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The ecological characteristics of mesopelagic community are crucial to understand
the pelagic food web, replenishment of pelagic fishery resources, and building models
of the biological pump. The deep scattering layers (DSLs) and diel vertical migration
(DVM) are typical characteristics of mesopelagic communities, which have been widely
observed in global oceans. There is a strong longitudinal environmental gradient across
the tropical Pacific Ocean. Nevertheless, the longitudinal variation of DSLs along this
gradient was still largely unclear until now. We investigated the DSLs across the tropical
Pacific Ocean using data of shipboard acoustic Doppler current profiler at 38 kHz from
July to December 2019. The study area was divided into three sub-regions by cluster
analysis of environmental variables: the western part (WP), the transition part (TP),
and the eastern part (EP). The result confirmed that the longitudinal variation of DSLs
and DVM: the weight migrating depth of mesopelagic organisms was reduced from
571.2 ± 85.5 m in the WP to 422.6 ± 80.8 m in the EP; while the migrating proportion
was minimum in the TP (35.2 ± 12.8%), and increased to 86.7 ± 16.2% in the EP.
Multiple regressions analysis showed that both the mesopelagic average oxygen and
chlorophyll a concentration were significant factors which influenced the upper boundary
depth and weight migrating depth, while the center mass depth was only influenced by
the chlorophyll a. Since higher demand of most predators of mesopelagic animals for
dissolved oxygen and light intensity, the limitations of predator behavior by environmental
conditions might explain the observed spatial heterogeneity of DSLs. Combining the
previous results and the findings of this study, it implied that declined biomass, shallower
habituating depths, and lower migration proportion of mesopelagic animals under more
extremely oligotrophic conditions with global change in future, would reduce the active
carbon flux and hinder food supply to deep-sea biological communities in the tropical
Pacific Ocean.
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INTRODUCTION

Mesopelagic organisms are one of the largest groups in
the marine biome. They include small fishes, crustaceans,
cephalopods, and gelatinous organisms (Salvanes and
Kristoffersen, 2001; Receveur et al., 2020a). Micronekton,
organisms with a length in the range of 2–20 cm, have a
stronger ability to migrate and wider migration range than
zooplankton. Micronekton are one of the dominant components
of mesopelagic biomes in the marine system (Catul et al.,
2010; Kwong et al., 2020). Micronekton migrate to the surface
(0–200 m) to feed at night and descend to the mesopelagic layers
(200–1,000 m) to escape predators after sunrise, which is referred
as diel vertical migration (DVM).

As one of the largest animal movements on earth, the DVM
of these animals transfers organic particles from the surface
to the deep sea, which plays an important role in the
marine biogeochemical cycle (Hays, 2003; Klevjer et al., 2016;
Hernández-León et al., 2019; Martin et al., 2020). In addition,
micronekton play a crucial role in the pelagic food web. They feed
on zooplankton and are the prey of fishes, seabirds, and marine
mammals (Polis et al., 1997; Lambert et al., 2014; Miller et al.,
2018; Klevjer et al., 2019). However, the biomass of micronekton
in mesopelagic zone is usually underestimated because of their
avoidance and escape from trawls (Kaartvedt et al., 2012; Irigoien
et al., 2014). Thus, the role of micronekton in the oceanic
biogeochemical cycle and food web is likely much greater than
our current understanding (Gjøsaeter and Kawaguchi, 1980;
Kloser et al., 2009; Food and Agriculture Organization [FAO],
2018).

The deep scattering layers (DSLs) where mesopelagic
organisms aggregate have been known since World War II
(Johnson, 1948). In recent years, they have been widely
investigated using acoustic methods (Béhagle et al., 2014; Bianchi
and Mislan, 2016; Klevjer et al., 2016). These acoustic survey
methods, especially based on the detection of temporal and
spatial variations of DSLs using the frequency of 38 kHz,
have proven to be effective in describing the population
characteristics of micronekton at large scale (Bertrand et al.,
2002; Moline et al., 2015; Béhagle et al., 2016; Cascão et al.,
2019). These acoustic investigations reveal that the ecological
and behavioral characteristics of micronekton are influenced
by marine environmental factors. The most significant point is
the positive correlation between biomass of micronekton and
primary productivity or chlorophyll concentration (Escobar-
Flores et al., 2013; Irigoien et al., 2014). The distribution of high
micronekton biomass fits well with the distribution of highly
productive water masses, fronts, and eddies (Fennell and Rose,
2015; Béhagle et al., 2016; He et al., 2016). However, the behavior
and life history of micronekton are influenced by more complex
environmental factors. The behavior of mesopelagic animals is
a trade-off between stress avoidance and energy intake (Pearre,
2003; Benoit-Bird and Lawson, 2016). On the one hand, the
stresses can be divided into two categories: the predation risk
and the stress of extreme environment (De Robertis and Cokelet,
2012). But these two aspects are closely linked. First, they dive
into the mesopelagic zone of low oxygen and weak light, where

fast and visual predators cannot stay long and feed efficiently
(Levin, 2003; Stramma et al., 2011; Aksnes et al., 2017). Second,
the metabolism of organisms is restrained by low oxygen or even
hypoxia conditions (Levin, 2003; Netburn and Koslow, 2015). On
the other hand, considering that food is obviously more limited
in the mesopelagic layer than in the upper layer, energy intake
means rising to the euphotic layer for feeding (Pearre, 2003;
Proud et al., 2017). Thus, both biotic and abiotic factors affecting
the above aspects may influence their behavior and characteristics
of DSLs. A wide variety of DSL’s patterns have also been observed
in field around the globe (Bianchi and Mislan, 2016; Klevjer et al.,
2016; Proud et al., 2017).

The influence of climate change on marine ecosystem has
long been one of the most important concerns worldwide. Global
warming is a serious problem and closely related to mankind’s
interest (Kunreuther et al., 2014). Global warming will exacerbate
ocean hypoxia and cause an expansion of the oxygen minimum
zone in tropical and subtropical ocean (Stramma et al., 2008;
Keeling et al., 2010; Resplandy, 2018). In addition, primary
productivity will decrease in the tropical and subtropical ocean
(Steinacher et al., 2010). These changes will redistribute the
structure of ecosystem (Pecl et al., 2017). Current research on
the response of open ocean ecosystems to climate change mainly
focused on the North Pacific, North Atlantic, and Southern
Oceans (Beaugrand et al., 2002; Benedetti et al., 2021), while
knowledge about tropical Pacific was relatively limited. There
is a strong longitudinal gradient in the upper ocean of tropical
Pacific due to fundamental differences in the physical, chemical,
and biological ocean environment (Le Borgne et al., 2002; Zhang
et al., 2012). This gradient also occurred in the mesopelagic layers.
The mesopelagic layers of eastern tropical Pacific Ocean are
mainly characterized by severe anoxic condition, stratification,
and high flux of particulate organic carbon (POC). While
the western tropical Pacific Ocean are mainly characterized
by higher oxygen concentrations and oligotrophic conditions
with a low flux of POC (Reygondeau et al., 2017; Sutton
et al., 2017). In addition, there is a wide transition zone
between these two regions. Because mesopelagic organisms
have an important role in tropical open ocean ecosystems
and the ecology and behavior of them are controlled by
environmental factors, such as dissolved oxygen and chlorophyll,
it is important to study the response of mesopelagic community
to environmental factors across the tropical Pacific Ocean.
While the existing large-scale work mainly focused on the
eastern tropical and southwestern Pacific Ocean (Irigoien et al.,
2014; Smeti et al., 2015; Béhagle et al., 2016; Receveur et al.,
2020a,b), and comparative studies across the entire tropical
Pacific Ocean are lacking.

In this study, a large-scale acoustic investigation was
conducted across tropical Pacific Ocean. The aim is to describe
the spatial characteristics of DSLs and patterns of DVM in
different environmental regions, and to examine the relationship
between important characteristics of DSLs and environmental
factors. This result will fill a current gap in our knowledge of
DSLs in the tropical Pacific Ocean and provide new perspectives
to better understand the response of pelagic ecosystem to
climate change here.
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MATERIALS AND METHODS

Acoustic Data Collection and Processing
We gathered the shipboard acoustic Doppler current profiler
data from the 54th cruise of China Ocean Project on board the
R/V Xiangyanghong 10. The cruise traversed the subtropical and
tropical Pacific Ocean (8.2◦N–22.7◦N, 148.2◦E–107.0◦W) from
July to December 2019. The sailing path is shown in Figure 1.
The central and eastern parts (EPs) of study area are strongly
influenced by the North Equatorial Current, which is a westward
wind-driven current (Wang et al., 2019). The western part (WP)
is located in the North Pacific Subtropical Gyre, which is one
of the world’s largest oceanic gyre systems and is an extreme
oligotrophic area (Karl, 1999; Claustre and Maritorena, 2003; Hu
et al., 2015; Figure 1 and Supplementary Figure 1).

Ship-based data collection was conducted with a shipboard
acoustic Doppler current profiler. The transducers (with a central
frequency of 38 kHz) were mounted on the bottom of the
ship. Datum was collected down to a depth of approximately
1,000. The sampling interval was 10 min, and the vertical cell
interval was 24 m. A spline interpolation method was used to
refine the raw data to 1 m vertical intervals (Akima, 1974). The
measuring range was 50–1,000 m in depth. The raw acoustic
data were not calibrated or compared with other calibrated
equipment. However, the data from ship-board acoustic Doppler
current profiler (SADCP) are considered suitable for evaluating
the relative biomass of mesopelagic community and identifying
the vertical distribution of DSLs in many studies (Irigoien et al.,
2014; Davison et al., 2015; Bianchi and Mislan, 2016; Receveur
et al., 2020a). Midday and midnight were defined as the periods
of 10:00–14:00 and 20:00–02:00, respectively. Acoustic data of
midday and midnight were used in the subsequent analysis
because of the relatively stable scattering layers. This study
focused on the mesopelagic zone (200–1,000 m underwater) to
eliminate the influence of missing data from the 0–50-m zone.
The mesopelagic zone is where the migratory organisms migrated
into the DSLs at midday and migrated to surface at midnight.

Table 1 shows a list of abbreviations and full names in this
study. The mean volume backscattering strength (MVBS, dB re
45 m−1) was calculated from the recorded backscattering echo

intensity E (counts) based on the sonar equation in Mullison
(2017):

Sv = C + 10lg
(
R2
× (Tx + 273.16)

)
− LDBM − PDBM + 2αR

+ 10 × lg
(

10
Kc(E−ER)

10 − 1
)

, (1)

where Sv is the backscattering strength at a certain depth. C is
a system constant provided by the SADCP manufacturer, which
includes the transducer and system noise characteristics. This
value is−172.19 dB for the Workhorse Long Ranger functioning
at a frequency of 38 kHz. The other variables are as follows: Tx is
the temperature of the transducer (◦C), R is the range along the
beam to the scatterers (m), LDBW is 10× lg (transmit pulse length,
24 m), PDBW is 24 dB, α is the sound absorption coefficient of
seawater (0.011 dB m−1), and Kc is a beam-specific scaling factor
(dB count−1), is typically assumed to be 0.45. Er is the received
signal strength indicator value when there is no signal present,
which is determined from the minimum values of the RSSI counts
in the whole cruise (Deines, 1999; Mullison, 2017).

Sv is the logarithmic form of sv (volume backscattering
coefficient, VBC) in Equation 2, and sv is integrated with depth
using the formula in Maclennan et al. (2002) to produce the
area backscattering coefficient, sa (m2 m−2). The most common
scaled coefficient, the nautical area scattering coefficient (NASC),
is denoted by the symbol sA (m2 nmi−2) (Maclennan et al., 2002).
The NASC calculated from the 38 kHz acoustic frequency was
used as a proxy of micronekton biomass (Kloser et al., 2009;
Béhagle et al., 2016).

Sv = 10lg sv, (2)

sa =

∫ zn

z1

sv(z)dz, (3)

sA = 45 × 1 8522
× sa, (4)

where z is water depth (m), and sv (z) is the backscattering
coefficient at depth z.

The threshold filtering method has been used in many
studies to identify the location of DSLs (Béhagle et al., 2016;

FIGURE 1 | Ship-track (black lines) map of this study. Red arrows show the direction of the Kuroshio Current. Yellow arrows show the directions of the North
Equatorial Current and North Pacific Current. Blue arrows show the direction of the California Current.
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TABLE 1 | List of abbreviation.

Acronyms Full names Unit

DSL Deep scattering layers \

DVM Diel vertical migration \

MVBS Mean volume backscattering strength dB re 45m−1

VBC Volume backscattering coefficient m−1

NASC Nautical area scattering coefficient m2 nmi−2

UBD Upper boundary depth m

CM Center mass m

MP Migration proportion %

WMD Weight migration depth m

Chl a Chlorophyll a mg m−3

LAC Light attenuation coefficient m−1

MAT Mesopelagic average temperature ◦C

MAS Mesopelagic average salinity h

MAO Mesopelagic average oxygen µmol kg−1

WP Western part \

TP Transition part \

EP Eastern part \

Klevjer et al., 2016). We used the threshold of −90 dB to identify
DSLs in this study. It was based on agreement with visual
inference and it is suitable according to the results (Netburn
and Koslow, 2015). The upper boundaries and central depth
of the DSLs (UBD and CM) were used to describe the vertical
distribution of micronekton. The UBD was identified by the
method modified from Netburn and Koslow (2015). The CM was
derived for the DSLs using the approach provided by Urmy et al.
(2012) as Equation 5.

CM =
∫ 1000

200 zsv(z)dz∫ 1000
200 sv(z)dz

, (5)

where z represents the depths of layer, and sv (z) is the VBC at
depth z.

The migrating proportion of mesopelagic organisms (MP)
was calculated as the ratio of the difference between daytime
and nighttime NASC (integrated from 200 to 1,000 m, average
over the same day) to mesopelagic daytime NASC values. The
mesopelagic weighted migration depth (WMD) was calculated
as the weighted mean of the difference between daytime and
nighttime mesopelagic NASC and depth in the mesopelagic zone
(modified according to Klevjer et al., 2016).

MP =
sA_day − sA_night

sA_day
, (6)

WMD =

∑i1000m
i200m

(sv_day (i)− sv_night (i)) × depthi∑i1000m
i200m

(sv_day (i)− sv_night (i))
, (7)

where sA_day and sA_night were NASC (integrated from 200 to
1,000 m) at midday and midnight, respectively. i is the layer
number of corresponding depth. sv_day(i) and sv_night(i) were the
VBC at the i layer, at midday and midnight.

Environmental Data Collection and
Processing
A suite of available environmental variables was selected to
explore the environmental associations of DSLs. In this study,
all environmental data were retrieved from public sources. The
autumn average of chlorophyll a (Chl a) data with a 1/12◦
resolution were obtained from the NASA website.1 The autumn
average of the 490-nm light attenuation coefficient (LAC) data
with a 1/12◦ resolution were obtained from the NASA website
(see text footnote 1). The LAC was calculated as Equation 8.

k = −
1

depthx
× ln

(
lightx
light0

)
, (8)

where k is LAC and depthx is a certain depth underwater. lightx
and light0 are the light intensity at the certain depth underwater
and surface light intensity, respectively (Padial and Thomaz,
2008).

The autumn average of the oceanic dissolved oxygen
concentration, temperature and salinity profile data with a 1◦
resolution come from the world oceanic database (WOD2). The
spline interpolation method was used to refine the profile data to
1-m intervals because the raw vertical resolution was not equally
spaced. The mesopelagic (200–1,000 m) average temperature,
salinity, and dissolved oxygen concentrations (MAT, MAS, and
MAO) were calculated to describe the environment in the
mesopelagic zone (Akima, 1974). The environmental data at the
map grid point nearest to the acoustic location were used in
subsequent processing.

Statistical Analysis
A k-means cluster analysis (Legendre and Legendre, 2012) of
environmental variables (LAC, Chl a, MAT, MAO, MAS and
the profile data of dissolved oxygen, salinity, and temperature)
was used to divide the data into different groups. The number
of clusters (k) was selected from a range between two and
five to avoid excessive grouping without ecological significance.
The result of cluster analysis was best when the k was three
(Supplementary Figure 6).

The multiple regressions of DSL and environment (MAO,
MAS, MAT, LAC, and Chl a) were conducted using the lme
function of the mgcv R package (Lindstrom and Bates, 1988).
First, we confirmed that collinearity was not apparent among
the factors using variance inflation factors (VIFs) between
each pair of covariates. The VIF implemented with the “car”
library in R was used to evaluate the level of multicollinearity.
Covariates were considered to be non-collinear when VIFs were
less than 5 (O’brien, 2007; Boswell et al., 2020). The models
were created by removing the high multicollinearity and non-
significant parameters. The MAO and Chl a were ln transformed
to satisfy the linear relationship between explanatory variables
and response variables in the UBD, CM, and WMD models.
Because the MP varied between 0 and 1, the Chl a in the model of
MP was transformed into another nonlinear form. The explained

1https://search.earthdata.nasa.gov
2https://www.ncei.noaa.gov/access/world-ocean-atlas-2018

Frontiers in Marine Science | www.frontiersin.org 4 March 2022 | Volume 9 | Article 782032

https://search.earthdata.nasa.gov
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-782032 March 7, 2022 Time: 13:32 # 5

Song et al. The Spatial Characteristics of DSLs

variation of environmental factors to the dependent variable is
expressed by R2.

RESULTS

Longitudinal Environmental Gradient in
the Tropical Pacific Ocean
The environment varied distinctly along the cruise track.
Figure 2 shows that the mesopelagic region in the western
tropical Pacific Ocean is a warm and oxygen-rich area with low
productivity, while the eastern Pacific Ocean was a cold and
hypoxia area with high productivity. The average mesopelagic
oxygen concentration (MAO, 200–1,000 m) declined from
130 µmol kg−1 in the WP to 10 µmol kg−1 in the EP. The
average mesopelagic temperature (MAT, 200–1,000 m) ranged of
9 to 7◦C across the survey area (Figures 2A,C). The chlorophyll a
concentration (Chl a) was higher in the eastern than the western
tropical Pacific Ocean, varying from 0.15 to 0.03 mg m−3. The
LAC had the same trend as Chl a, ranging from 0.038 to 0.02 m−1

from east to west (Figures 2D,E). Based on the result of cluster
analysis, three environmental regions were identified: the WP
(west of 175◦E), the transition part (TP; from 175◦E to 160◦W),
and the EP (east of 160◦W) (Figure 2F). The chlorophyll a
concentration in the EP was highest (0.072 ± 0.023 mg m−3)
among these three regions. The chlorophyll a concentration
in the TP (0.038 ± 0.005 mg m−3) was lower than that
in the WP (0.040 ± 0.006 mg m−3). The MAO in the TP
(48.2 ± 18.0 µmol kg−1) was intermediate between the WP
(104.9± 14.7 µmol kg−1), and the EP (20.9± 7.4 µmol kg−1).

Spatial Variations of Deep Scattering
Layers and Diel Vertical Migration Along
Longitudinal Gradient
At the trans-Pacific scale, the characteristics of DVM showed
a clear diversity (Figure 3). The DSLs at noon were at depths
between 450 and 750 m. The depths of surface scattering layers
(SSLs) extended to more than 200 m below the surface at night
in the western region (Figure 3A). The UBD became shallower
eastward, but the cores of DSLs tended to diffuse downward
(Figures 3B–D). In the eastern region, the DSLs were located
at depths between 250 and 500 m at noon, and the depth of
SSLs did not exceed the range of 100 m below the surface at
night (Figure 3F).

The vertical distribution of DSLs in three parts (WP, TP,
and EP) is shown in Figure 4. The MP was highest in
the EP (86.7 ± 16.2%, Figure 4D) where the WMD was
shallowest (422.6 ± 80.8 m, Figure 4C). The WMD in the
WP showed maximum depth (571.2 ± 85.5 m) among three
parts (Figure 4C). The profiling data indicated that the DVM
occurred mainly above 600 m and a significant non-migrative
portion existed in the deeper layer (Figure 5). It is notable that
the MP in the TP was minimum (35.2 ± 12.8%, Figure 4D),
and the main body of DSLs was located below 600 m
(Figure 5B). The vertical distribution characteristics of daytime
DSLs along the longitudinal gradient are shown in Figure 6.

The UBD gradually shallowed from 500 to 250 m, from the
western to eastern Pacific Ocean. The CM was shallowest at 320 m
on the eastern side, reached 720 m around 160◦W, then rose
to 500 m westward.

The Response of Deep Scattering Layers
to Environment Gradient
The DSLs in the WP were mainly at the highest oxygen level
(148.1 ± 23.1 µmol kg−1, average dissolved oxygen for 200–
600 m, Figure 5A), which was about nine times as much
as that in the EP (17.1 ± 6.0 µmol kg−1, average dissolved
oxygen for 200–600 m, Figure 5C). In the TP, the main
body of migration was located in a higher oxygen condition
(55.8 ± 28.1 µmol kg−1, average dissolved oxygen for 200–
600 m) than the non-migration area (40.6 ± 8.5 µmol kg−1,
average dissolved oxygen for 600–1,000 m, Figure 5B). In the WP,
the mesopelagic organisms migrated down to the weaker-light
area (0.0007± 0.0003% surface light intensity, Figure 5A), while
the light intensity was significantly higher at the depth of DSLs
in the EP (0.0032 ± 0.0042% surface light intensity, Figure 5C).
Two environmental variables (MAO and Chl a) were selected
for modeling with DSLs and DVM by multicollinearity test
(Supplementary Table 1). Details of the parameters and models
were listed in Table 2; and the relationships between UBD, CM,
WMD and MAO, Chl a were shown in Supplementary Figures
3–5, respectively.

For the UBD, both the MAO and Chl a explain 77% of
the variation (UBD = 65.1 × ln (MAO) − 32.5 × ln (Chl
a) + 26.1, n = 1104, p < 0.001, adj. R2 = 0.77). For the CM,
the only significant explanatory factor was Chl a, explaining
72% of the variation (CM = −114.6 × ln (Chl a) − 224.9,
n = 1104, p < 0.001, adj. R2 = 0.72). The WMD increased with
increasing oxygen concentration, and decreased with increasing
chlorophyll a (WMD = 0.45 × ln (MAO) − 118.7 × ln (Chl
a) + 0.45, n = 63, p < 0.001, adj. R2 = 0.73). Only the Chl
a was significant, explaining about 61% of the variation of MP
(MP = −0.087 × 1 / (Chl a)2

+ 100, n = 63, p < 0.001, adj.
R2 = 0.61) (Figure 7).

DISCUSSION

Longitudinal Environmental Gradient
According to the global biogeochemical classification of
mesopelagic zone, the study area of tropical Pacific Ocean could
be divided into three provinces from the western to the eastern:
Subtropical Gyres Province, Tropical Province, and Subtropical
Province (Reygondeau et al., 2017). According to another global
biogeographic classification of mesopelagic zone, based not
only on physical and biogeochemical data, but also on biome
characteristics, the study area spanned two provinces: Northern
Central Pacific Province and Eastern Tropical Pacific Province
(Sutton et al., 2017). Both indicated the existence of significant
large-scale environmental gradients. In the present study, this
longitudinal environmental gradient was also confirmed. In
addition, considering the continuous variation in the marine
environment, this study also identifies a broad transition zone.

Frontiers in Marine Science | www.frontiersin.org 5 March 2022 | Volume 9 | Article 782032

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-782032 March 7, 2022 Time: 13:32 # 6

Song et al. The Spatial Characteristics of DSLs

FIGURE 2 | Environmental conditions in study area. (A–C) Profiles of temperature (◦C), salinity (h), and oxygen concentration (µmol kg-1) in acoustic transects
along a longitudinal gradient. (D,E) Maps of chlorophyll a concentration and 490-nm light attenuation coefficient (LAC, m-1). (F) The result of k-means cluster
analysis by environmental variables. Black, the western part (WP); green, the transition part (TP); red, the eastern part (EP).
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FIGURE 3 | Echograms at 38 kHz across the tropical Pacific Ocean. The positions of examples are marked as triangles in the topographic map. The echograms
show the spatial variation of DSLs, SSLs, and pattern of DVM from the western to the eastern tropical Pacific Ocean (A–F). Each echogram spans a 24-h period.
The lower threshold was –90 dB. The ship-track was marked as black lines.

The primary cause of this longitudinal environmental gradient
in Pacific Ocean is biological oceanographic and biogeochemical
mechanisms controlled by physical oceanographic differences,
such as seasonal variation of mixed layer depth and transport

of water masses (Amos et al., 2019; Diaz et al., 2021), but this
environmental gradient is further reinforced by subtle biological
processes, such as basin-scale distribution of nitrogen-fixing
organisms (Cheung et al., 2020).
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FIGURE 4 | Box plots of the features of DSLs and DVMs, showing the differences among three parts. (A), UBD (m); (B), CM (m); (C) WMD (m); and (D), MP (%).

FIGURE 5 | Vertical distribution of backscatter and environmental features. (A) Western part; (B) transition part; and (C) eastern part. Red lines showed the average
midday-time profiles (10:00–14:00), red shadows were the range of standard deviations. Black lines showed the average midnight-time profiles (22:00–next day
2:00), gray shadows were the range of standard deviations. Yellow shadows represent the remaining light intensity (%) down to the WMD. Blue shadow in each grid
represented the average oxygen concentration (µmol kg-1; upper, 50–200 m; middle, 200–600 m; lower, 600–1000 m). The value (means ± SD) of environmental
variable in each grid was also added.
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FIGURE 6 | The vertical distribution of DSLs in daytime along the longitudinal
gradient. The dots showed the UBD (red dots) and CM (black dots).

TABLE 2 | Details of models, and variables used in models.

Response variables Explanatory variables Estimates Adj. R2

UBD
ln (MAO) 65.1***

0.77***
ln (Chl a) −32.5***

CM ln (Chl a) −114.6*** 0.72***

WMD
ln (MAO) 0.45**

0.73***
ln (Chl a) −118.7***

MP 1/ (Chl a)2 −0.087*** 0.61***

p-Value of each predictor are given as: **p < 0.01; ***p < 0.001.

Spatial Variations of Deep Scattering
Layers and Diel Vertical Migration Along
Longitudinal Gradient in the Tropical
Pacific Ocean
The mesopelagic community can be divided into two groups
by their habitat and behavior: migrating organisms and non-
migrating organisms (Salvanes and Kristoffersen, 2001; Bianchi
and Mislan, 2016). These mesopelagic organisms have taxon-
specific migration patterns and habitat depths, which result
in significant spatial heterogeneity in the characteristics of
DSLs. In a previous global-scale study, four DVM patterns
were identified according to geographic regions: Atlantic Ocean,
Indian Ocean, western and eastern Pacific Ocean (Klevjer et al.,
2016). However, all these geographical DVM patterns were found
in the present study. For example, the North Atlantic pattern,
which was charactered by the DSLs with 400–600 m depth
and smaller proportion of migrating mesopelagic organisms,
was similar to the Figure 3A in the present study. The West
Pacific pattern, which was charactered by the DSLs with 400–
600 m depth and strong stratification of migrating and non-
migrating organisms, was similar to the Figure 3D in the present
study. The Indian pattern, which was charactered by the deeper
DSLs with over 600 m depth, was similar to the Figure 3C in
the present study. While the East Pacific pattern, which was
charactered by the shallower DSLs with 200–500 m and larger

proportion of migrating mesopelagic organisms, was similar to
the Figure 3F in the present study (Bianchi et al., 2013; Netburn
and Koslow, 2015; Bianchi and Mislan, 2016; Klevjer et al., 2016).
This suggested that the spatial heterogeneity pattern of DVM
was not as stable as previously thought and it was probably
not reasonable to classify different distribution patterns based
entirely on geographical distribution.

The composition of biome usually varies greatly under
different environmental conditions (Whittaker et al., 1973; Dar
et al., 2014). Although environmental conditions are more stable
in the tropical open ocean than those in the coastal or offshore
ecosystems, changes in dominant species with water mass
may still exist on basin scale (Borgne et al., 2003; Christophe
et al., 2015). The migratory mesopelagic fish includes only
eight families (Myctophidae, Argentinidae, Sternoptychidae,
Astronesthidae, Gonostomatidae, Melanostomiatidae,
Stomiatidae, and Chauliodontidae) (Polis et al., 1997; Salvanes
and Kristoffersen, 2001; Benoit-Bird and Lawson, 2016). In the
tropical and subtropical waters, Myctophidae, Gonostomatidae,
and Phosichthydae comprise most of the total catch, but the
composition was various in different water masses (Brodeur and
Yamamura, 2005). The dominant species in the western tropical
Pacific Ocean was Myctophids (Gjøsaeter and Kawaguchi, 1980;
Hidaka et al., 2001). The Myctophids, a group of migratory fish
with swimming blabber, were also dominant in the biomass of
mesopelagic community in the subtropical California Current
system; while the Gonostomatidae were dominant in abundance
(Davison et al., 2015). The DVM can be divided into three
patterns based on environmental subregions in this study
(Figures 2F, 5). From the migration proportion, it indicates
that micronekton in the EP are almost entirely migrating
species and the DSLs in the TP mainly consist of non-migrating
species. Thus, although no net-collected sample was obtained
in this study, the spatial heterogeneity of DSLs suggested that
there was likely to be a longitudinal variation in mesopelagic
community structure.

The Effect of Oxygen and Chlorophyll a
on the Deep Scattering Layers and Diel
Vertical Migration
The potential driving factors (such as primary production,
dissolved oxygen, light intensity, temperature, and predation
pressure) on the distribution of mesopelagic community and
DSLs had been discussed in many previous studies (Pearre,
2003; Steinberg et al., 2008; Phillips et al., 2009; Staby et al.,
2012; Escobar-Flores et al., 2013; Irigoien et al., 2014; Klevjer
et al., 2016; Aksnes et al., 2017). These results suggested that the
driving factors varied with the study scale and environmental
background. In the present study, the dominant influencing
factors were dissolved oxygen and chlorophyll concentration.
We considered that this well reflected a trade-off between stress
avoidance and energy intake.

Dissolved Oxygen
In this study, the mesopelagic zone (200–1,000 m) was divided
into two parts according to the scattering vertical distribution
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FIGURE 7 | The relationship between MP and Chl a concentration along the ship-track in study area. A regression line was added.

at midday and midnight: the migrated part (200–600 m)
and the stable part (600–1,000 m) (Figure 5). The DSLs of
the EP are located where the dissolved oxygen was lowest
in the study area (Figure 5C). The oxygen concentration is
lower than the threshold (23 µmol kg−1), which probably
limits the depth of DSLs in the California Current ecosystem
(Netburn and Koslow, 2015). The DSLs are also mainly in
the lower oxygen concentration region of the TP (Figure 5B).
Considering the strong adaptation of micronekton to low
oxygen conditions, this suggests that the micronekton may not
select the higher oxygen condition as their shelter just because
of metabolism constraints (Salvanes and Kristoffersen, 2001).
However, dissolved oxygen can influence the depth of DVM
in another way. As the results of the models show, the MAO
influenced the UBD and WMD significantly. The UBD and
WMD, which are both related to the DVM, represent the upper
limit and center mass of DVM in our study. We assume that
the oxygen drives the behavior of migratory micronekton by
influencing the depth of predators. Tuna, the main fishery
resource in the tropical Pacific Ocean, is the main predator
of micronekton (Coull, 1993; Stramma et al., 2011; Macdonald
et al., 2019; Moore et al., 2020; Post and Squires, 2020;
Azmi and Hanich, 2021). They are more sensitive to oxygen
concentration (>160 µmol kg−1) than micronekton due to
the high oxygen consumption of their high-speed movement
(Ingham et al., 1977; Cayré, 1991; Prince and Goodyear, 2006).
Thus, a rise in dissolved oxygen concentration will increase the
diving depth of predators, driving the micronekton migrating
into deeper water.

Chlorophyll a
Chlorophyll a concentration is a good indicator of phytoplankton
biomass in the open sea. Previous studies have well illustrated
that the chlorophyll a concentration is closely related to primary
productivity, and determines the biomass of micronekton based
on bottom-up control mechanism (Shen and Shi, 2002; Escobar-
Flores et al., 2013; Irigoien et al., 2014). Here, we proposed

two other potential mechanisms for the effect of chlorophyll
concentration on DSLs.

The first potential mechanism is about light attenuation
by phytoplankton in water column. The phytoplankton is an
important absorber of light in the water column (Stedmon and
Nelson, 2015; Oestreich et al., 2016). There was a significant
positive linear relationship between Chl a concentration and LAC
in the study area (Figures 2D,E and Supplementary Figure 1).
The transmission of light in water is poor. Generally, light loses
99% of its energy when it reaches mesopelagic zone (Phinney
and Yentsch, 1986; Meadows and Campbell, 1993). Migratory
mesopelagic fish have evolved an extraordinary sense of sight
with large eyes and sensitive pure-rod retina (Salvanes and
Kristoffersen, 2001). Non-migratory organisms do not have these
characteristics. The visual threshold of predators is about 100
times higher than that of micronekton (Aksnes et al., 2017). Thus,
there is a fitness advantage for micronekton to dive deeper during
the day to avoid vision-dependent predators in more transparent
environment (lower chlorophyll concentration).

The second potential mechanism is about lower energy
demand of non-migratory organisms under poor food
conditions. Since the metabolic rate of migratory organisms
is always much higher than that of non-migratory organisms,
the food demands of the former are significantly higher than
those of the latter (Salvanes and Kristoffersen, 2001). This
means that the migrating proportion of DSLs decreases in
more oligotrophic environment, where species with high energy
demands are restricted. In the present study, a significant positive
relationship between MP and Chl a concentration well supported
this hypothesis.

The Potential Change of Deep Scattering
Layers and Mesopelagic Community
Under Global Warming
Unlike occasional oceanographic disturbances, ocean warming
is a long-term global process (Urmy and Horne, 2016). Ocean
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warming caused by global climate change will likely lead to
ocean deoxygenation and ocean acidification (Reid et al., 2008;
Stramma et al., 2008). Primary productivity has been predicted
to decline in the tropical Pacific Ocean (Steinacher et al., 2010).
These changes will modify the structure of marine ecosystems
and their geochemical cycles (Karl, 1999; Jennings et al., 2008;
Keeling et al., 2010; Pecl et al., 2017). On the one hand,
previous studies predicated that the DSLs would be shallower
because of ocean warming or ocean deoxygenation (Netburn
and Koslow, 2015; Proud et al., 2017). On the other hand, the
biomass of mesopelagic organisms would decrease with primary
productivity (Steinacher et al., 2010; Irigoien et al., 2014). In
the present study, we found that the migration proportion of
mesopelagic organisms was positively related with chlorophyll a
concentration in tropical Pacific Ocean, which is the third aspect
of significant influence. Combining the result of previous studies
and the findings of this study, it implied that declined biomass,
shallower habituating depths, and lower migration proportion
of mesopelagic animals under more extremely oligotrophic
conditions with global change in future, which would reduce the
active carbon flux (Anderson et al., 2019) and hinder food supply
to deep-sea biological communities in the tropical Pacific Ocean
(Ruhl and Smith, 2004).

The Limitation of This Study
A single frequency equipment at 38 kHz was used in this study,
and it provided a remote view of the distribution of organisms
in water. It should be considered that the acoustic intensity
of object varies with the acoustic properties of organisms (the
size and shape of body, the existence of swim bladder and
shell), when the biomass of mesopelagic organisms was evaluated
(Benoit-Bird and Lawson, 2016). Thus, the net collection of
micronekton is valuable for this research. In our study, no
samples were collected by net to measure the actual target
strength unfortunately. However, it has been evident that acoustic
survey method based on 38 kHz is effective in describing the
population characteristics of micronekton and sound-scattering
layers at large scale (Irigoien et al., 2014; Béhagle et al., 2016;
Klevjer et al., 2016; Aksnes et al., 2017). More trawl surveys are
still needed to analyze the longitudinal variations of micronekton
community structure.

CONCLUSION

In this study, strong longitudinal variations of DSLs and DVM
along the environment gradient across the tropical Pacific
Ocean were found. The associations among the bio-acoustic
and environmental variables suggested that the dissolved oxygen

and light were the key factors to influence the depth of DSLs
and migration. Since higher demand of most predators of
mesopelagic animals for dissolved oxygen and light intensity,
the limitations of predator behavior by environmental conditions
might explain the observed spatial heterogeneity of DSLs.
Combining the previous results and the findings of this study, it
implied that declined biomass, shallower habituating depths, and
lower migration proportion of mesopelagic animals under more
extremely oligotrophic conditions with global change in future,
would reduce the active carbon flux and hinder food supply to
deep-sea biological communities in the tropical Pacific Ocean.
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