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To meet future seafood demands, ingredients derived from algae and other novel and
sustainable sources are increasingly being tested and used as replacers to traditional
aquafeed ingredients. Algal ingredients in particular are being promoted for their
sustainability and their additional functional attributes in farmed aquatic animals. Test
on algal supplemented aquafeeds typically focus on a suite of immunological and
physiological indicators along with fish growth performance or muscle quality. However,
to optimize the replacement of fish meal with algal derived ingredients, it is crucial to
understand the metabolic fate in the algal macronutrients (carbohydrates, fats, and
proteins), and their nutritional interactions with other ingredients after ingestion. Here,
we assess the potential of using the emerging technology- stable carbon isotope
(δ13C) analysis of single amino acids (AAs) as a nutritional biomarker in aquaculture.
Applications of δ13CAA-based approaches in feeding trials show promise in closing the
knowledge gap in terms of understanding how fish and other aquaculture taxa assimilate
and metabolize algal derived macronutrients. Source diagnostic δ13C fingerprints among
the essential AAs can trace the protein origins to broad phylogenetic groups such as
red macroalgae, brown macroalgae, bacteria, and terrestrial plants. Among the non-
essential AAs, δ13C patterns have the potential to inform about metabolic routing
and utilization of dietary lipids and carbohydrates. Despite the potential of δ13CAA

as a nutritional biomarker, the few applications to date in fish feeding trials warrant
further development and implementation of δ13CAA-based approaches to improve
understanding of protein origins and macronutrient metabolic routing.

Keywords: macroalgae, aquafeed, metabolism, salmon, isotope fingerprinting, nutrition, essential and non-
essential amino acids

INTRODUCTION

Novel macro aquafeed ingredients are continually being developed and validated to lower the
demand of marine-derived proteins, i.e., fish meal and oil, but also to allow the sustainable increase
in fish production. For instance, marine macroalgae, or seaweeds, possess a number of positive
nutritional and functional attributes that could be exploited in aquafeeds (Xu et al., 2017; Gomez-
Zavaglia et al., 2019; Thépot et al., 2021). Seaweeds can be classified into three major phylogenetic
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groups that each have unique pigmentation and biochemical
characteristics: (1) brown seaweed (Phaeophyceae); (2)
red seaweed (Rhodophyceae); and (3) green seaweed
(Chlorophyceae). These multicellular macroscopic algae are
considered to have a smaller environmental footprint compared
to fish meal and terrestrial plants crops (e.g., soybean, cereals,
and legumes) that are typically used in aquafeeds. This is
because algae can be grown at scale without the need for arable
land, freshwater, and substantial amounts of non-renewable
resources (e.g., fertilizers and pesticides). Furthermore, the use of
seaweeds in aquafeed can play a role in mitigating the effects of
eutrophication and climate impact through the bioremediation
of nitrogen and phosphorous, and carbon capture (Duarte et al.,
2017; Xiao et al., 2017).

One of the key attractiveness of using macroalgae is that they
possess bioactive compounds and functional properties that can
be conferred to the aquafeeds and the farmed aquatic animal,
e.g., as immunomodulation, maintaining fish growth, and feed
physical-chemical integrity (Figure 1; Gomez-Zavaglia et al.,
2019). Inclusions of macroalgal ingredients have also been tested
for crustaceans and echinoderms (Schleder et al., 2017; Omont
et al., 2021; Xu et al., 2021). Besides supplying a source of
dietary protein in aquafeeds, the proteins and peptides found
in seaweeds have shown an extensive range of properties that
include antihypertensive, antioxidative, and immune-supportive
activities in fish (Harnedy and Fitzgerald, 2011). These bioactives
could potentially be further augmented and enhanced by
biorefinery techniques, such as hydrolyzing the seaweed proteins,
optimizing the amino acid (AA) composition, and releasing
previously bound bioactive sites and/or compounds (Choi et al.,
2015; Yan and Wang, 2019; Thépot et al., 2021). Furthermore,
some polysaccharides found in macroalgae such as those
classified as phycocolloid and their derivatives can modify the gut
microbiome (prebiotic) and possess immunostimulatory effects
(Roberfroid, 2007; Xu et al., 2017). Similarly, many secondary
metabolites produced by the algae such as mycosporine-like
amino acids (Carreto and Carignan, 2011), carotenoids, and
phenolics (Dethier et al., 2005) can also confer significant health
benefits to farmed aquatic animals.

Feeding trials that test dietary seaweed inclusions typically
focus on a suite of immunological parameters in concert
with fish growth performance or muscle quality (Wan et al.,
2018; Hua et al., 2019; Thépot et al., 2021). Moreover, the
inclusion of seaweeds in aquafeeds can lead to several nutritional
benefits: Their AA composition is relatively complete and
although commercially important seaweeds can be limited in
their lipid content, the quality of these lipids are typically
higher than those derived from terrestrial plants (Wan et al.,
2018). Many macroalgal species possess a high proportion of
polyunsaturated fatty acids (PUFA) compared to, e.g., terrestrial
ingredients. In particular, long-chain ω-3 highly unsaturated
fatty acids (HUFA, e.g., eicosapentaenoic acid, 20:5nω3), which
can increase mitochondrial β-oxidation activity leading to
leaner farmed fish (Todorčević et al., 2009). The levels and
types of complex polysaccharides found in different macroalgae
species are major factors in influencing nutrient digestibility
(Gyurcsik and Nagy, 2000; Marrion et al., 2003). In addition,

the natural feeding strategy and genotype in the farmed fish
are important variables that determine the efficiency to which
seaweeds are utilized as a nutrient source (Krogdahl et al., 2005;
Kamalam et al., 2017). Even though carnivorous and omnivorous
species have reduced capacity to digest and utilize complex
polysaccharides, feeding trials have demonstrated that in addition
to enhancing innate immune responses, seaweed inclusions in
aquafeed can enhance growth and feed intake (Wan et al., 2016;
Thépot et al., 2022).

Despite a suite of beneficial functional properties, the
metabolic fate of algal macronutrients are generally poorly
understood. This knowledge gap makes it more challenging to
optimize the use of macroalgae as an aquafeed ingredient –
especially for carnivorous species. Isotopic evidence shows it is
unlikely that algal polysaccharides function as energy sources
for Atlantic salmon (Salmo salar) (Wang et al., 2019). This is
probably due to a lack or low presence of complex carbohydrate
degrading enzymes, e.g., cellulase, and hemicellulose (Hidalgo
et al., 1999). This lack of assimilation of macroalgal ingredients
should in theory decrease the feed conversion ratio, at least for
carnivorous species. Hence, to strike an optimal balance between
the health benefits of seaweeds and feed utilization, it is crucial
to trace the metabolic fate of seaweed ingredients in aquaculture
animals. While there has been only a limited number of seaweeds
tested in feeding trials to date (Wan et al., 2018; Hua et al.,
2019; Thépot et al., 2021), it is also important to be mindful that
seaweeds are a highly diverse group of organisms.

While molecular methods (e.g., DNA quantification and
targeted metabolite profiling) are suited for characterizing
aquafeed ingredients before or right after ingestion, stable isotope
analyses of animal tissues are usually employed to characterize
ingredients after their nutrients have been absorbed (Belghit
et al., 2021; Gamboa-Delgado, 2022). The stable isotope values
of total organic carbon (bulk δ13C), the most commonly analyzed
element, have been used successfully for food authentication and
tracing aquaculture ingredients (Molkentin et al., 2007; Anderson
et al., 2010; Hassoun et al., 2020). Isotopes can be analyzed
on different tissues. For example, blood and splanchnic tissues
(e.g., intestine and spleen) are used to infer more recent diets
because they have a higher turnover rate than structural tissues
(e.g., muscle fiber and tendon) (Tieszen et al., 1983; Buchheister
and Latour, 2010). It can, however, be challenging interpreting
bulk isotope results because δ13C values are affected by a host of
physical, chemical and physiological variables that can confound
isotope values among different sources and impart variable
and relatively poorly constrained isotope discrimination during
trophic transfer (Casey and Post, 2011; Robinson et al., 2021).
Among marine-derived ingredients, a common challenge with
bulk δ13C tracers is that they lack the ability in distinguishing
between, e.g., marine fish and macroalgae because of the
equifinality of those sources.

Recently, stable isotope analysis in single AAs has shown
considerable more precision in discerning among algae and other
novel functional feed additives within test aquafeed composites
(Wang et al., 2018b, 2019; Belghit et al., 2021; Xu et al., 2021).
In terms of nutritional requirements, the 20 proteogenic AAs
can be divided into two functional classes: the essential and the
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FIGURE 1 | Schematic presentation of seaweed inclusion in compound feeds containing plant and fish derived ingredients for a carnivorous fish. The filled circles
represent the relative proportion of macronutrients in each ingredient in the P10 experimental diet by Wan et al. (2016), the arrows pointing to the compound feed
denote its ingredients, the arrow to the carnivorous fish indicates it feeds on the compound diet, and the striped triangle links to the box outlining key properties and
benefits of milled seaweed ingredients in aquafeed. Silhouettes from PhyloPic (http://phylopic.org) under Creative Commons license.

non-essential. Like many other animals, the AAs that finfish
cannot synthesize de novo are referred to as essential amino acids
(EAAs) and are usually passed on from one trophic level to
the next with no or minor alterations of their carbon skeletons,
i.e., the carboxyl group and the α-carbon to which a variety
of functional groups are attached. Regarding the non-essential
amino acids (NEAAs), animals can incorporate them directly
from the diet or synthesize them de novo from both glycolytic
and tricarboxylic acid (TCA) cycle intermediates (see Figure 2).
Therefore, the differences in isotopic composition between a
consumer and its diet, which is denoted 1δ13C, is greater for
the NEAAs than the EAAs (McMahon et al., 2010; Barreto-Curiel
et al., 2017; Liu et al., 2018; Wang et al., 2018b; Xu et al., 2021).

This review will examine the analytical and theoretical
underpinnings behind δ13CAA analysis, and evaluate how δ13CAA

based methods can be used to understand macronutrient
metabolism and trace back dietary protein origins. While this
review will focus on the potential of tracing seaweed ingredients
in aquafeed fed to farmed finfish, it will also evaluate the use
of δ13CAA analysis in other animal species and dietary sources.
Furthermore, the review will discuss the current barriers for
using δ13CAA as a nutritional biomarker in farmed aquaculture
animals, and the possible solutions to overcome these obstacles.

AMINO ACID ABBREVIATIONS

Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartic acid;
Asx, asparagine/aspartic acid; Cys, cysteine; His, histidine; Gln,
glutamine; Glu, glutamic acid; Glx, glutamine/glutamic acid; Gly,
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FIGURE 2 | The chart depicts the main anabolic and catabolic amino acid (AA) pathways in vertebrates according to Berg et al. (2015) and Caspi et al. (2020) (all the
proteogenic amino acids are assigned three-letter symbols according to IUPAC nomenclature). The non-essential AAs can be grouped according to their association
with their main biosynthesis pathways: The glycolytic AAs are synthesized from metabolic intermediates (3-PGA, 3-phosphoglyceric acid; PEP, phosphoenolpyruvic
acid) of the glycolytic pathway (in the cytosol) and the Krebs NEAAs are synthesized from intermediates of the or tricarboxylic acid cycle (TCA; αKG, α-Ketoglutaric
acid; OAA, oxaloacetate) (in the mitochondria). Glucose and glycerol are sourced to the glycolytic pathway, and fatty acids (FAs) and short chain fatty acids are
sourced to the TCA cycle. TCA products can also be function as intermediates for Ala via phosphoenolpyruvate and pyruvate. The catabolism of excess AAs either
occurs via gluconeogenesis or ketogenesis. Gluconeogenesis is the synthesis of glucose from non-carbohydrate precursors such as the glucogenic amino acids
(marked with 1) and ketogenesis is the metabolic pathway for producing ketone bodies by breaking down fatty acids and ketogenic amino acids (marked with 2).
A large group of AAs can be catabolized by both processes (marked 3). PRPP and P5C signify phosphoribosyl pyrophosphate and 1-pyrroline-5-carboxylic acid,
respectively.
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glycine; Hyp, hydroxyproline; Ile, isoleucine; Leu, leucine; Lys,
lysine; Met, methionine; Phe, phenylalanine; Pro, proline; Ser,
serine; Tyr, tyrosine; Thr, threonine; Val, valine.

ANALYTICAL CONSIDERATIONS

Gas chromatography combustion isotope ratio mass
spectrometry (GC-C-IRMS) is the most common methodological
approach for determining δ13CAA values. The methodology
encompasses three core steps:

(1) sample cleaning and protein isolation (if needed) followed
by AA extraction and purification;

(2) derivatization of the AAs to increase their volatility; and
(3) analysis with isotope ratio mass spectrometry where the

analytes are separated on a GC column, combusted to CO2 and
other gases before determining the isotopic composition of CO2
molecules with different molecular weights (e.g., 12C16O16O,
13C16O16O, 12C16O18O).

The most commonly used derivatization approaches for GC-
C-IRMS involve esterification of the carboxylic acid group with
an acidified alcohol and acylation of the amine, hydroxyl and
thiol groups (Corr et al., 2007b). To account for the kinetic
isotope effect and added carbon from the reagents, AA mixtures
with known δ13C values are treated in parallel with the collected
samples. The resulting δ13C values of these reference mixtures
can then be used to correct for the isotope effect of the
samples. The shift in isotope values can be reduced by using a
derivatization method that adds as few carbon atoms as possible
such as N-acetylmethyl esters (NACME) and selecting AA
references, alcohols, and acylation agents with δ13C values that
approximate those of the samples of interest (Corr et al., 2007a).

The core tenants underlying δ13CAA applications are
consistency in preparation, measurement, and as mentioned
above, correction for added carbon during derivatization and
the use of reference standards and samples (Meier-Augenstein
and Schimmelmann, 2019). The accuracy and precision of the
data depend on the quality of GC separation, interface design
and isotopic calibration. In short, the isotopic drift of analytical
standards and reference materials should be monitored to
ensure data accuracy and precision, and scale normalization
should be based on two or more reference analytes (Paul et al.,
2007). Operators must also ensure that the GC-C-IRMS system
is regularly serviced by changing inlet liners, maintaining
the integrity of the guard/main columns, and checking the
combustion reactors and leakages when needed. To date, the
accuracy of GC-C-IRMS produced δ13CEAA data has been
somewhat inconsistent across laboratories (Arthur et al., 2014;
Jarman et al., 2017; Stücheli et al., 2021). Hence, for furthering
δ13CAA applications in aquaculture, it will be essential to
carry out inter-laboratory comparison exercises, sharing of
standardized protocols, and globally available standard reference
materials, e.g., reference centers (Yarnes and Herszage, 2017).
Accuracy is less of an issue for liquid chromatography–isotope
ratio mass spectrometry (LC-C-IRMS) produced δ13CAA data
since AAs do not need to be derivatized, but they come with
the limitation that most studies report a low number of AAs

(McCullagh et al., 2008; Smith et al., 2009; Dunn et al., 2011).
A further consideration is that GC-C-IRMS based methods
require approximately 0.3 µg of total protein per injection
as opposed to 6 µg for LC-C-IRMS based methods (Smith
et al., 2009; Dunn et al., 2011). Finally, the use of δ13CAA
analyses as a biomarker method should be weighed against
the fact that these measurements remain relatively expensive
and time-consuming compared to, e.g., bulk isotope analysis.
However, ongoing advances in analytical approaches and an
expansion of laboratories with the capacity to measure δ13CAA
are likely to increase accessibility and affordability. In-depth
discussions of these topics can be found in publications authored
by van Leeuwen et al. (2014), Jochmann and Schmidt (2015), and
Meier-Augenstein (2018).

DIGESTIVE PHYSIOLOGY AND ISOTOPE
EFFECTS

To infer dietary information from δ13CAA values, it is important
to consider the role of digestive and metabolic processes on
trophic discrimination. The isotopic composition of a whole
organism is the result of a dynamic equilibrium between nutrient
assimilation and discharge of excreta (e.g., indigestible molecules)
and colonic fermentation products (e.g., carbon dioxide, methane
and indoles) (Butt and Volkoff, 2019). For example, a study
found that the gut contents of the sand goby (Pomatoschistus
minutus) were more 13C enriched in the hindgut than in the
foregut, a result that in part can be ascribed to gut microbial
activities (Guelinckx et al., 2008). Gut bacterial diversity and
activity is generally lower in carnivores, and progressively
increase from omnivores to herbivores (Wang et al., 2018a).
Furthermore, carnivorous and omnivorous species usually rely
far more on acid digestion than herbivorous species (Egerton
et al., 2018). The intestines of carnivorous fish have evolved
for processing a highly digestible, energy and nutrient-dense
diet that is high in protein and low in carbohydrates. For this
reason, their gut to body length is far shorter than that of
detritivores and herbivores. Carnivorous fish also lacks defined
gastrointestinal structures typically found in herbivorous species,
e.g., gizzard, and compartmentalization of the stomachs (De
Silva and Anderson, 1994), and carnivores are poor at utilizing
dietary carbohydrates owing to low intestinal glucose uptake rates
and limited ability to digest complex polymers (Kamalam et al.,
2017). In herbivorous and detritivorous fish species, the hindgut
microbiome plays a particularly important role in digesting
complex polymers and providing the host with short-chain fatty
acids and in some cases, de novo synthesized EAAs (Newsome
et al., 2011; Clements et al., 2014). These activities incurred by the
gut microbiome (Larsen et al., 2016a) and the mucous membrane
of the intestinal tract (Burrin and Stoll, 2009) can lead to an
increase in metabolic costs. NEAAs such as Gln, Glu, and Asp
may be catabolized extensively for oxidative fuel (Box 1), and
lack of these NEAAs in the diet can lead to increased catabolism
of certain EAAs.

Once the macronutrients are digested into smaller molecules
and absorbed into somatic cells, they are broken down for
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BOX 1 | Overview of main anabolic and catabolic pathways of the non-essential amino acids in finfish. See Figure 2 for the visualization of the biochemical
pathways and definition of key biochemical terms.
Alanine (Ala) Is the predominant amino acid (AA) catabolized by the liver where it is a main contributor to gluconeogenesis. The carbon of its precursor pyruvate
derives from glucose, lactate, and other AAs. Ala and Asp are major glucogenic precursors. Ala and Gln are the main carriers of fish muscle derived nitrogen that is
transported to
the liver via the blood (Felig, 1973; Okun et al., 2021).
Arginine (Arg) In fish, Arg is key for modulation of ureagenesis and ammonia detoxification, and like Pro, it is often rate limiting for growth and metabolic functions if
the quantities are insufficient in the diet (Hoseini et al., 2020). It is abundant in tissue fluid as phosphoarginine, a major reservoir of ATP (Li et al., 2009).
Asparagine (Asn) and aspartate (Asp) Are major metabolic energy source for intestinal epithelial cells and have also been shown to regulate intestinal and
neurological development and function (Wu, 2014). Together with Gly and Gln, Asp act as a precursor for purines and pyrimidines, which form part of the structural
subunits of nucleic acids.
Cysteine (Cys) Is synthesized from methionine (Met) and serine (Ser). This semi-essential AA is a precursor for the two antioxidants, taurine and glutathione, which
are key metabolites for mitochondrial functioning (Prabhu et al., 2014).
Glutamate (Glu) and glutamine (Gln) Glu is involved in diverse processes such as nitrogen assimilation and cofactor for biosynthesis (increase the rate of a chemical
reaction), as well as a building for the construction of complex molecules beyond proteins (Walker and Van Der Donk, 2016). Glu and its decarboxylation product
function as neurotransmitter (Li et al., 2009). Gln is one of the most abundant free α-AA in fish plasma and muscle. A large fraction of dietary Glu and Gln carbon
skeletons may be degraded in the gut (Wu, 1998).
Glycine (Gly) and serine (Ser) Gly and Ser participate in fat digestion and one-carbon unit metabolism (Fang et al., 2002), and can also stimulate feed intake
(Shamushaki et al., 2007). Gly is likely to regulate gene expression in fish (RileyJr., Higgs et al., 1996), and it plays critical role in the osmoregulatory responses of
fishes (Powell et al., 2007). Ser is essential to maintain mitochondrial respiration (Lucas et al., 2018).
Proline (Pro) and hydroxyproline (Hyp) Pro fulfills a unique biological role in stress adaptation. The requirements of Pro for whole-body protein synthesis are the
greatest among all AAs. The rates of endogenous Pro synthesis are inadequate in fish and can as such be regarded as a semi-essential AA, especially for juvenile
fish (Dabrowski et al., 2005; Wu et al., 2011). Hyp is a main constituent of collagen. Although Hyp is considered a NEAA, it is a potent growth promoters for fish
(Aksnes et al., 2008).
Tyrosine (Tyr) Is synthesized from phenylalanine (Phe), and is the main precursor for melanin synthesis and sclerotization (Vavricka et al., 2014). Adding Tyr to
aquafeed can reduce fish requirement for Phe.

producing energy and synthesizing metabolic intermediates
needed for synthesizing new molecular structures. The liver
functions as the main hub for AA metabolism catabolizing
most AAs, synthesizing NEAAs, and providing AAs for protein
synthesis in the liver and other tissues (Figure 2). The availability
of AAs at the moment of protein synthesis is critical for protein
retention efficiency and protein turnover (Brezas and Hardy,
2020): If one AA is not present in sufficient amounts, the
remaining AAs are alternatively catabolized for energy. Since
the capacity of the organism to store free AAs is very low, it
is critical that EAAs are released and assimilated approximately
simultaneously to maximize the incorporation of dietary AAs
into somatic tissues (Rungruangsak-Torrissen et al., 2009). Both
catabolism and anabolism lead to kinetic isotope effects. This
occurs when the reaction rates are affected by the isotopic
composition of molecules (the isotopologues). For example,
enzymatic decarboxylation reactions in the tricarboxylic acid
cycle produce 13C-depleted CO2 and 13C-enriched residual
acids (Takizawa et al., 2020). Thus, greater rates of biochemical
reactions usually lead to greater trophic discrimination (Hayes,
2001). Sourcing of metabolic intermediates derived from
macronutrients also affects δ13C values of de novo synthesized
NEAAs because lipid moieties and short-chain fatty acids are
13C depleted relative to proteins and carbohydrates (Deniro
and Epstein, 1977; Melzer and Schmidt, 1987; Weber et al.,
1997). While not always the case for the EAAs (Newsome et al.,
2020), most feeding trials show that1δ13CEAA values usually fall
within 1h for healthy animals feeding on nutritionally adequate
diets (McMahon et al., 2010; Barreto-Curiel et al., 2017; Liu
et al., 2018; Wang et al., 2018b, 2019; Takizawa et al., 2020; Xu
et al., 2021). Nevertheless, some animals specialized in feeding
detrital or poorly digestible diets can make up for nutritional

insufficiencies by assimilating EAAs synthesized by their gut
microbiomes (Newsome et al., 2011; Arthur et al., 2014; Ayayee
et al., 2015; Larsen et al., 2016b). Excess of dietary proteins may
cause trophic discrimination. A feeding trial with the totoaba
(Totoaba macdonaldi) found that 1δ13CEAA for Ile and Leu
increased linearly with higher protein levels (Ile: from 0.1h
1δ13C at 38% protein level to 0.5h at 49%; Leu: 0.1h at 38%
to 1.1h at 49%) probably because of isotope effects associated
with EAA catabolism for energy (Barreto-Curiel et al., 2019). The
study found no clear correlations between 1δ13C and dietary
protein levels for the remaining EAAs (Lys, Met, Phe, and Val).
Starvation, at least over a relatively short time span, appears to
have little effect on 1δ13CEAA values in muscle tissues according
to a study of the yellowtail (Seriola lalandi) that were starved for
35 day (Barreto-Curiel et al., 2017).

INFERRING DIET AND NUTRITION
FROM AMINO ACID δ13C VALUES

Essential Amino Acids
A key source diagnostic feature of the EAAs is that algae, bacteria,
fungi, and terrestrial plants have distinct δ13CEAA patterns
in which the relative differences among EAAs are consistent,
regardless of the actual source bulk δ13C value (Scott et al., 2006;
Larsen et al., 2009a, 2013). These δ13CEAA patterns are termed
fingerprints when they are unique and source characteristic. The
δ13CEAA patterns of both micro- and macroalgae are diverse and
appear to be more diverse compared to terrestrial vascular plants
(Larsen et al., 2013; McMahon et al., 2015a; Elliott Smith et al.,
2018). Brown macroalgae differ from red macroalgae (Figure 3;
Larsen et al., 2013), and within the monophyletic group of

Frontiers in Marine Science | www.frontiersin.org 6 February 2022 | Volume 9 | Article 813961

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-813961 February 3, 2022 Time: 15:6 # 7

Larsen et al. Trophic Fate of Aquafeed Macronutrients

FIGURE 3 | Linear function discriminant analysis (LDA) based on the seven
most discriminate amino acid δ13C variables for separating bacteria (n = 12),
Phaeophyta (n = 11), Rhodophyta (n = 9) and terrestrial plants (n = 12).
Insufficient data available for Chlorophyta. Values in parentheses are the
percentage variations accounted by each LD axis (54.5 and 43.4% for LD1
and LD2, respectively), the ellipses represent the 95% confidence intervals of
each group, and the broken lines represent the decision boundaries. The
median values of the four groups are significantly different (Pillai’s Trace = 1.90,
F6,80 = 247.1; p < 0.001). The data were compiled from Larsen et al. (2013).

cyanobacteria, diazotrophic vs. non-diazotrophic cyanobacteria
appear to have distinct fingerprints (McMahon et al., 2015b).
Likewise, regional differences in microalgal assemblages result in
distinct δ13CEAA fingerprints in trophic chains fueled by these
basal resources (Wang et al., 2018b; Larsen et al., 2020).

Non-essential Amino Acids
In contrast to the EAAs, NEAAs are less suited as source
tracers because metazoans either incorporate dietary NEAAs
directly into their tissue or synthesize them from metabolic
intermediates sourced from lipids, carbohydrates, and proteins
(Berg et al., 2015). Furthermore, dietary NEAAs are more likely
to be catabolized for energy, act as metabolic precursors or be a
source of nitrogen than the EAAs (Wu, 2014; McMahon et al.,
2015c). While the term non-essential implies that animals can
synthesize them at a rate that meets the cellular demand for
protein synthesis, it is well documented that adequate amounts of
dietary NEAA are required for maximum growth and optimum
health (Peres and Oliva-Teles, 2006; Gaye-Siessegger et al., 2007).
Hence, the rate by which the NEAAs are incorporated directly
into proteinogenic tissue or synthesized de novo from metabolic
intermediates varies according to physiological demands, and
the quality and supply of dietary proteins. It is important to
note that the term non-essential is misleading because NEAA
synthesis is energetically expensive and animals have limited
capacity to maintain physiological functions if their diets are

NEAA limited (Borman et al., 1946; Womack and Rose, 1947;
Reeds, 2000). Instead, synthesizable, and non-synthesizable AAs
would be more accurate but unconventional terms for the NEAAs
and EAAs (Wu, 2014; Hou and Wu, 2017). Despite the metabolic
complexity of NEAA routing and synthesis (Hayes, 2001) and
the variable factors affecting fractionation, controlled feeding
trials have demonstrated the potential of δ13CNEAA patterns to
inform about dietary ingredients and macronutrients (Newsome
et al., 2014; McMahon et al., 2015c; Wang et al., 2018b, 2019;
Whiteman et al., 2018).

TRACING AQUAFEED
MACRONUTRIENTS WITH δ13CAA

Commercial aquafeeds have in recent years gone from a primary
protein source, fishmeal, and a singular lipid, fish oil, to more
than several dozen ingredients such as soy, cereals, legumes,
insects, crustaceans, yeast, and algae. This development has made
it more challenging to trace the origins and metabolic fate of
this diverse array of ingredients and their interactions. Despite
the limited development and applications of δ13CAA−based
approaches in aquaculture, the few studies published to date
have shown considerable promise for tracing new ingredients
in aquafeed.

Wang et al. (2018b) studied Atlantic salmon to test whether
δ13CAA could differentiate among fish fed aquafeed with
and without seaweed inclusion. These aquafeeds contained
macronutrients from up to five different marine and terrestrial
sources (see Figure 1). The alternative diet substituted 15% of
macroalgae, the green (Ulva sp.) or the red (Palmaria sp.), into
the aquafeed by decreasing fishmeal by 5% and corn starch
by 10%, while the compositions of other ingredients remain
unchanged (Moroney et al., 2015; Wan et al., 2018). The three

FIGURE 4 | Principal component analyses (PCA) based on the seven most
discriminate amino acid δ13C variables for separating Atlantic salmon (n = 3 in
each group) fed composite diets with (15%) and without Rhodophyta and
Chlorophyta ingredients. Values in parentheses are the percentage variations
accounted by each PC axis (76.6 and 17.0% for PC1 and PC2, respectively),
and the broken lines represent the decision boundaries. The data were
compiled from Wang et al. (2019).
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glycolytic AAs (Ala, Gly, and Ser) against four EAAs (His,
Ile, Met, and Val) separated the control groups from their
respective algal inclusion groups with high certainty (Figure 4).
The two control groups cluster separately in part because
their respective fishmeal ingredients originated from different
locations and marine fish species, and in part due to the different
nutritional and functional profiles of the two macroalgal species.
To understand why the three glycolytic AAs could function
as biomarkers of macroalgal inclusions, Wang et al. (2019)
analyzed δ13CAA of salmon muscle tissue and the various protein
sources in the aquafeed (fishmeal, pea protein, wheat gluten
and Palmaria palmata). Macroalgal inclusion resulted in more
positive 1δ13C values of the three glycolytic AAs (P < 0.01).
Two factors can explain the 1δ13C shift. First, fish oil, the
major source of lipids in the aquafeed, is more 13C depleted
than the other macronutrients. Second, the replacement of
high with low digestible carbohydrates (corn starch vs. algal
carbohydrates) lowered the energy content of the aquafeed due
to Atlantic salmon’s inability to digest complex carbohydrates.
For this reason, we posit that salmon fed diets with macroalgal
ingredients allocated a relatively higher proportion of lipids for
energy than the control group. Since these catabolized lipids
could not be sourced as metabolic intermediates for synthesizing
NEAAs, macroalgal inclusion resulted in more positive δ13CNEAA
values. This case study exemplifies the usefulness of knowing the
δ13C values of individual ingredients and/or macronutrients for
inferring metabolic routing from δ13CNEAA values.

For algivorous aquaculture species, aquafeed diets can
comprise completely of seaweeds. In a feeding trial, the sea
cucumber Apostichopus japonicus was either fed the microalga
Cylindrotheca fusiformis (CF; 21.1% protein, 10.8% lipid, 19.1%
carbohydrate) or the brown macroalga Sargassum thunbergii
(ST; 17.1% protein, 3.9% lipid, 50.0% carbohydrate) (Xu et al.,
2021). CF was tested as an alternative feed source to ST
because in China it is becoming increasingly difficult to meet
the demands of brown macroalgae for the rapidly growing sea
cucumber industry. The results showed that the growth rates
of sea cucumbers were highest on the CF diet despite the
relatively lower feed conversion efficiency compared to the ST
diet. Between the two treatments, the 1δ13C values of Pro, Asp,
and Ala were consistently more negative (from −5.0 to −2.5h)
in sea cucumbers reared on CF than ST diets. Xu et al. (2021)
proposed that these differences in part can be explained by the
relatively lower NEAA abundance in the CF diet. However, the
abundance was only lower for some and not all NEAAs (such as
Ala), and the absolute AA concentration was higher in the CF
than ST diet. It is also possible that the higher lipid content of
CF than ST led to more negative 1δ13C values of Pro and Asp in
the CF treatment. This hypothesis is, however, at odds with the
1δ13C values of Glx being similar between the two treatments.
Since Glu acts as a precursor for Pro via pyrroline-5-carboxylate
(see Figure 2). We propose a third hypothesis for the 1δ13C
differences, namely that the different macronutrient profiles of
the two algal diets affected gut metabolic activities and therefore
catabolic demands for certain NEAAs. For example, diets that
cause increased osmotic stress of the intestinal microbiome is
likely to surge the demand for polyamines, not only for gut

bacteria but also for the enterocytes (the cells of the intestinal
lining) (Wu et al., 2000; Rothe and Blaut, 2013). Although three
NEAAs, Glu, Pro, and Arg, can act as precursors for polyamine
synthesis via ornithine (see Figure 2), Pro appears to be the major
source of ornithine (Wu et al., 2000). It is also worth noting that
the1δ13C values of Asx were more negative in the CF treatment.
Asp is one of the major oxidative fuels for intestinal epithelial
cells (Wu, 2014). If Asp served as an energy source, it could have
decreased incorporation of dietary Asp into the body walls of the
sea cucumbers (the tissue being analyzed). Whether the two diets
affected gut metabolic activities differently remains speculative
on our part, but the sea cucumber study illustrates the need to
employ additional biomarkers of enzymatic activities and tracers
such as radiocarbon to better understand1δ13CNEAA controls.

Feeding trials can also comprise a trophic chain encompassing
primary producers and primary and secondary consumers.
In an elegantly designed feeding trial where the microalga
Chlorella spp. (18.5% protein, 11.1% lipid, 62.7% carbohydrate)
was fed to the copepod Calanus sinicus (74.3% protein, 20.4%
lipid, 2.8% carbohydrate), and the copepods to the European
anchovy, Engraulis encrasicolus (50.5% protein, 41.8% lipid, 1.1%
carbohydrate), Liu et al. (2018) determined the 1δ13C values
of the two consumers. In summary, the copepod 1δ13C values
were positive for Pro, Ser, Glx, and Gly (from 6.5 to 10.3h), but
not for Ala and Asx (−4.9 and −2.3h). The anchovy 1δ13C
values were positive for Pro and Asx (2.2 and 5.4h) but not
for Gly, Ser, Ala, and Glx (from −9.7 to −3.8h). The mostly
contrasting 1δ13C results of the two consumers can in large part
be ascribed to the different macromolecular compositions of their
diets. The copepods fed on a low protein but high carbohydrate
content diet, which would increase metabolic sourcing from
carbohydrates rather than proteins (and lipids) to de novo
synthesized NEAAs. The reason that the pyruvate group (Ala
and Asx; see Figure 2) has more negative 1δ13C values than the
α-ketoglutarate group (Glx and Pro) group is probably that the
pyruvate to α-ketoglutarate pathway losses two CO2 molecules
(see Figure 2). The anchovies fed on a diet almost completely
devoid of carbohydrates. Like the study’s authors (Liu et al., 2018),
we cannot completely explain the contrasting 1δ13C results of
Asx and Pro vs. Gly, Ser, Ala, and Glx. We suppose these results
are a mismatch of some NEAAs being redundantly ingested or
catabolized during digestive processes (i.e., Asx and Pro), which
would leave the remaining pool 13C enriched. For Gly, Ser and
Ala, the negative 1δ13C values might be explained by carbon
sourcing from 13C depleted glycerol via 3-phospoglycerate to de
novo synthesized carbon skeletons (see Figure 2).

The feeding trials reviewed above with sea cucumbers,
copepods, and anchovies show it can be complex making
inferences about macronutrient routing with just one aquafeed
ingredient. A study by McMahon et al. (2010) illustrates that the
complexity increases when consumers are fed compound feeds
with varying nutritional compositions. Juvenile mummichogs
(Fundulus heteroclitus) were fed high carbohydrate Vegi-Pro
(9.0% protein, 6.7% lipid, 82.0% carbohydrate partially from corn
meal, 2.3% fiber) or high protein Bio-Vita (63.8% protein: 28.6
lipid: 7.2% carbohydrate, 0.4% fiber) aquafeeds. Interestingly,
the two glycolytic AAs Gly and Ser had contrasting responses:
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1δ13CGly values were quite positive (∼3h) in the Vegi-Pro fish
indicating carbohydrate sourcing and the very negative (∼−8h)
in the Bio-Vita fish indicating sourcing of lipid moieties.
Conversely, 1δ13CSer values were slightly negative (∼−1h) in
the Vegi-Pro fish and quite positive (∼3h) in the Bio-Vita
fish indicating that metabolic routing of lipid moieties to Ser
synthesis was minimal. It is possible that carbohydrates were
sourced to Ser synthesis in both treatments, which leaves the
question of why it was not the case for Gly in the Bio-Vita
treatment. In comparison, in a more recent feeding study where
hatchery-reared Chinook salmon (Oncorhynchus tshawytscha)
were fed Bio-Vita, the 1δ13CGly values were positive (2.6h;
1δ13CSer was not reported) (Rogers et al., 2019), which raises the
possibility of mummichogs and salmon having species-specific
metabolic responses. In the mummichog study, the1δ13C values
of the third glycolytic AA, Ala, was negative in both treatments
indicating sourcing from lipids. We also want to highlight that
δ13CGlu values in fish mirrored those of the Bio-Vita diets, but
not among the Vegi-Pro fish (1δ13C: ∼5h). This might indicate
that Glu was synthesized to a lesser degree in fish feeding on
high than low protein diets. Moreover, gut microbial activity
may have been higher for fish feeding on Vegi-Pro owing to its
comparatively higher carbohydrate and fiber content, which in
turn could have increased Glu and Gln degradation in the gut
(Wu, 1998). Despite the multiple nutritional variables between
the two aquafeeds, the study sheds light on important controls
underlying macronutrient routing.
δ13CAA-based approaches can also be used to investigate

the contributions of gut microbial AAs to protein synthesis.
This would be particularly relevant for understanding the effects
of seaweed dietary supplements in herbivorous or omnivorous
fish species. For example, a feeding trial with Nile Tilapia
(Oreochromis niloticus) found that gut symbiotic microbes
supplemented de novo synthesized EAAs to host when dietary
proteins were replaced by hardly digestible fibers (Newsome
et al., 2011). While δ13CEAA fingerprinting is suited for assessing
gut microbial supplementation of EAAs to host, it is much
more complex understanding the controls underlying δ13CNEAA
patterns. The reason is that the host also synthesize NEAAs,
which means that it is necessary to consider three rather than
two NEAA sources, namely the food, gut microbes and host
synthesized NEAAs. In such cases, we see little scope for inferring
macromolecular metabolism from δ13CNEAA patterns.

The rapid expansion of alternative ingredients in aquafeeds
makes it more pressing to develop new authentication and
traceability methods. In this regard, δ13CAA analysis is
emerging as a complementary approach to already established
tracer methods. As reviewed above, δ13CAA values could
detect whether salmon fed on aquafeed containing milled
seaweed ingredients (15% seaweed substituted the caloric
equivalent of fishmeal and corn starch) (Wang et al., 2018b).
Likewise, in a feeding trial with black soldier flies reared
for aquafeed, the δ13CAA method could detect whether the
flies had fed on diets spiked with non-permitted bovine
blood residues (Belghit et al., 2021). This is a remarkable
result because the flies were fed a control diet for 7 days
after initially being fed a diet with 10% (w/w) bovine blood

residues. The study also assessed the suitability of legacy
molecular analysis tools such as qPCR and LC-MS/MS,
but only the δ13CAA method could detect whether the flies
had ingested bovine blood 1 week prior to being fed the
control diets. However, both legacy and novel authentication
methods displayed shortcomings. Hence, to detect particular
contaminants or ingredients across two trophic levels
Belghit et al. (2021) recommended a tiered combined use
of complementary approaches.

OUTLOOK AND PERSPECTIVES

Given the rapid expansion of aquaculture and the need to find
more sustainable and low environmental impact proteinaceous
ingredients (i.e., alternatives to fish meal and soybean) for
aquafeed production, macroalgae stand out as an important
alternative that has the potential to improve feed efficiency and
fish health (Hua et al., 2019). Globally, more than 11,500 seaweed
species have been identified (Guiry and Guiry, 2022). Their
early divergence and genetic diversity have led to a range of
different bioactive and nutritional compounds to be evolved.
Yet, only 34 different seaweed species are represented in the
142 studies reviewed for their immunological properties by
Thépot et al. (2021). Probably due to low commercial interests,
only two studies out of the 142 studies evaluated the effects of
seaweed dietary supplements in marine herbivorous fish, i.e.,
species that would naturally forage on seaweed in the wild.
For both carnivorous and herbivorous fish species, δ13CAA
based approaches can provide further insight into how fish
utilize macroalgal macronutrients. As with any other novel and
relatively untested aquafeed ingredients, it is important to rely on
complementary approaches to holistically assess the suitability of
macroalgae through their nutritional value and potential hazards
such as potential toxic metals (National Food Institute, Technical
University of Denmark, Denmark, Monteiro et al., 2019).

The case studies presented in this paper have primarily
focused on using δ13CAA to trace macroalgal ingredients and
detect gut microbial supplementation of AAs to host. Another
promising δ13CAA application would be the use of marine
protist and heterotrophic microalgae as an aquafeed ingredient
(Klamczynska and Mooney, 2017; Fossier Marchan et al.,
2018). These promising alternative aquafeed ingredient can
be cultured without light and in higher densities compared
to photoautotrophic algae. Depending on the culture strain
and conditions during cultivation, it is possible within a
short time span to produce mixotrophic heterokonts such
as Schizochytrium sp. under heterotrophic conditions that
contain >60% proteins or >70% lipids. According to a
cradle-to-gate assessment of whole algal protein products,
heterotrophically grown microalgae (i.e., through bioreactors and
fermenters) also leave a smaller CO2 footprint compared to
terrestrial protein sources such as soy byproducts (Thinkstep,
2015). However, whole algae proteins contain very high
levels of NEAAs compared to other proteinaceous aquafeed
ingredients, e.g., animal-based proteins (Klamczynska and
Mooney, 2017). For this reason, it will be important to
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develop biorefinery methods for augmenting the AA profiles
of heterotrophically grown microalgae for aquafeed, such as
altering their nutrient growing substrate (Nham Tran et al.,
2020). Another possibility to augment the nutritional profile
of aquafeed containing whole algae protein sources would be
to mix them with other functional feed additives such as
macroalgae and spent yeasts (Rakowska et al., 2017). From an
analytical perspective, the addition of multiple feed additives to
aquafeed increases the complexity of tracing the trophic fate of
their macronutrients.

While the δ13CEAA fingerprinting method holds considerable
promise for investigating the biosynthetic of EAAs from
a diverse set of feed additives, the phylogenetic resolution
of fingerprints beyond algae, bacteria, fungi and plants is
still unknown and needs further exploration. The δ13CEAA
variability within each of the broad taxonomic groups can
be large, which may lead to unspecific results. Also, the
ability of fingerprints to detect microbial fermentation of feed
additives remains unknown. To overcome these constraints
and explore the phylogenetic specificity and robustness of
the fingerprinting method, a concerted transdisciplinary
effort is needed to expand δ13CAA reference libraries of
primary production sources. It will be key to investigate
how environmental conditions and nutritional composition
of growth media affect algal δ13CEAA fingerprints (Larsen
et al., 2015). For example, crude protein, total lipid, and
secondary metabolite (e.g., fucoxanthin and polyphenols)
concentrations of algae have been found to vary considerably
across seasons and geographic locations (Steinberg, 1989;
Fleurence, 1999; Nomura et al., 2013). It is likely that algal
internal organs with high concentrations of storage lipids
and secondary metabolites can affect δ13CEAA profile due
to the upregulation of these compounds may affect 13C
fractionation of upstream EAA precursors (Hayes, 2001).
Related to growth conditions and substrates, litter-using and
humus-using ectomycorrhizal fungi appear to have distinctive
δ13CEAA profiles. This could be due to the conversion of
source carbon to metabolic AA precursors affecting isotopic
discrimination (Pollierer et al., 2019). In microbial mats
dominated by anaerobic methanotrophic archaea, δ13CEAA
patterns are variable and not fixed as is the case with
photoautotrophic microalgae (Takano et al., 2018; Stücheli
et al., 2021). During biosynthesis of the pyruvate family AAs,
13C fractionation widens between short- and long-chain carbon
AAs with increasing 13C depletion of the substrate methane
(Takano et al., 2018). While microbial mats are an unlikely
aquafeed ingredient, the examples above serve to show the
limitations and possibilities of δ13CEAA fingerprints for tracing
protein sources.

To deepen our understanding of the metabolic routing of
macronutrients and their constituent molecules with δ13CAA-
based methods, further, carefully designed feeding trials are
warranted. In terms of assessing trophic EAA discrimination
and inferring gut microbial EAA supplementation to the
host, it is key that the metabolically active tissues being
analyzed are in full equilibrium with the diet. Feeding trials
where animals are switched to a diet with distinct isotope

values consistently show memory effects of the former diet
(Tieszen et al., 1983; Bauchinger and Mcwilliams, 2009; Larsen
et al., 2009b; Buchheister and Latour, 2010). It is also key
that feeding trials strive to vary only one nutritional or
isotopic parameter at a time. The aforementioned totoaba
fish feed trial kept dietary levels of aquafeed lipids and
carbohydrates fixed while varying protein levels by changing
the ratio of digestible to non-digestible proteins (Barreto-Curiel
et al., 2019). This was done by crosslinking the proteins by
exposing them to formaldehyde and heat. Another approach
that simplifies the nutritional interpretation of δ13CAA data
is maintaining a fixed macromolecular composition between
the control and the experimental diets as demonstrated in
the aforementioned salmon feeding trials with macroalgal
ingredients (Wang et al., 2018b, 2019). It is also possible to keep
the nutritional composition fixed and instead change the isotopic
values of the constituent ingredient and/or macronutrients
being used in the feed formulation. For example, substituting
C3 plant ingredients (e.g., soy) with C4 plants (e.g., maize),
or freshwater with marine algae. This approach based on
naturally occurring isotope variability would in most cases
be sufficient to trace metabolic routing of macronutrients in
question, and it is less costly and laborious than using isotope
labeled ingredients.

Disentangling the direct and indirect interactions between
seaweed and their digested derivatives during the metabolic
pathways in the animals presents a significant challenge. While
δ13CAA is an emerging and promising tool in understanding
metabolic routing of aquafeed ingredients and macronutrients,
it cannot stand alone. Interpretations of δ13CAA data can be
enhanced by merging with other biomarkers as demonstrated
in a comparison of traditional molecular biomarkers (e.g.,
qPCR and LC-MS/MS) and δ13CAA for their ability to trace
adulterated ingredients in the aquafeed chain (Belghit et al.,
2021). Overall, the use of δ13CAA as a biomarker will allow
feed formulations to be more nutritionally optimized and
refined to specific farmed fish species. The data collected can
also be used in further downstream assessments, such as life
cycle analysis on fish production impact and sustainability
through more accurate data in dietary amino acid contribution
(Cooney et al., 2021). In addition, δ13CAA can advance
our understanding of the dietary requirements of new
farmed fish species and continue our exploitation of novel
aquafeed ingredients, i.e., algae, bacteria, protists, fungi,
annelids, and insects.

MATERIALS AND METHODS

Statistical Methods
To compare δ13CAA patterns among phylogenetic groups and
treatments, we applied principal component analysis (PCA) (R:
prcomp) and linear discriminant function analysis (LDA) (R:
MASS). PCA is commonly used for exploring δ13CAA variability
and patterns because it is an unsupervised technique that seeks
to maximize variability among samples while reducing the
number of dimensions. LDA is a supervised technique that
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seeks to maximize variability among the predefined groups or
classes with the goal of predicting specific protein sources with
the δ13CAA fingerprinting approach. For the PCA, we used the
covariance matrix approach that preserves variance as the range
and scale of variables are in the same units of measure. Based
on the first and second LD scores, we used 95% prediction
ellipses to visualize variability relative to the group centroid.
We applied Multivariate Analysis of Variance (MANOVA, R:
manova) in conjunction with Pillai’s trace to test the null
hypothesis that groups have a common centroid in a dependent
variable vector space. A rejection of this hypothesis entails
that the groups have significantly different δ13CEAA patterns or
fingerprints. All data for multivariate comparisons were first
assessed for homogeneity of variance by using Fligner-Killeen
tests (R: fligner.test) and visually checked for departures from
normality on Q-Q plots. R version 3.6.3 was used for statistical
analyses (R-Development-Core-Team 2020) and ggplot2 for
figure production (Wickham, 2016).
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