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Marine predators recovering from historic, commercial, over-harvesting can create
conservation challenges when they prey on vulnerable species. Pinniped predation of
seabirds presents one such challenge and identifying the source colonies experiencing
seal predation are needed to inform conservation management and decision planning.
Here, we present a novel application of stable isotope and trace element techniques to
identify the source colony of little penguins (Eudyptula minor) predated by long-nosed fur
seals (Arctocephalus forsteri). We created baseline biochemical ‘feather-prints’ from
feathers for six major breeding colonies across south-east Australia to compare with
feathers from predated penguins recovered from seal scats. Feeding trials of captive seals
confirmed that digestion of penguin feathers did not compromise stable isotope (d13C and
d15N) or trace element (Al, Ti, Sr and Mg) signatures. The resulting biochemical ‘feather-
prints’ were found to be robust in being correctly classified to local sites (78%) and
broader regions (85%). The distinguishing ‘feather-prints’ appeared to be driven by
industrial inputs from land, colony-specific foraging patterns and potentially proximity to
oceanographic systems (i.e. upwelling). Here, we show that 46-70% of predated feathers
were assigned to ‘local’ penguin colonies. We consider that the regional penguin
abundances and the proximity of their colonies to seal sites, as well as demographic-
specific foraging patterns may shape their contribution to seal diet at local, regional and
inter-regional scales. This diagnostic tool is powerful, having broad applications identifying
seabird colonies at greatest risk to pinniped predation and informing targeted, site-
specific, conservation effort.

Keywords: wildlife conflict management, predator-prey interaction, feathers, stable isotope analysis, trace element
analysis, little penguin Eudyptula minor, long-nosed fur seal, Arctocephalus forsteri
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INTRODUCTION

Many pinniped populations are undergoing sustained growth
after being heavily depleted by commercial harvest between the
late 1800s and early 1900s (Ling, 1999; Magera et al., 2013;
Roman et al., 2015; Goldsworthy et al., 2019b). Whilst the
resurgence of these top-predators represent significant
conservation outcomes and are to be celebrated, they come
with new challenges in understanding the importance of
healthy predator populations in restoring ecosystem function
and their top-down effects on their prey, including seabirds
(Marshall et al., 2016). The effect of higher trophic predators
(such as pinnipeds and other marine mammals) on the
behaviour, distribution or abundance of their prey is also
influenced by how vulnerable the prey species are to other
natural or anthropogenic threats (Hunter and Price, 1992;
Matson and Hunter, 1992; Hunt Jr et al., 2002). Seabirds are
considered the most threatened group of birds in the world,
experiencing natural and anthropogenic stressors in both their
terrestrial and marine environments (Croxall et al., 2012; Dias
et al., 2019) with populations globally declining by >70% since
1950 (Paleczny et al., 2015). Penguins (family Spheniscidae)
provide a prime example of physiologically unique (flightless)
seabirds vulnerable to both terrestrial and marine predation
(Xavier and Trathan, 2020), with 10 of the 18 recognized
penguin species listed as either vulnerable or endangered on
the ICUN Red List 2021. At the lowest end of the penguin size
range, little penguins (Eudyptula minor), averaging 30 cm in
length and 1 kg in body mass, have a slower swimming speed
than other penguin species (Bethge et al., 1997), potentially
increasing their vulnerability to seal predation. Little penguins
also share a sympatric breeding distribution with the long-nosed
fur seal (Arctocephalus forsteri); co-occurring on offshore islands
from the southwest coast of Western Australia, across the
southern coast (including Tasmania) and up the eastern coast
of mainland Australia (as far north as South Solitary Island), and
on to New Zealand and the Chatham Islands (Marchant and
Higgins, 1990) where penguins also breed.

Recent population declines in little penguins (hereafter
penguin), a component of the long-nosed fur seal diet, has
exacerbated social tensions around the recovery of the native
long-nosed fur seal. Ancestral A. forsteri established populations
on New Zealand and Australian coasts in the last million years
(Kirkwood and Goldsworthy, 2013). Also known as the New
Zealand fur seal, we prefer to use the vernacular name ‘long-
nosed fur seal’ in Australia, as fishers and other community
sectors argue incorrectly that the long-nosed fur seal is not native
to Australia (Shaughnessy et al., 2015). In the last 2-3 decades,
the population size of this species across south-eastern Australia
(New South Wales – Tasmania) has been increasing
(Shaughnessy et al., 2015; S. Reinhold et al., unpubl. data).
Misperceptions of the ‘introduced’ status of long-nosed fur
seals have in-part driven calls to cull this native top predator
in Australia.

Predation of seabirds occurs amongst many seal species
(Antarctic fur seals (Arctocephalus gazella): (Visser et al., 2008);
Cape fur seals (Arctocephalus pusillus): (Du Toit et al., 2004);
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leopard seals (Hydrurga leptonyx): (Ainley et al., 2005); South
American sea lions (Otaria flavescens): (Rey et al., 2012); New
Zealand sea lions (Phocarctos hookeri): (Morrison et al., 2016),
and long-nosed fur seals (Page et al., 2005). In South Australia,
penguin remains have been detected in 0-40% of long-nosed fur
seal scats (Page et al., 2005; Goldsworthy et al., 2019a) with the
variance attributed to potential differences in site-specific and age-
class related predation patterns. In 2006-08, 30% of long-nosed
fur seal scats from Kanowna Island, in Central Bass Strait,
Victoria, showed evidence of penguin predation (Hoskins et al.,
2017). Recently, however, seven hot spots of penguin predation
(>30% of scats with penguin remains) have been detected across
south-eastern Australia, four of which occur in Bass Strait
(S. Reinhold et al., unpubl. data).

Bass Strait, the shallow continental shelf area between
mainland Australia and Tasmania, is a key region for
Australian seabirds, supporting a large proportion of breeding
populations of at least 11 species (Ross et al., 1995), including
82% of Australia’s little penguin population. On a global scale,
this marine area is considered a region of low primary
productivity (Gibbs et al., 1986; Gibbs et al., 1991) that occurs
at the confluence of three main ocean currents; the East
Australian Current (EAC), South Australian Current (SAC)
and sub-Antarctic surface water (SASW). The latter two
represent key sources of primary productivity, as do the
Bonney Upwelling and west Tasmanian upwelling that disperse
nutrient rich water into west Bass Strait (Middleton et al., 2007;
Middleton and Bye, 2007; Kämpf, 2015).

In Bass Strait, during pre-moult, foraging adult penguins
undertake an intensive foraging bout that lasts approximately
three weeks – likely accessing prey in nutrient rich waters (i.e.
areas of upwelling). This pre-moult foraging period is critical for
adult penguins to increase their body mass to sustain the
upcoming three week period of fasting during moult (Gales
et al., 1988). Post-moult foraging also entails an extended
offshore foraging period that serves to re-plenish fasting
penguins in the lead up to the breeding season (McCutcheon
et al., 2011). Consequently, moulted penguin feathers retain the
biochemical signatures of the environmental conditions (i.e.
different sources of primary production) and anthropogenic
contaminants, also described as bottom-up influences,
experienced by penguins during the pre-moult foraging period
(Hobson and Clark, 1992; Finger et al., 2015; Kowalczyk et al.,
2015). In St Kilda (Port Phillip Bay, Victoria) for example, trace
metal concentrations in penguin feathers have been linked to
varying levels of industrialisation adjacent to penguin foraging
zones (Finger et al., 2015). Similarly, stable carbon isotopes
(d13C) from penguin feathers have been used to provide
insight into the relative contributions of different production
sources in a trophic network (Hobson et al., 1994; Cherel and
Hobson, 2007). By contrast, nitrogen (d15N) serves as an
indicator of consumer trophic position (Vanderklift and
Ponsard, 2003). Combined, trace element and stable isotope
signatures in feathers therefore provide a biochemical map of
bottom-up factors (toxicants, primary productivity and trophic
positioning) for penguins using different pre-moult foraging
zones. Hence, the potential exists to compare between penguin
March 2022 | Volume 9 | Article 813106
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feathers recovered from long-nosed fur seal scats and moulted
penguin feathers (Fromant et al., 2020). Complimentary to the
highly synchronised life stages of penguins across Bass Strait, the
different levels of coastal industrialisation and sources of primary
productivity entering this system (EAC in the east and Antarctic
upwelling in the west) (Gibbs et al., 1986; Gibbs et al., 1991),
suggest that Bass Strait may be a good candidate for detecting
biochemical variation (in feathers) between penguin colonies
using different pre-moult foraging zones.

Feathers have been consistently recovered from long-nosed
fur seal scats where penguin predation occurs. In terrestrial
systems, predator-prey relationships have successfully been
explored using stable isotope signatures from the hair of wild
deer, compared to the deer hair retrieved from the scats of wolves
where their ranges overlap (Derbridge et al., 2012). Similarly, we
aim to develop biochemical techniques that can identify the
source colony of predated penguin feathers recovered from long-
nosed fur seal scats. Using a combination of stable isotope and
trace element techniques, this research aims to (1) develop a
biochemical map as a baseline of ‘feather-prints’ – using moulted
feathers from penguin colonies across Western, Central and
Eastern Bass Strait and Port Phillip Bay, (2) use these ‘feather-
prints’ to determine the scale of differentiation as either colony or
region specific (or both), and (3)use the baseline ‘feather-prints’
to infer the source colony and/or region of predated feathers in
long-nosed fur seal scats.
Frontiers in Marine Science | www.frontiersin.org 3
MATERIALS AND METHODS

Sample Collection
Every year, between November and March, adult penguins in
Bass Strait experience three, highly synchronised, life stages in
the lead up to the breeding season; (1) pre-moult foraging (Nov-
Jan), (2) a catastrophic moult during which all feathers are shed
while individuals are on land (Feb-March), and (3) post-moult
foraging (March-April) (Reilly and Cullen, 1981). We collected
moulted feathers from penguin colonies across four regions;
Western (Cape Nelson and Deen Maar Island), Central (Phillip
Island, Kanowna Island and Rabbit Island) and Eastern Bass
Strait (Gabo Island), and Port Phillip Bay (St. Kilda) to inform
baseline biochemical ‘feather-prints’ (Figure 1 and Table 1).
Kanowna and Gabo Island feathers were opportunistically
collected from satellite tracking retrieval procedures (feathers
remaining on water-proof tape used to attach GPS data loggers
were collected - separate study), whilst moulted feathers were
collected for the other four sites. Trace element and stable isotope
concentrations circulating in the blood at the time of moult are
thought to be a combination of what has been consumed in the
weeks of pre-moult feeding and a remobilisation of chemical
sequestration from internal tissues (Furness et al., 1986; Bearhop
et al., 2000). The blood supply to feathers ceases after formation
of the new feathers. Therefore, the data presented from feathers
moulted in 2019 are an indication of 2018/19 pre-moult foraging
FIGURE 1 | Simplified representation of the four sampling regions and the major water masses influencing those regions. Western Bass Strait (WBS); Port Phillip
Bay (PPB); Central Bass Strait (CBS); Eastern Bass Strait (EBS); Cape Bridgewater (CB); Deen Maar Island (DM); St. Kilda (SK); Phillip Island (PI); Kanowna Island
(KN); Rabbit Island (RI); Gabo Island (GB); South Australian Current (SAC); Sub-Antarctic Surface Water (SASW); and East Australian Current (EAC) from Sandery
and Kämpf (2007). Circles indicate sampled penguin colonies, squares represent sample sites of scats of long-nosed fur seals and squares with circles represent
locations where both species co-exist. The solid line indicates the location of the 300m isobath.
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at all sites (Figure 2 and Table 1). Between October and
November 2018, we randomly sampled fresh scats from three
long-nosed fur seal sites across northern Bass Strait (Table 1).
Feathers are metabolically inert after formation and, hence,
penguin feathers retrieved from long-nosed fur seal scats
collected between April 2018 and up to February 2019 reflect
the biochemical signatures of pre-moult foraging of penguins
during 2018 (Figure 2). Overall, penguin feathers were evident in
37 scats; Cape Bridgewater (Western Bass Strait) (n=11),
Kanowna Island (Central Bass Strait) (n=10) and Gabo Island
(Eastern Bass Strait) (n=16).

Feeding Trial
To investigate the biochemical effect of digestion on penguin
feathers and subsequent comparability between moulted and scat
feathers, three feeding trials were undertaken at Melbourne Zoo,
between August and November 2018. Three long-nosed fur seals
(n = 1 female, n = 3 male) and one Australian fur seal (female;
Arctocephalus pusillus doriferus) were fed fish tightly stuffed with
little penguin feathers (approx. 50g) from two penguin carcasses
from Phillip Island that died naturally as a result of heat stress.
Feeding occurred between 0900-1000 h on three separate
occasions (a minimum of 10 days apart). Scats were then
collected daily for 72 h and frozen at -20°C until analysed.
Samples were soaked in warm water in individual plastic
containers for at least 24 h and washed with tap water through
Frontiers in Marine Science | www.frontiersin.org 4
a nested 1.0 mm sieve to extract digested feathers. Undigested
feathers were also collected from the two penguin carcasses and
used as a control for comparison to digested feathers. Due to
sample size limitations, feathers originating from one carcass
were used for trace element signature comparisons between
digested and undigested feathers. Feathers from both penguin
carcasses were utilised for stable isotope comparisons.

Sample Processing
The laboratory procedures described below were used to
determine stable isotope and trace element signatures in
penguin feathers recovered from the feeding trial, moulted
feathers and predated feathers from long-nosed fur seal
scats (Table 1).

Stable Isotope Analyses
We cleaned penguin feathers in 5ml teflon vials containing 2:1
chloroform:methanol solution (5 ml) using a sonic bath with
vials immersed in water for 2 minutes. Two successive methanol
rinses using the sonic bath (2 min per rinse) followed initial
cleaning (Cherel et al., 2014). Feathers were then oven dried
(60°C) for 48 hours and cut into small fragments. We packed
~0.4mg of feathers into pre-combusted tin capsules (Elemental
Microanalysis 9x5mm C10-042) and determined carbon (13C/
12C, d13C and nitrogen (15N/14N, d15N isotope ratios using a
continuous flow ratio mass spectrometer (Nu Horizon,
TABLE 1 | Collection locations, seasons and sample sizes for Moulted Feathers (MF) and Scat Feathers (SF) retrieved from little penguin colonies and scats of long-
nosed fur seals respectively.

Region of sample Site Lat, Lon Sample Time sampled Feathers sampled (n)

Western Bass Strait Cape Bridgewater - 38.3956, 141.4065 SF Nov-Dec 2018 11
Cape Nelson -38.4042, 141.5615 MF March 2019 7
Deen Maar Island -38.4161, 142.0038 MF March 2019 7

Pt. Phillip Bay St. Kilda - 37.5101, 144.5762 MF March 2019 14
Central Bass Strait Phillip Island -38.5111, 145.1496 MF Feb-March 2019 14

Kanowna Island -39.1548, 146.3104 SF Oct-Dec 2018 10
Kanowna Island -39.1548, 146.3104 MF Oct-Dec 2018 14
Rabbit Island -38.9111, 140.50937 MF March 2019 14

Eastern Bass Strait Gabo Island -37.5649, 149.9133 SF Oct-Dec 2018 16
Gabo Island -37.5649, 149.9133 MF Oct-Dec 2018 14
March 2022 | Vo
FIGURE 2 | Foraging and moult phenology of little penguins in Bass Strait. Blocks with horizontal lines correspond to the 2017 and 2018 pre-moult foraging
signatures of feathers. Yellow and orange shaded blocks correspond to the sampling periods of seal scats and moulted penguin feathers respectively.
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Wrexham, UK) coupled to an elemental analyser (EA3000,
EuroVector, Pavia, Italy). Isotopic results are presented in
d notation relative to Vienna PeeDee Belemnite and the
atmospheric abundance for d13C and d15N, respectively
(Coplen et al., 2006).

All samples where corrected for instrument drift and
normalized according to reference values using in-house
standards (n=25); glycine -31.2‰, glutamic acid -16.72‰ &
triphenylamine (TPA) -29.2‰ calibrated against USGS and
IAEA certified reference materials (USGS40, USGS 41, IAEA-2).

Trace Element Analysis
Penguin feathers were vigorously washed in Milli-Q water three
times and then oven-dried at 45°C for 48 h with a resulting dry
weight (dw) range of 1.9 – 5.4 mg dw (Finger et al., 2015). Whole
feathers were initially digested in an aqua regia solution made up
of (2.7ml 70% nitric acid (RCI Premium, ACI Labscan) and
0.3ml 37% hydrochloric acid (NORMAPURE, VWR
CHEMICALS Analar) at 95°C for 12 h. Samples were then re-
digested using 0.03 ml 69% nitric acid and diluted with Milli- Q
water to a final volume of 3 mL (2% nitric concentration and
~1000ppb dilution). Feathers were assessed for concentrations of
Lithium (Li), Boron (B), sodium (Na), magnesium (Mg),
aluminium (Al), potassium (K), calcium (Ca), titanium (Ti),
vanadium (V), cromium (Cr), manganese (Mn), iron (Fe), cobalt
(Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium
(Se), strontium (Sr), cadmium (Cd), tin (Sn), antimony (Sb),
barium (Ba), lead (Pb), and bismuth (Bi). Feathers were analysed
at Adelaide Microscopy, University of Adelaide, with an Agilent
8900x ICP-MS/MS and limit of detection of 0.01 mg/kg. Trace
elements Li, Cr, Ni, As, Cd, Sn, Sb, Pb and Bi were below the limit
of detection (0.01 mg/kg) and therefore excluded from further
analysis. Elements B, Na, Mg, Al, K, Fe, Sr, Se, Ti, V, Mn, Co and
Ba exceeded the detection limits of the ICP-MS/MS for 100% of
samples. A minimum offive procedural blanks were analysed per
60 samples and all results reported as mg/kg dry weight (dw).
External machine precision (i.e. machine drift) was assessed by
measuring 100ppb standards every 10 samples in the absence of
Standard Reference Materials (SRM) for feather tissues.

Statistical Analyses
Feeding trial analysis of digested and undigested feathers were
prioritised above the broader analysis of moulted and scat
feathers to inform their biochemical comparability.

Feeding Trial
To determine whether long-nosed fur seal digestion altered the
feather biochemical signatures, we performed paired t-tests for
the undigested and digested feathers, for each stable isotope
(d13C and d15N) and trace element (B, Na, Mg, Al, K, Fe, Sr, Se,
Sn, Ti, V, Mn, Co and Ba) detected. Significance was taken to be
p<0.05 for all statistical analyses.

Moulted and Scat Feathers
Normality of distribution for each element and stable isotope was
tested using the Shapiro Wilk test. Parametric assumptions were
violated for Mg and d15N regardless of transformation type.
Frontiers in Marine Science | www.frontiersin.org 5
Therefore, to apply a consistent statistical approach to all
elements and stable isotopes for multivariate analyses, non-
parametric tests were used. Biochemical signatures were
compared between sites using a two-factor PERMANOVA
design for each element and isotope individually and then all
signatures combined (Anderson, 2001). Data were normalised
prior to constructing resemblance matrices based on Euclidean
distance dissimilarity and analysed using unrestricted
permutation with 9999 random repeats. No significant
differences were detected between the two sites sampled in
Western Bass Strait, Deen Maar Island and Cape Nelson. Due
to the close proximity of the sites and uniform Western Bass
Strait regional representation, the seven samples from each site
were pooled for comparison to the remaining five sites. Boxplots
were used to display the median and lower (Q1) and upper (Q3)
quartiles for each trace element and stable isotope per site.
Outliers in the multivariate baseline data were identified using
Principle Component Analysis (PCA) and feathers that were
beyond a 95% confidence ellipse were excluded from further
analysis (Figure S1). Multivariate data were then reduced to two-
dimensions and visualized using canonical analysis of principal
coordinates (CAP) (Anderson and Willis, 2003). Canonical axes
(CAP1 and CAP2) represent linear combinations of the
orthonormal principal coordinate axes that best discriminate
feather biochemistry by site or region. Vector diagrams in each
canonical plot show the influence of individual elements and
stable isotopes to sample positioning in multivariate space. The
relative length and direction of each vector correspond to its
discriminatory ability.

Signatures of feathers collected from scats were added to the
CAP plot as unknown samples and leave-one-out cross
validation was used to classify a source colony based on the
multi-elemental signals of each scat feather sample. Accurate
source colony allocations of scat feathers relies on the
assumption that all possible colony sources across Bass Strait
and Port Phillip Bay have been included in the baseline data set
(Campana, 1999). All statistical analyses were executed using R
version 4.2.3 (R Core Team, 2020) and PRIMER (v. 7.0.13;
Auckland, NZ).
RESULTS

Feeding Trial
No significant variation was detected among stable isotope
signatures between undigested and digested feathers, from two
penguin carcasses; d13C (n = 3, t = 1.47 df = 2, P = 0.28), (n = 6,
t = 0.74, df = 5, P = 0.49), and d15N (n = 3, t = 0.63, df = 2,
P = 0.59), (n = 6, t = 0.92, df = 5, P = 0.40) (Figure 3).
Comparison of undigested and digested feathers from one
carcass also yielded similar means for trace elements Mg (t =
-0.70 df = 6, P = 0.51), Al (t = -0.72 df = 6, P = 0.50), Ti (t = 0.94
df = 6, P = 0.38), Sr (t = 0.05 df = 6, P = 0.96) (Figure 4).
However, we did detect a significant difference (P < 0.05 for each)
in B, Na, Fe, Cu, Zn, Se, V and Mn between undigested and
digested feathers and we therefore excluded these from further
analyses of penguin colony or seal scat feathers.
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Penguin Baseline ‘Feather-Prints’
Individual Chemistry Signatures
Trace element and stable isotope concentrations isolated for
comparison with scat feathers for the six penguin locations
sampled across four regions (Western, Central and Eastern
Bass Strait, and Port Phillip Bay) are shown in the
supplementary materials (Table S1). One-way MANOVA
Frontiers in Marine Science | www.frontiersin.org 6
detected a significant difference in the distribution of mean
stable isotope values and trace element concentrations in
moulted feathers at both regional and site scales. Mean Ti
concentrations in feathers showed the greatest difference
between Western Bass Strait and other regions, with feathers
containing on average 3.1, 5.4, and 8.3 times more Ti than
feathers from Port Phillip Bay, Central and Eastern Bass Strait
FIGURE 4 | Comparison of concentrations of trace elements Al, Ti, Mg and Sr (mg/kg dry weight) of undigested (n = 7) and digested (n = 7) feathers from carcass
of n = 1 little penguin. Box plots display median values with box edges representing lower (Q1) and upper (Q3) quartiles, defined as the 25th and 75th percentiles,
whiskers representing variability outside the upper and lower quartiles and dots representing outliers.
FIGURE 3 | Comparison of d13C and d15N signatures for undigested (penguin 1 n= 6, penguin 2 n=6) and digested (penguin 1 n= 3, penguin 2 n=3) feathers of little
penguins consumed by captive Australian and long-nosed fur seals.
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respectively. Similar mean Al concentrations were detected for
feathers from Western Bass Strait sites and Port Phillip Bay
(p = 0.52) with both regions demonstrating a minimum of Al
levels two-fold higher than Central and Eastern Bass Strait sites
(Figure 5). Western Bass Strait demonstrated similar Sr
concentrations to all regions (p >0.05 for all) but significantly
different Mg concentrations at a regional scale (p <0.05 for all).
Port Phillip Bay d15N and d13C values differed significantly to all
other regions (p = 0.00 for all) (Figure S1, S2), whilst regionally
Western, Central and Eastern Bass Strait resulted in statistically
similar values for both stable isotopes (p >0.05 for all). At a site
level, Kanowna Island d15N values differed significantly to all
sites (all p <0.05) with the exception of Gabo Island (p = 0.06).
For d13C, Kanowna and Rabbit Island also differed (p = 0.00) but
all other sites resulted in statistically similar values when
compared to one another across the three Bass Strait regions
(p >0.05 for all).

Multivariate Results
There was considerable variation in the elemental concentrations
and stable isotope values in baseline feathers that resulted in
biochemical differentiation at both regional and site-specific
scales (Figure 6). With the exception of three feathers (1 per
site; Deen Maar, Rabbit Island and Gabo Island), PCO analysis
resulted in the distribution of all baseline feathers within the 95%
confidence ellipse (Figure S3). Overall, CAP analysis resulted in
regional classification success for 85% of baseline feathers and
78% at colony-specific scales (Figure 6). Western Bass Strait
(93.3% *correct classification) and Port Phillip Bay (92.9% *)
resulted in the highest correct classifications with dissimilarity
Frontiers in Marine Science | www.frontiersin.org 7
measures predominantly driven by high Ti and d15N signatures
respectively. Both regions also demonstrated high Al levels
compared to baseline feather signatures from Central and
Eastern Bass Strait (Figure 5). Central (82.1% *) and Eastern
Bass Strait (76.9% *) baseline data shared similar Mg and Sr
concentrations with d13C predominantly driving variation
between the two regions. The relative length and direction of
each vector corresponding to the discriminatory ability of each
biochemical signature remained largely consistent between site
and regional CAP comparisons. For sites, St. Kilda (92.9% *)
resulted in the highest proportion of correct classifications
(thereafter referred to as site or regional ‘biochemical
resolution’) followed by Deen Maar Island (86.7% *), Kanowna
Island (78.6% *), Rabbit Island (72.7% *), Gabo Island (69.2% *)
and Phillip Island (64.3% *) (Figure 6).

Scat Feathers – Source Penguin Colony
All signatures of scat feathers overlapped with the baseline data
of which 32.4% were assigned to penguins from Kanowna Island
(Central Bass Strait), followed by 27.0% from Gabo Island
(Eastern Bass Strait). Rabbit Island (Central Bass Strait), Deen
Maar Island (Western Bass Strait) and Phillip Island (Central
Bass Strait) each made up 18.9%, 13.5% and 8.1% of scat feathers
respectively. St. Kilda (Port Phillip Bay) penguins however,
remained undetected from the scats collected across the three
regions in this study (Figure 7). Local penguin colonies
accounted for 46-70% of predated feathers. These local
colonies either (1) co-exist with the long-nosed fur seals we
sampled or (2) occur in closest proximity, relative to other
sampled colonies, to the sampled seal site (Figure 8).
FIGURE 5 | Concentrations for trace elements Al, Ti, Mg and Sr (mg/kg dry weight) from moulted feathers of little penguins collected from Deen Maar Island and
Cape Nelson (WBS), St. Kilda (PPB), Phillip Island (CBS), Kanowna Island (CBS), Rabbit Island (CBS) and Gabo Island (EBS). Box plots display median values with
box edges representing lower (Q1) and upper (Q3) quartiles, defined as the 25th and 75th percentiles, whiskers representing variability outside the upper and lower
quartiles and dots representing outliers. The Y-axis for each element differs and colors of box plots correspond to colors presented in Figure 1.
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The proportion of predated feathers assigned to regional and
inter-regional penguin colonies, relative to the site of long-nosed
fur seal scat collection, varied across the three regions (Figure 7).
Whilst predated feathers from Western Bass Strait were
exclusively detected in Cape Bridgewater (Western Bass Strait)
scats, the remaining 54% of scat feathers resulted in the highest
Frontiers in Marine Science | www.frontiersin.org 8
inter-regional diversity of penguins including Central Bass Strait
colonies; Kanowna Island (27%) and Phillip Island (9%), as well as
Eastern Bass Strait, Gabo Island (18%), feathers. Comparatively,
scat feathers fromKanowna Island (Central Bass Strait) resulted in
the highest occurrence of localised predation with 70% of feathers
assigned to Kanowna Island penguins and the remaining 30%
FIGURE 7 | Proportional (%) contribution of source-colonies assigned to little penguin feathers retrieved from scats of long-nosed fur seals. Plots show results of
canonical variate analysis of baseline multi-elemental and isotope signatures from penguin colonies sampled across Western (WBS), Central (CBS) and Eastern Bass
Strait (EBS), and Pt. Phillip Bay (PPB); Deen Maar Island and Cape Nelson (DM); St. Kilda (SK); Phillip Island (PI); Kanowna Island (KN); Rabbit Island (RI); Gabo
Island (GB). Scats of long-nosed fur seals were sampled between October – November 2018.
FIGURE 6 | Canonical variate plots of the multi-elemental and isotope chemistry of feathers of little penguins sampled across four regions; (A) Western (WBS),
Central (CBS) and Eastern Bass Strait (EBS) and Port Phillip Bay (PPB) and (B) sites; Deen Maar Island, St. Kilda, Phillip Island, Kanowna Island, Rabbit Island and
Gabo Island. Vector diagrams show the direction and weight of individual isotopes and elements to sample distribution.
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attributed to regional colonies; Rabbit Island (20%) and Phillip
Island (10%) (Figure 8). Complimentary to the 50% of Gabo scat
feathers allocated to local Gabo Island penguins, the remaining
predated feathers were assigned to originating from inter-regional
Central Bass Strait colonies; Rabbit Island (31%), Kanowna Island
(13%) and Phillip Island (6%) (Figure 8).

DISCUSSION

This study was able to chemically discriminate moulted penguin
feathers among sites across Bass Strait and Port Phillip Bay.
Using these baseline data, moulted feathers were assigned to their
known region or colony of origin with 85% and 78% accuracy,
respectively. Variance in moulted feather signatures may reflect
system-specific, bottom-up influences including foraging
specialisation in areas of high productivity, as well as potential
industrial and oceanographic factors within or adjacent to the
respective penguin foraging zones.

Across the three regions sampled for long-nosed fur seal scats,
46-70% of feathers collected from scats indicated patterns of ‘local’
penguin predation. Inter-regional predation of penguins, relative
to the site of long-nosed fur seal scat collection, were detected in
Eastern and Western Bass Strait scats, while Central Bass Strait
scats were solely assigned to ‘local’ and regional penguins. The
latter was likely explained by a higher bioavailability of penguins in
Central Bass Strait. In comparison, Western Bass Strait birds were
predated at a localised scale only. Whereas St. Kilda penguins,
known to forage exclusively in Port Phillip Bay and situated
furthest from long-nosed fur seal sites (relative to other penguin
colonies sampled in this study), remained undetected in all scats.
Potential drivers shaping localised and inter-regional predation
(or lack thereof) are described with reference to penguin colony
proximity to seal sites, areas of high productivity and
demographic-specific species foraging movements.
Frontiers in Marine Science | www.frontiersin.org 9
Baseline Signatures From Moulted
Penguin Feathers
Results of feeding trials supported the biochemical comparability
between baseline signatures from moulted and scat feathers.
Arregui et al. (2018) also reported fin whale scats as a reliable
indicator of prey consumption with unaltered stable isotope
ratios of krill post transit along the digestive tract. The afore
mentioned biochemical comparisons between wild deer hair and
predated hair from the scats of wolves, further highlights the
application of such methods across marine and terrestrial
predator-prey relationships (Derbridge et al., 2012).

Across Bass Strait and Port Phillip Bay, moulted feathers from
St. Kilda retained stable isotope and trace element signatures
with the highest overall discriminatory resolution (92.9% correct
classification). Key biochemical signatures discriminating
moulted feathers from St. Kilda, included elevated d15N and Al
levels. St. Kilda penguins are known to forage exclusively within
PPB, specialising on juvenile anchovy and luminous bay squid
with high d15N values (Preston et al., 2008; Chiaradia et al.,
2012). Consistent with the findings of this study, Kowalczyk et al.
(2015) detected high d15N levels in St. Kilda penguin feathers
(Table S1). Finger et al. (2015) also detected elevated Aluminium
(22% higher than this study), Arsenic and Mercury
concentrations in St. Kilda penguins compared to other
Central Bass Strait breeding sites (Phillip Island and Notch
Island) (Table S1). Aluminum impairment in seabirds is
mainly related to its disruptive effect on calcium homeostasis
as well as phosphorus metabolism, ultimately leading to muscle
weakness and decreased growth rates (Scheuhammer, 1987).
Port Phillip Bay is host to the city of Melbourne’s business
district, and the restricted currents and wave action in the bay
may act as a contamination hotspot for the heavy metals
subsequently reflected in elevated levels amongst St. Kilda
penguin feathers (Aly et al., 2013).
FIGURE 8 | Canonical variate plots of the multi-elemental and isotope chemistry of feathers sampled from colonies of little penguins across Western (WBS), Central
(CBS), Eastern Bass Strait (EBS), and Pt. Phillip Bay (PPB) (indicated by circles). Squares with convex hulls represent feathers retrieved from long-nosed fur seal
scats sampled from (A) Cape Bridgewater (WBS), (B) Kanowna Island (CBS) and (C) Gabo Island (EBS).
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Elevated Al but also Ti concentrations discriminated moulted
feathers from Western Bass Strait from penguin colonies in
Central and Eastern Bass Strait. The bioaccumulation of
anthropogenic and natural sources of both Ti and Al represent
potential risks to seabirds such as penguins that forage at higher
trophic levels (Scheuhammer, 1987; Finger et al., 2015; Walsh,
2018; Hauser-Davis et al., 2020). Titanium, which is often
depleted in surface waters but elevated in deep water, and
which can occur over a range of at least two orders of
magnitude, has been described as a potential tracer of chemical
transfer processes in open oceans (Dammshäuser et al., 2011).
Penguin colonies from Western Bass Strait in this study are
situated within the eastern bounds of the Bonney Upwelling
system – an important source of transfer for deep and nutrient
rich waters to the surface (Middleton and Bye, 2007). However,
very little is known about the biological function of Ti and Al, or
the biogeochemical processes (like coastal upwelling) that may
control its distribution in the marine environment.

We highlight two local sources (~40km from Western Bass
Strait penguin colonies) of potential industrial discharge for both
Ti and Al; (1) the Portland Aluminium Smelter and (2) the
commercial Port of Portland. Emissions from the Portland
Aluminium Smelter, with a production capacity of 345,000
tonnes of Al per year, can enter coastal waters via
contaminated particulate matter and effluent discharge that
potentially biomagnify up the marine trophic food chain
(Radhalakshmiet al., 2014; Sun et al., 2020). For Ti, potential
local entry points within Western Bass Strait include transport
via the mineral sands from the Port of Portland, from which
titanium dioxide (Ti0₂) is derived (Force, 1991). In 2017, for
example, approximately 490,000 tonnes of mineral sands were
reported as imported/exported via the Port of Portland. In its
nanoparticulate (matter between 1-100nm) form, Ti02 is used in
a wide range of products (i.e. sunscreen, paints, cements, care
cosmetics) and considered a contaminant of emerging concern -
particularly for aquatic ecosystems (Weir et al., 2012; Shi et al.,
2013; Hauser-Davis et al., 2020). Miller et al. (2012)
demonstrated that relatively low levels of ultraviolet light,
consistent with those found in nature, can induce toxicity of
Ti0₂ nanoparticles to marine phytoplankton. However, very little
is known about the potential effects of Ti0₂ travelling up the
trophic chain.

In comparison to Western Bass Strait and Port Phillip Bay
(93% and 92% correct classification, respectively), a higher level
of biochemical homogeneity was detected between Central
(82.1%) and Eastern Bass Strait (76.9%) sites (Figure 6A). This
may reflect overlapping foraging zones and/or the confluence of
currents meeting in Central Bass Strait reducing the
discriminatory biochemical resolution between the two regions
(Ridgway, 1997; Sandery and Kämpf, 2007). For example,
oligotrophic, low nutrient waters from the East Australian
Current (EAC) flow southward along the eastern edge of Bass
Strait and the South Australian Current (SAC) advects warm
water from the west that flows eastward through Bass Strait
(Sandery and Kämpf, 2007). Pre-moult Eastern Bass Strait
penguins at Gabo Island, unconstrained by chick feeding
Frontiers in Marine Science | www.frontiersin.org 10
requirements, may travel along the EAC towards other sources
of nutrient rich inputs into Central Bass Strait.

Overall, biochemical variation in moulted penguin feathers
between the four regions provide baseline signatures at high
spatial resolution that reflect variation in distance to areas of high
productivity and consequent foraging strategies, as well as
natural and potentially land derived anthropogenic sources of
elevated contaminants. Interestingly, these baseline signatures
also highlight the complexity of threats penguins encounter,
including potential terrestrial sources of contaminants, at
system-specific levels.

Bioavailability and Proximity Influences
Predation Pressure
Both, long-nosed fur seals and penguins are highly mobile marine
predators demonstrating vastly different foraging strategies which
are broadly shaped by system-specific cycles of productivity and
life history constraints (Page et al., 2005; Sidhu et al., 2012;
Pelletier et al., 2014; Foo et al., 2019). Feathers originating from
St. Kilda penguins were undetected from scats, likely explained by
the specialised foraging that occurs from this colony throughout
the year within the confines of Port Phillip Bay (Preston et al.,
2008; Chiaradia et al., 2012). We note that long-nosed fur seals do
not commonly within Port Phillip Bay. Furthermore, St. Kilda
penguins have experienced a decline since their estimated peak
population size of 1061 adults in 2015, with estimates of, 998
adults in 2016, 738 adults in 2017, and 694 adults in 2018 (F.
Sperring, unpublished data). Overall, between 46-70% of predated
feathers retrieved from scats across Bass Strait were assigned to
‘local’ penguins (Figure 8). Most likely, this reflects overlapping
marine foraging zones for the animals with shared or close
terrestrial habitat. Both species utilise epipelagic coastal waters,
but the long-nosed fur seals also forage in offshore waters (Collins
et al., 1999; Baylis et al., 2008; Salton et al., 2021). For example,
Salton et al. (2021) recently tracked a sub-adult male fur seal from
Montague Island, New SouthWales, to the Nee Islets, in southern
New Zealand. During our study, scat sampling occurred during
the penguin-breeding season (Oct-Dec 2018) when adult
penguins across Victoria typically make one-day foraging trips
(Chiaradia, 1999), typically within a 30 km radius of their
breeding site (Collins et al., 1999). Consequently, we can expect
that local breeding penguins are more bioavailable to nearby
long-nosed fur seals when constrained by mate and chick
feeding requirements.

The highest level of localised predation was detected for
Kanowna Island (Central Bass Strait), where predated feathers
were solely allocated to Kanowna penguins (70%) or other
colonies within the Central Bass Strait region (30%). Relative
to Eastern and Western Bass Strait, Central Bass Strait has a
greater abundance of penguins - proportionally increasing the
bioavailability of Central Bass Strait penguins within the region
(Dann pers comm). For both Central and Eastern Bass Strait, the
proportion of different feather signatures found in the scats
correlated to the proximity of source penguin colonies. Both
regions displayed patterns of increased predation pressure on
local, and then regional or inter-regional penguins, with
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proximity to seal sites. For example, in addition to the birds
originating from Kanowna Island (70%), the proportional
contribution of Rabbit Island (20%) and Phillip Island (10%)
penguins to scats collected from Central Bass Strait correlated
with the colonies proximity (~45km and ~120km respectively) to
Kanowna Island. For Eastern Bass Strait, local penguins
comprised 50% of predated birds. The remaining birds were
assigned to inter-regional Central Bass Strait penguins; Rabbit
(31%), Kanowna (13%) and Phillip Island (6%). These three
colonies are located ~330km, ~370km and ~500km from Gabo
Island, respectively. Overall, the largest proportion of scat
feathers collected across Bass Strait originated from Kanowna
and Gabo Island penguin colonies, the two largest penguin
colonies co-existing with long-nosed fur seals (Reinhold, S.
unpublished data). The combination of high penguin
bioavailability in close proximity to seal sites may therefore
place Kanowna and Gabo Island colonies at greater risk of seal
predation. We note however, population level inferences about
penguin colonies at greatest risk to seal predation require an
increased sample size of scat feathers sampled across a broad
temporal spectrum.

Species and Demographic-Specific
Foraging Movements
While understanding where predatory events on penguins occur
is beyond the scope of this study, the presence of inter-regional
penguins in scats from Western and Eastern Bass Strait may
reflect sexually immature penguins (<2yrs) which are more likely
to demonstrate a more versatile foraging strategy that includes
occurrence in these regions (Dann et al., 1992). Unlike breeding
penguins, juveniles are more likely to travel further post-fledging
and during penguin breeding months. However, the exclusive
occurrence of Western Bass Strait penguins in scats from
Western Bass Strait at Cape Bridgewater (46% of Western Bass
Strait scats feathers) may suggest that juvenile as well as breeding
birds from Western Bass Strait undertake more localised
foraging strategies. The nutrient rich Bonney Upwelling system
extends around the Western Bass Strait penguin colonies and
provides an abundance of nearby food. This constrained spatial
distribution of predated penguins from Western Bass Strait is
consistent with dispersal patterns described for banded penguins
from Western Bass Strait colonies (Norman et al., 2017). On
average, banded penguins recovered from 20 colonies between
Lorne and Portland (320km range) in Western Bass Strait moved
~38km from their original banding site (Norman et al., 2012).
Phillip Island penguins also travel west post fledging, attributed
to the access of nutrient-rich Bonney upwelling waters (Reilly
and Cullen, 1982; Dann et al., 1992). Recoveries of flipper-
banded first-year birds from Phillip Island indicate that they
travel several hundred kilometers west between Warrnambool
and Port MacDonnell, situated in the Bonney Upwelling 250km
and 420 km from Phillip Island (Dann et al., 1992).

An equally plausible explanation for the occurrence of inter-
regional (adult or juvenile) penguins in seal scats is long-distance
movements by long-nosed fur seals (up to 220 km per day
(Salton et al., 2021). Long-nosed fur seals retain prey for an
estimated gut passage half time of 51 hours – prior to defecating
Frontiers in Marine Science | www.frontiersin.org 11
scats (Fea and Harcourt, 1997). This represents the amount of
time it takes for half the total of recovered prey remains to
reappear in scats. Consequently, seals arriving from distant
foraging grounds could still be digesting penguins sourced
from inter-regional predation events upon their return to the
site of scat collection. However, the proportional contribution of
inter-regional penguins detected in this study should be
considered as a minimum - as scats defecated at sea are likely
to retain a higher proportion of hard-parts originating from prey,
including penguin feathers, consumed in offshore waters.
CONCLUSION

This is the first study to develop a diagnostic tool for identifying
seabird colonies at greatest risk to pinniped predation.
Interestingly, the biochemical signatures that best discriminated
between penguin colonies were shaped by system-specific
dynamics including proximity to areas of high ocean
productivity, human development, and industrialization, thus
highlighting the inter-section of terrestrial and marine threats
that penguins encounter. We propose future studies also explore
the resilience of Hg concentrations in feathers to seal digestion,
potentially enhancing the future biochemical resolution of
colony-specific baselines.

Overall, seals were more likely to prey upon the penguins
breeding in closest proximity to them, consistent with the
constrained foraging patterns displayed by adult penguins
during the breeding season – when the seal scats were
collected. Region-specific predator-prey dynamics were likely
tied to the proximity of penguin colonies to seals sites and the
abundance or bioavailability of penguins. Meanwhile, inter-
regional predator-prey dynamics may reflect variation in the
dispersion of seals or juvenile penguins.

This study also suggests that penguin colonies may still be in
decline despite a lack of seal predation. In such cases, other natural
and anthropogenic stressors, for example industrialisation, shown
here by heavy metal loads in feathers, may warrant further
research to understand their contribution to population declines.
As the factors that influence predation, or lack thereof, vary across
regions and among local sites, this study highlights the value
and importance of identifying the source colony of seabirds
predated by pinnipeds to inform effective management efforts
and outcomes.
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