2017).

Regarding vulnerability of oceanic cetaceans to DWH,
attribute scoring ranged from low to moderate to high,
resulting in a cumulative rating of moderate. Odontocetes
possess biosonar and are likely capable of detecting oil slicks
(Geraci et al., 1983), however there is no evidence of oil
avoidance in coastal proxies (Smultea and Wursig, 1995).
Similarly, oceanic cetaceans were observed, directly both
visually and acoustically, within the DWH oil slick, with no
evidence of avoidance or reduced presence (Hildebrand et al.,
2015; Dias et al., 2017; Frasier et al., 2019; Morano et al., 2020).
Initial acute exposure to surface oil through inhalation, ingestion,
and dermal contact for a portion of the major stocks is certain.
Exposure to the deep plume during foraging dives likely occurred
for deep divers, which are known to forage at depths near or over
1000 m depth (Watwood et al., 2006; Shearer et al., 2019). Site
fidelity of offshore cetaceans is likely considerably lower than that
observed in coastal proxies, which could mitigate chronic
exposure. Cetaceans are capable of metabolizing oil
compounds including PAHs (Lee and Anderson, 2005). Most
studies of the health impacts of oil ingestion in mammals
consider ingestion of raw oil and visibly oiled prey (Engelhardt
et al., 1977; Geraci, 1990; Matkin et al., 2008; Schwacke et al.,
2013). The health effects of long-term ingestion of lower
concentrations of oil-derived compounds through prey are not
well studied but may be more relevant to offshore cetaceans.
Deep divers may be more vulnerable than shallow foragers to
chronic toxicity if feeding near the bottom on prey with strong
trophic ties to contaminated sediments and/or deep suspended
plumes. Limited available evidence suggests that dispersants may
have toxic effects at the cellular level (Wise et al., 2014) but more
research is needed to evaluate organismal effects. Odontocetes
are well known to bioaccumulate fat-soluble contaminants from
their prey (Aguilar et al., 1999). This may be a particular concern
for myctophid-eating shallow divers (e.g. Lahaye et al., 2006),
however fishes metabolize PAHs more effectively than
cephalopods (Law and Whinnett, 1992; Unger et al., 2008;
Romero et al., 2020).

DWH occurred against a backdrop of other chronic stressors
for oceanic cetaceans, which may have increased vulnerability,
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and continue to affect resilience. An unusual mortality event had
already begun among delphinids in early 2010, two months prior
to the spill, and was then exacerbated by DWH, lasting until July
2014 (Litz et al., 2014; Venn-Watson et al., 2015). More broadly,
ongoing stress related to excessive anthropogenic noise, fisheries
bycatch and entanglement, prey pressure related to climate
change and fishing, ship strikes, ocean plastics, and
environmental pollutants may limit population recovery
(Weilgart, 2007; Lewison et al., 2014; Carroll et al., 2017).
Oceanic cetaceans make up only a small fraction of the
stranding record, which is typically dominated by coastal
species (Litz et al., 2014). This pattern risks being interpreted
as a lack of impact; however, the lack of oceanic species
representation is likely linked to a lower probability of
stranding when mortalities occur offshore (Williams et al., 2011).

Our understanding of the system’s carrying capacity is
clouded by both historic and modern pressures. Sperm whales,
a species of primary concern, have been listed as endangered
since 1970 following mortality due to commercial whaling
(Reeves et al., 2011). The GoMex is believed to function as a
nursery for sperm whale populations in the broader Atlantic
(Englehaupt et al., 2009). Matriarchal groups with calves are
prevalent in the region, while the large males typical of high
latitudes are less commonly observed (Solsona Berga, 2019).
Social groups are also common among the shallow divers, with
group sizes ranging from half a dozen to hundreds of delphinids
(Würsig et al., 2000). Odontocete calves inhabit the same waters
as adults, and nurse until the age at which they can begin
foraging, therefore young are highly dependent and trophically
linked to their mothers as well as dependent on the social unit for
protection (Perrin and Reilly, 1984). Population resilience and
recovery is limited in these long-lived animals by long gestation
times, elevated age at reproductive maturity, and low number of
offspring produced (typically a single calf per cycle) at high
energetic cost.

The current restoration paradigm for GoMex cetaceans relies
on mitigation of compounding stressors to bolster stock
resilience. Planned restoration actions include mitigating
bycatch and fisheries interactions, vessel coll isions,
anthropogenic noise, illegal feeding and harassment, investing
in coastal restoration, and expanding marine protected areas
(Deepwater Horizon Natural Resource Damage Assessment
Trustees, 2016). However, even in an optimal environment,
recovery is likely to be slow. More information on the
mechanisms of impacts is needed, particularly for offshore
cetaceans, before effective management mechanisms can be
identified (Smith et al., 2017; Ackleh et al., 2018).
4 CONCLUSION

Due to the nature and size of DWH, there were no open-ocean
taxa that we considered low vulnerability and high resilience.
Phyto- and mesozooplankton were classified as highly vulnerable
due to high spatial overlap with DWH toxins, low relative
Frontiers in Marine Science | www.frontiersin.org 14
mobility, and high sensitivity to DWH toxins, yet they were
also highly resilient, with no detectible DWH effects months to a
year after the event. Early life history stages of large epipelagic
fishes exhibited temporal abundance trends similar to
mesozooplankton, but with larger initial declines before
returning to natural ranges within one or two years, and with
the added factor that abundances and distributions may be tied
to possible relocation out of the DWH-affected area by the adult
spawning stock of some species. Examination of post-DWH
time-series data for deep-pelagic micronekton (fishes,
macrocrustaceans, and cephalopods) suggested that
intermediate size classes were highly vulnerable and exhibited
the least resilience, evidenced by the observed declines after
DWH. Cases such as this, where the lack of pre-disaster data
precluded definitive damage assessment, confound a confident
synthesis. Regarding the largest-bodied taxon considered here,
the oceanic cetaceans, although surveys were conducted prior to
DWH, time-series trajectories have very high uncertainties due
to the nature of the surveys. Those data that do exist, primarily
post-DWH, strongly suggest long-term abundance declines in
shallow-diving cetaceans in the northern GoMex. Overall,
vulnerability of cetaceans was classified as moderate, while
resilience was tentatively classified as low due to the low
fecundity and long generation times. If open-ocean cetacean
stock injuries scale with those of coastal bottlenose dolphins,
recovery could take several decades (Smith et al., 2017).

In closing, the open-ocean GoMex exemplifies the complex
situation of a very large, physically dynamic, and understudied
ecosystem rapidly subjected to large volumes of hydrocarbons
and dispersants. All taxa examined were deemed moderately to
highly vulnerable to DWH effects, while resilience was highly
variable and taxon-specific. We conclude that, for the
intermediate and higher trophic levels of the open-ocean
GoMex, even a decade after the event we have no evidence to
suggest that impacts from DWH are “over.”
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