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In this study we reviewed the use of genetic information in the Ecologically or Biologically
Significant Marine Areas (EBSA) of Convention on Biological Diversity (CBD). We also
evaluated genetic indicators for each criterion of important marine areas. We proposed five
genetic indices, mainly based on microsatellite analysis (e.g., private allele frequency and
number of cryptic species), then selected EBSAs in tropical and temperate zones of Japan
based on eight coral species as a case study. Finally, we compared the results with the
findings from conventional species-based EBSAs. In the EBSAs genetic information was
mainly used in the Northern Hemisphere, particularly in the Baltic Sea; it was rarely applied in
the Southern Hemisphere and Asian regions. Although typically applied to large organisms,
genetic information is used to various organisms, including benthic and bacterial
communities. Genetic data are used as indicators of diversity and endemism. Genetic
indices were available for all seven EBSA criteria, but only five indices of three criteria were
used. Examination of important areas of corals in the temperate zone using these indices
showed that the indices without genetic indicators extracted a large number of important
areas in the tropics; however, the use of genetic indicators identified important locations,
including in temperate zones. Comparison with conventional, mainly species-based non-
genetic methods showed less than 50% agreement, although particularly important sites in
marine protected areas were identified by both methods. While there is still more work to be
done, such as consideration of the number of survey sites or target species, one reason is
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that species-basedmethods tend to evaluate tropical areas higher. Therefore, these genetic
indices are useful for examining important regions, particularly in temperate zones; they
revealed cryptic lineages, indicating that many unknown marine taxa should be considered
in vulnerable marine areas. Some indicators could be extracted with additional effort, such
as population size estimation, immigration, or the use of next-generation sequencing, thus
guiding future studies. Because limited genetic information was available in the early stages
of EBSA selection, there is a need for systematic surveys and evaluations, particularly in the
Southern hemisphere, Asian region, and in small organisms.
Keywords: marine protected area (MPA), phylogeny, coral, spatial planning, Aichi 2020 target, biogeography,
macro ecology
INTRODUCTION

The seven Ecologically or Biologically Significant Marine Areas
(EBSA) criteria were introduced for identification of important
areas for biodiversity at high sea under the Convention on
Biological Diversity (CBD) (DFO, 2004; CBD Secretariat, 2008;
Dunn et al., 2014). In 2010, numerical targets for protected areas
were adopted in the CBD-COP10 as the Aichi Biodiversity
Targets. Subsequently, discussions of important marine areas
based on EBSA and other similar indicators have been
underway in the open ocean, as well as the territorial waters and
Exclusive Economic Zones of various countries (CBD, 2010; Bax
et al., 2016; Asaad et al., 2017; Yamakita et al., 2017). Some of the
indicators used for EBSA are based on genetic data. For example,
the biodiversity criterion explicitly describes genetic diversity. In
addition, the use of field genetic information (e.g., environmental
DNA; eDNA) has become popular after the COP10. The
application of such genetic methods is not limited to surveys of
species distribution; it includes the collection of population genetic
information (Ficetola et al., 2008; Tsuji et al., 2020; Miya et al.,
2020). Therefore, the importance of managing genetic information
for various types of ecosystem monitoring and assessment should
be increase (Muller-Karger et al., 2018; Hoban et al., 2020).

Many marine taxa do not have clear correspondence between
morphological species and genetic species. Recent genetic analyses
of some common species have revealed cryptic species (Parsons,
1996; Bennetts et al., 1999; Krück et al., 2013; DeBiasse and
Hellberg, 2015; Tyler et al., 2020). In particular, morphological
identification of scleractinian corals (i.e., main constituents of
coral reefs) is hampered by the paucity of species-specific
morphological features and high morphological plasticity (Muko
et al., 2000; Todd, 2008) accompanied by genetic complexes
caused by hybridization, as well as incomplete lineage sorting
(e.g., reticulate evolution) (Kenyon, 1997; Willis et al., 2006;
Fukami, 2008; Richards and Hobbs, 2015). There may be many
cryptic coral species in the Japanese temperate region (Fukami,
2008). Thus, it is difficult to identify species with high certainty,
either using morphological features or individual-based
phylogenetic analysis methods; it is essential to utilize
population genetic information to evaluate hidden species
boundaries and species diversity (Filatov et al., 2013; Yasuda
et al., 2014; Kitano et al., 2015; Nakabayashi et al., 2019; Zawada
in.org 2
et al., 2019). Considering the above complexity and the difficulty of
using morphospecies as indicators, accurate estimation of coral
biodiversity and important marine areas is difficult without
geological genetic information. Therefore, we propose
population genetic indicators of major coral species to fit the
EBSA criteria; we performed a case study to identify important
locations in the North West Pacific around the Japanese
Archipelago (Yasuda et al., 2019). In addition, there is a lack of
quantitative evaluations using genetic information to select
important areas. To assess the utility and representativeness of
genetic information as an indicator of important areas, case studies
are needed to compare the results of genetic index-based methods
and classical species or community-level methods. This would
allow better identification of important areas for conservation
from the perspective of land/seascapes and biogeography.

Here, we systematically review the use of genetic information in
the reports of the EBSA regional workshops under the CBD. We
focus on bias according to region, criteria, and organism. We also
describe the genetic indices used for EBSA proposed by Yasuda
et al. (2019), as well as the correspondence between genetic indices
and the EBSA criteria; we perform a spatial comparison of the
results. Finally, we compare the proposed genetic EBSA indicators
and existing indicators, which are typically based on conventional
biological community information.
METHODS

Review of Studies Used for the EBSA
Criteria, Including Genetic Indices
All 17 EBSA regional workshop reports published on the CBD
website as of April 2020 (15 regions including two updates
regarding the northeast Atlantic) were investigated (https://
www.cbd.int/ebsa/). A list of target areas, criteria, and target
organisms referring to “genetic*” was extracted. In particular,
when a reference contained “genetic*,” we examined whether the
genetic information was reflected in the text. We also extracted
information regarding target ecosystems and organisms to assess
potential target biases. To show regional differences concerning
the relative number of areas that use genetic information, we
conducted statistical tests using the Base and RVAideMemoire
packages (v. 0.9-80) in R software. Fisher pairwise multiple
May 2022 | Volume 9 | Article 823009

https://www.cbd.int/ebsa/
https://www.cbd.int/ebsa/
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Yamakita et al. EBSA by Genetic Structure
comparison was applied to the comparison of each regional data.
For hypothesis testing, we evaluated the difference between Asian
regions and other areas, and the difference between the Northern
and Southern Hemispheres. We performed Fisher’s exact test for
this purpose. For the analysis of the regional difference, we
limited the data only for the areas approved by CBD and
recent candidate (OSPAR/North East Atlantic).

Potential Indicators and Proposed
Important Marine Areas
We reanalyzed population genetics indicators to select EBSA of
coral reefs on the Japanese coast (Yasuda et al., 2019). To
understand the background of the indicators, we listed and
ranked potentially applicable indicators based on expert
discussion, then described the reasons for selecting
specific indicators.

For the genetic indicators we used the number of unique
alleles as criterion 1 (uniqueness or rarity). The cloning rate and
the presence of environmental adaptive genes served as criterion
4 (vulnerability, fragility, sensitivity, or slow recovery). The
number of cryptic species and the allelic richness constituted
criterion 6 (biological diversity).

Specimens were collected in 31 regions from more than 4000
colonies, including 18 regions in temperate areas (Figure 1).
Among these regions, Tatsukushi in Tosa-shimizu City, Kouchi
in western Shikoku Island, and Sekisei Lagoon in Ishigaki City in
western Okinawa were selected for restoration area of coral reefs
based on the Law for the Promotion of Nature Restoration.
Locations at the tip of the Japanese peninsula, on the Pacific side
of Japan, have large coral reefs, even in temperate areas.

The genetic values of indicators based on microsatellite
analysis were extracted for Acropora pruinosa (Brook, 1892),
Acropora solitaryensis (Veron and Wallace, 1984), Acropora cf.
glauca (Brook, 1893), Acropora hyacinthus complex (Dana,
1846) (Kitano et al., 2020), Pocillopora damicornis (Linnaeus,
1758), Pocillopora acuta (Lamarck, 1816), Pocillopora verrucosa
(Ellis and Solander, 1786), and Heliopora coerulea (Pallas, 1766)
(Published data from Yasuda et al., 2014; Kitano et al., 2015;
Nakabayashi et al., 2019; Yasuda et al., 2019; Pipithkul et al.,
2021, unpublished raw data also available at https://doi.org/10.
5061/dryad.7pvmcvdv3 and orijinal values of estemated
indicators are avirable on the Supplementary Table Data
Sheet 1); most of these are dominant taxa, particularly in
temperate areas.

To extract each indicator, we considered the mean number of
unique alleles for each (newly identified) subspecies of the above
taxa, except H. coerulea, which exists in a particularly limited
area. We averaged the clone rate of two species with sufficient
specimens—A. hyacinthus and A. pruinosa. We evaluated the
presence/absence of allele G at C29226S281 which previously
applied for Acropora species (Jin et al., 2016) for the species A.
hyacinthus is the only one species with sufficient genetic
information and most widely distributed species not limited to
temperate like other species. We counted the number of taxa,
including newly identified subspecies (cryptic species). We
considered the mean allelic richness, standardized according to
Frontiers in Marine Science | www.frontiersin.org 3
genus. Allelic richness was calculated as the percentage per genet
in the sampled regions. We used FSTAT ver. 2.9.3.212 (Goudet,
2002) to calculate allergic richness for each population. This
program uses rarefaction to standardize allelic richness to the
smallest N in a comparison.

For the indicators which were not used genetic information we
used latter variables (details of some indicators are explained in
Supplementary Document Data Sheet 2). For Criterion 2 (special
importance for life history stages of species), we used the center of
connectivity networks according to ocean currents (Nakabayashi
et al., 2019). For Criterion 3 (importance for threatened,
endangered, or declining species and/or habitats), we used the
number of endangered coral species habitat using range of each
species (Ministry of the Environment Japan, 2009; Sugihara et al.,
2015). For Criterion 5 (biological productivity), we used the mean
of current coral area (Nature Conservation Bureau Environment
Agency and Marine Parks Center of Japan, 1994) and predicted
future coral area (Yamakita, 2018). For Criterion 7 (naturalness),
we used the length of natural coast (Nature Conservation Bureau
Environment Agency and Asia Air Survey Co. Ltd., 1994). To
predict future coral area, we applied a model that used the
generalized linear method for the areas of corals in an
approximately 10-km mesh. As environmental variables, we
used the winter sea-surface temperature, chlorophyll a,
particulate inorganic carbon, water depth, coastline length, wave
height, and tidal range (Kumagai et al., 2022). The predicted area
was limited to existing areas of coral reefs and algal beds. The
correlation of the model with the current status was 0.64.

EBSA extraction was conducted in two regions of the
Japanese Archipelago (Figure 1). One region comprised all
areas both temperate and tropical zones (areas with tropical
zones hereafter); the other region comprised only temperate
zones. This is because other studies have shown a biogeographic
boundary due to the Kuroshio Current (Kai et al., 2022), and our
results also show a boundary of genetic differences between
temperate and tropical zones for several coral species. The
values of each indicator were ranked as low, middle, or high,
in accordance with the EBSA selection process by the calculation
described in Yamakita et al. (2015). Although the highly
evaluated places met the EBSA criteria, we conducted further
prioritization using multiple criteria that have been proposed for
systematic EBSA selection (Ardron et al., 2014; Yamakita et al.,
2015; Yamakita et al., 2017). Data used for this calculation of was
provided as Supplementary Table Data Sheet 1.

For prioritization we used the mean of seven criteria, number
of highly evaluated criteria (count Max hereafter) among seven
criteria, means of three criteria that used genetic valuables, and
count Max among the three criteria. The result of prioritization
was ranked as low, middle, or high. Other prioritization methods
such as complementarity analysis using Maxan were not used
(Ball and Possingham, 2000) because of the difficulty comparing
result of areas with tropical zones and temperate zones only
which has different number of no data places by this analysis.
The analysis was conducted using 1° grids. For grids with
multiple sample sites, the mean value after ranking was used
for analysis.
May 2022 | Volume 9 | Article 823009
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We evaluated differences in the proportion of highly
evaluated grids between tropical and temperate zones. Fisher’s
exact test was conducted for each criterion, with Bonferroni
correction for multiple comparisons. Next, the sums of the
numbers of highly evaluated grids for criteria-based (Criteria 1,
4, and 6) or non-criteria-based (Criteria 2, 3, 5, and 7) genetic
indicators were used to compare highly evaluated grids between
tropical and temperate zones. We used the exact conditional test
of independence, a test for three-way categorical table runs, with
the Cochran-Mantel-Haenszel chi-squared test function in
R software.

Comparison of Important Marine
Areas According to Genetic and
Species Diversity
Important areas selected by genetic indicators were compared
with areas selected by conventional assessment based on species
(Yamano et al. in preparation and partly published in the latter
Frontiers in Marine Science | www.frontiersin.org 4
reports [Shirayama, 2016; Kitano et al., 2020]; compiled data also
available in the appendix). The conventional species-based
assessment used the following indices for important corals off
the coast of Japan.

Criterion 1 (uniqueness or rarity) was ranked via
complementarity analysis of endemic species. Criterion 2
(special importance for life history stages of species) was
evaluated according to ocean current connectivity using the
larvae transport model of Marine Geospatial Ecology Tools
(Roberts et al., 2010; Treml et al., 2012). Criterion 3
(importance for threatened, endangered, or declining species
and/or habitats) was based on the number of Red List species in
Japan and ranked via complementarity analysis (https://www.
env.go.jp/nature/kisho/sango_tokusei.html). Criterion 4
(vulnerability, fragility, sensitivity or slow recovery) was
evaluated using coverage change after bleaching in 1998.
Criterion 5 (biological production) was evaluated using coral
reef development based on water temperature (18°C, 13°C, and
FIGURE 1 | Study site and grid. Dots, sampling locations; arrows, areas for restoration of coral reefs; green, national parks and marine parks.
May 2022 | Volume 9 | Article 823009
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10°C of the coldest month). For Criterion 6 (biological diversity),
the number of species was used. For Criterion 7 (naturalness),
the ratio of natural coast was used (Nature Conservation Bureau
Environment Agency and Asia Air Survey Co. Ltd., 1994).
Although assessment based on species (Shirayama, 2016)
considers two methods to integrate seven criteria (i.e., the use
of different datasets and the use of distinct thresholds), we
considered only the similar method of integration for this
analysis (i.e., mean and count Max of seven criteria, and the
mean and count Max of the three criteria that used for
genetic variables).

To compare the genetic and conventional evaluations, we
applied Cohen’s kappa statistic, which represents coincidence on
a scale of -1 to 1; a value of > 0.6 is considered significant
coincidence and a higher value indicates a stronger relationship
(Yamakita et al., 2019).
RESULTS

Review of Studies Using Genetic Indices
in EBSAs
Among the 16 regional reports, genetic information was included
in 14 (Table 1). Genetic information was used 40 cases for seven
criteria in 347 EBSAs and candidate areas (2%). The percentage
was also 2% using five criteria as the denominator, excluding two
criteria (Criteria 5 [biological productivity] and 7 [naturalness])
that were not based on genetic information.

Thirty-five areas had genetic information (10% of 347 EBSAs)
(Table 1 and Figure 2). Red shapes indicate areas where genetic
indicators were used. Areas with genetic information were in the
Baltic Sea, northeast Atlantic, northwest Atlantic (Arctic,
Caribbean Sea/western mid-Atlantic), and eastern tropical and
temperate Pacific. The differences were significant for Baltic Sea
vs. East Asia and Baltic Sea vs. southeastern Atlantic (p < 0.05;
pairwise comparisons using Fisher’s exact test with Hochberg
adjustment for multiple comparisons. Note that the 16 regions
were regarded as different groups). A significant difference was
also detected between the Asia and other regions; Northern and
Southern Hemispheres (p = 0.01 and p = 0.05; Fisher’s
exact test).

As target organisms, cetaceans (whales and dolphins) were
used most frequently (15 times). Invertebrates (except coral) and
fish were used 14 and 12 times, respectively; and general
statements about genetic diversity that do not refer to any
particular species was tied with birds (9 times). Bacterial
communities were used as the target organisms twice, as
representatives of hydrothermal and deep habitats. The same
study or series of studies by the same authors tended to be cited
for a particular region, such as birds in the northeast Atlantic.
This is presumably because of insufficient data or because
regional workshops are not required to review all
genetic research.

Corals were used as target organisms of genetic evaluation
seven times including two locations which did not appeared on
the CBD approved area. These included three deep sea corals and
Frontiers in Marine Science | www.frontiersin.org 5
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two studies that used different criteria in the same areas. The
studies demonstrated the distribution of endangered species,
genetic isolation, human impact, genetic connectivity, and
discontinuity (Le Goff-Vitry and Rogers, 2005; Miller et al.,
2008; Magalon et al., 2011; Morrison et al., 2011; Ross
et al., 2017).

Genetic evaluation was performed via phylogenetic tree
construction using mitochondrial 16S DNA and intraspecific
analyses of diversity and connectivity that involved microsatellite
markers (Le Goff-Vitry and Rogers, 2005; Morrison et al., 2011;
Ross et al., 2017). Although most analyses were population-
based, two focused on invertebrate communities. No study
focused on genetic data for multiple species.
Case Study of Important Marine Areas:
Selection of Indicators
The following genetic indicators are listed in Table 2: 1) genetic
diversity; 2) genetic structure, determined by simple clustering or
structure analysis; 3) inter- and intra-genetic structures of
populations; 4) phylogenetic analysis; 5) almost-fixed model of
migration; 6) and 7) advanced flexible simulations (e.g.,
migration and branching); 8) population history; and 9)
adaptation, determined by simple detection or using statistics.
Use of the zooxanthellae genetic structure was excluded based on
data availability and analysis complexity.
Frontiers in Marine Science | www.frontiersin.org 6
Next, we identified indicators that represented the EBSA
criteria and indicators that were readily measurable; these were
used to assess genetic indicators of EBSA. Table 3 shows criteria
representativeness from one (low) to five (high).

With respect to genetic diversity, the number of private alleles
was considered; this potentially represents Criteria 1 and 6. The
number of private alleles increases in the presence of genetic
structure or local adaptation. Therefore, it was considered an
appropriate indicator of diversity or uniqueness.

Allelic richness was also considered as an indicator of Criteria
6 and 4. A higher allelic richness value indicates a larger
population and significantly greater population structure.
However, when the degree of population structure is high,
local diversity may be low despite high overall diversity.
Furthermore, harmful alleles may accumulate when the
population size decreases.

With respect to genetic structure, genetic structure analysis
and identification of hidden lineages was considered. The
discovery of hidden species is likely to fall under Criteria 1 and
6. Hidden lineages fell under Criterion 3. The reliability of other
analysis methods will be affected by these results because they
assume a uniform genetic structure within the local population.

With respect to structure among and within populations,
genetic distance (Fst) was regarded as an indicator of gene flow.
By examining the centrality of the network based on the genetic
distance, this value indicates Criterion 2 over long periods. In
FIGURE 2 | EBSAs in the CBD repository (added information about OSPAR/North East Atlantic) and distribution of use of genetic information. Red and blue, areas
that did and did not, respectively, use genetic information.
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addition, the edge of the network contains habitat for
endangered species (i.e., Criterion 3). Isolation in the network
could be an indicator of Criterion 4 in some instances. Criterion
5 represents the inverse of diversity. A high genetic flow reduces
the number of locally specific characteristics but increases overall
adaptation in the target area.

Fis, the inbreeding coefficient, was used as an indicator of
structure among and within populations. If the inbreeding
percentage is high, the target population is likely to have high
vulnerability (Criterion 4). A high rate of inbreeding
corresponded to Criteria 3 (endangered species), 5, and 6.

With respect to branching relationships between populations
or individuals, we did not consider specific indicators for each
location. Such analysis involves the visualization of phylogenetic
relationships, which are calculated from genetic distances (e.g.,
Fst). Although the result was used to create clustered zones, it
was not a sufficient indicator to show the status of each location.
In terms of population differentiation, the numbers of
overlapping genetic boundaries between multiple and cryptic
species were considered. Because of the plethora of boundaries,
we included in the analysis only boundaries between temperate
and tropical zones.
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The migration rate was calculated by assignment test. Based
on the migration rate, the centrality of the network was
calculated as an indicator of Criterion 2 (importance in life
history). Furthermore, the percentage of self-seeding was
regarded as an indicator of biological productivity in the target
taxon. The assignment test result is also related to the origin of
diversity and the hierarchical structure of differentiation.
Therefore, exchange of diversity (overall or local) should be
considered when analyzing diversity. Calculation of this index
based on Fst results in significant variance and is dependent on
the model. Therefore, it is important to specify the target of
analysis and establish appropriate assumptions prior to the
analysis. Because of these reasons migration rate was not used
in our case study.

With respect to population history, clonal structure and
effective population size were considered as suitable indicators.
Clonal rate was presumed to decrease the value (score) of
Criterion 6 (genetic diversity) and increase the score of
Criterion 4 (vulnerability). It could also be an indicator
of Criterion 5 (productivity) for specific clades such as
staghorn corals in a local area. However, most species targeted
in this study do not reproduce often. Therefore, regardless of
TABLE 2 | Types of genetic indicators and example of methods based on allele or sequence.

Target types Model types Method examples
allele-based (such as
microsatellite)

Sequence (SNP)-based

1) Genetic diversity Summary Statistics Number of alleles Number of segregating sites
Heterozygosity(observed,
expected)

Nucleotide diversity in population

Private alleles
Private haplotype

Statistics between populations Heterozygosity between
populations

Nucleotide diversity between
populations

Nei’s net-distance(genetic distance)
2) Genetic structure Simple clustering (considered as island model) PCA

Estimation by almost fixed model (island model based
clustering)

STRUCTURE STRUCTURE

3) Inter- and intra-genetic
structures

Estimation by almost fixed model Fst, Fis, Fit Fst, Fis, Fit, f3, f4

4) Phylogenetic tree and
relationships between
populationss

Application of molecular evolution model Phylogenetic tree (sequence
information)

Phylogenetic tree

Haplotype network (sequence
information)

Haprotype network

5) Immigration rate Estimation using island model (almost fixed model) Estimate from Fst (variance will be
high)

Estimate from Fst (However
vatiance will be high)

6) Immigration and branching
period

Estimation using more flexible simulation Several applications, such as IMa2.
(Result will be model dependent.)

Several application such as IMa2.
(Result will be model dependent.)

7) Immigration and branching
and merging

Estimation using more flexible simulation (divergence and
admixture)

TreeMix (Massive genome wide
data will be needed)

8) Population history Analysis using neutrality Testing divergence from nutrality
using such as Tajima’sD

Single population based dynamics model (population
structure will be absorbed in the difference of population
size)

PSMC, etc.

Application of user-defined model ABC, etc.
9) Adaptation Summary statistics Testing nutrality such as Tajima’sD Testing nutrality such as Tajima’sD

No model needed (many regions needed) Individual analysis Outlier analysis (such as outlier,
genome scan)
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whether corals are quantitatively increased, productivity does not
contribute to their reproduction. Thus, productivity may not be
an effective indicator. Some taxa that propagate by fragmentation
(e.g., staghorn corals) or a regional colony of large populations
may also correspond to Criterion 1 or Criterion 2 in addition to
Criterion 5. However, such cases will be specific to species or
region. Although fragmentation may increase the clonal rate in
corals, sexual reproduction is the main mechanism to maintain
their heterozygosity or genetic diversity (Ayre and Hughes,
2004). In addition, the vulnerability of clonal populations to
environmental change is situation-dependent (Lasker and
Coffroth, 1999).

Notably, the effective population size can be estimated based
on heterozygosity. Although it is difficult to set the generation
time for corals, whole-genome analysis enabled estimation of
past population history. Estimated population size can be used as
an indicator of Criterion 5. The population history and
differentiation size can be used as indicators of Criterion 6. In
addition, past changes in the population may enable assessments
of vulnerability and susceptibility (Criterion 4). We considered
the presence or absence of environment-adaptive genes. We
examined stress-tolerance genes (Jin et al., 2016), particularly
for high water temperatures, as an indicator of Criterion 4 and
uniqueness (Criterion 1). This aspect also might be related to
Criterion 5, in terms of adaptation. If different alleles are adaptive
in different populations, the diversity (Criterion 6) of the
population might also be increased.

We applied five genetic indicators for EBSA Criteria 1, 4, and
6 on the Japanese coast. The number of private alleles was used
for Criterion 1. The clonal rate and the presence of
environmental adaptive genes were used for Criteria 4. The
number of cryptic species and the allelic diversity were used
for Criterion 6. We also considered genetic indicators for Criteria
2, 3, and 5; however, we did not use any of these indicators. For
Criterion 2, only a weak correlation was observed between
Frontiers in Marine Science | www.frontiersin.org 8
genetic distance and the distance matrix based on ocean
currents. In addition, similar geographical distribution were
observed between genetic distance and other genetic indices.
Therefore, we did not adopt this genetic connectivity indicator;
we used a distance matrix based on ocean currents. However,
genetic distance was used as a reference to separate areas for
analysis (i.e. separation of temperate and tropical was supported
by genetic distance). For Criterion 3, we considered allele
heterozygosity and the number of cryptic species. However,
accuracy was low for allele heterozygosity because of the small
sample size; the number of cryptic species was more appropriate
as an indicator of biodiversity. For Criterion 5 (productivity), the
estimated population according to genetic analysis was not used
because availability of data on coral reef area, the inadequate
accuracy of heterozygosity-based estimation, and variation in the
estimated population, which depends on the model assumptions.

Case Study of Important Marine Areas:
Results
Figure 3 shows the results of the evaluation of indicators for
EBSA criteria. The raw values were ranked high, middle, or low,
as instructed in the EBSA protocol (Figures S-1-3-1A in
Supplementary Document Data Sheet 2). If there were two
locations in the same grid, the values were averaged. The tropical
zone was highly rated for some indicators. For Criteria 5, 6, and
7, high values were rare in the temperate zone. For Criteria 2 and
4, high values tended to be found in the temperate zone.
Comparison of the ratio of highly evaluated grids between the
temperate and tropical zones yielded a significant difference for
Criterion 5 (p < 0.007; significance level after Bonferroni
adjustment for multiple comparisons). Furthermore, the
numbers of highly evaluated grids significantly differed in the
temperate and tropical zones between the genetic (Criteria 1, 4,
and 6) and non-genetic (Criteria 2, 3, 5, and 7) criteria (p = 0.005,
exact conditional test of independence in 2 × 2 × 2 tables).
TABLE 3 | Considered indicators and representativeness of each criterion.

No. in
Table 2

Target Indicator Specific method Representativeness of each criterion
(5 is the most suitable)

MS or
NGS

“+”:actual use “-”:Candedate not used

Cr.1 Cr.2 Cr.3 Cr.4 Cr.5 Cr.6 Cr.7

1) Genetic diversity Number of private alleles 5 + 1 1 1 1 4 1 MS
1) Genetic diversity Allelic richness 1 1 1 4 1 5 + 1 MS
1) Population history Clonal rate 3 2 1 5 + 4 1 1 Depends
2) Genetic structure/diversity Identification of hidden lineages or cryptic

species; Genetic structure/clustering
4 1 3 – 2 1 5 + 1 NGS

3) Inter- and intra-genetic
structures of populations

Genetic distance Pairwise Fst and
network analysis

1 5 – 3 2 1 4 1 NGS/MS

3) Inter- and intra-genetic
structures of populations

Inbreeding coefficient Fis from heterozygosity
(observed, expected)

1 1 3 – 5 3 3 1 MS/NGS

5) Immigration rate Estimated the amount of migration by
original population of individual sample

Assinment Test 1 4 1 2 3 4 1 MS

8) Population history Demography/Effective population size Ne PSMC MSMC 1 1 1 4 5 – 4 1 NGS
9) Adaptation Presence of environment adaptive gene 4 1 1 5 + 4 3 1 NGS
May 2022 | Volume 9 | Articl
Cr.1, uniqueness or rarity; Cr.2, special importance for life history stages of species; Cr.3, importance for threatened, endangered, or declining species and/or habitats; Cr.4, vulnerability;
fragility, sensitivity, or slow recovery; Cr.5, biological productivity; Cr.6, biological diversity; Cr.7, naturalness; MS, microsatellite; NGS, next-generation sequencing.
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Therefore, the degree of bias in tropical zones differed according
to whether criteria were based on genetic information.

Integration of the seven criteria is shown in Figure 3A. Areas
around the Sekisei Lagoon, Amami Oshima Island, and
Yakushima–Tanegashima Island were stably selected in the
tropical zone. Upon integration of temperate-zone data alone,
Miyazaki and Kochi Prefectures (the southernmost areas affected
by the Kuroshio Warm Current) were identified as important.
Sekisei Lagoon and Kochi were selected as coral restoration areas
(Figure 1). Integration of the results of genetic indicators only
(Figures S-1-3-1C) identified several major discrete coral reef
areas from the Boso Peninsula (northern limit of the Pacific
Ocean) to the Goto Islands (northwest Kyushu).
Frontiers in Marine Science | www.frontiersin.org 9
Comparison of Proposed Important
Marine Areas Based on Genetic and
Species Diversities

Figure 3B shows the integrated results for species-based
assessment and the difference in the results for species-based
and genetic evaluation. Positive values indicate that genetic
information was highly valued. Species-based criteria tended to
yield a larger number of highly evaluated areas in the tropical
zone (Figures 3B and S-1-3-2A). Comparison of the rates of
highly evaluated grids between temperate and tropical zones
yielded a significant difference for Criteria 3, 5, 6, and 7 (p <
0.007; significance level after Bonferroni adjustment for multiple
A

B

C

FIGURE 3 | Distribution of results for (A) integrated result for all criteria, (B) integrated result for all criteria for species-based evaluation, and (C) difference between
genetic and species-based evaluation. NA, not available.
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comparisons). There was also a significant difference in the
number of highly evaluated grids in temperate and tropical
zones between criteria that were (Criteria 1, 4, 6) and were not
(Criteria 2, 3, 5, and 7) used on genetic indicators for the genetic
analysis (p < 0.001, exact conditional test of independence in 2 ×
2 × 2 tables).

The results of integrating the seven criteria ware compared as
the rates of the number of highly evaluated grids identified by
both methods (i.e., agreement). For the areas with tropical zone,
the rates of agreement were 5/12 and 5/6, k = 0.3 based on the
mean (agreement divided by highly evaluated grids by genetic
method, the agreement by species based method, and kappa
statistic successively); they were 4/6 and 4/8, k = 0.4 based on the
count Max (Figures 3C and S-1-3-2C). For the temperate zone,
the rates of agreement were 3/6 and 3/4, k = 0.4 based on the
mean; they were 2/6 and 2/3, k = 0.2 based on the count Max
(Figures 3C and S-1-3-2C). The agreement of highly evaluated
grids was higher for locations evaluated for the areas with
tropical zone. However, the kappa value did not indicate
high correspondence.

Integration of the three criteria (Criteria 1, 4, 6) using genetic
indicators in the areas with tropical zone yielded agreement rates
of 3/7 and 3/6, k = 0.2 based on the mean; the rates were 6/13 and
6/10, k < 0.1 based on the count Max (Figures S-1-3-2D). For the
temperate zone, the rates of agreement were 3/5 and 3/4, k = 0.5
based on the mean, they were 3/7 and 3/5, k = 0.3 based on the
count Max.

There were no significant negative or positive relationships
between the results of genetic and species-based indicators. This
means that there are some differences between methods, and the
two are complementary especially in temperate zone. However,
important areas such as areas for restoration of coral reefs
(Tatsukushi in Kochi and Sekisei Lagoon in Okinawa), were
selected in all cases.
DISCUSSION

Biases in EBSA Selection and Potential
Use of Genetic Variables
Most of the criteria lacked genetic information; few of the areas
used such information. The geographical bias of the evaluation
toward the Northern Hemisphere and non-Asian regions, and
toward larger and/or iconic animals, suggest that research bias is
linked to the use of genetic information (Mayer et al., 2007;
Webb et al., 2010; Hughes et al., 2021). However, there are cases
that consider variety in the types of organisms, suggesting
feasibility for the use of such genetic methods in analyses of
other organisms and/or ecosystems.

Collection of the species-distribution data used to select
EBSAs is facilitated by global databases such as the Ocean
Biodiversity Information System (OBIS) and the Global
Biodiversity Information Facility (GBIF). In the case of tropical
Asia, for which genetic information was lacking, > 49,000
occurrence data were recently updated (Yamakita et al., 2017;
Sudo and Nakaoka, 2020; Sudo et al., 2021; Takeuchi et al., 2021).
Frontiers in Marine Science | www.frontiersin.org 10
These contributed increasing-use cases for the analysis of
important areas (Beazley et al., 2016; Guijarro et al., 2016;
Yamakita et al., 2017; Furushima et al., 2019) and revealed
global biodiversity patterns/dynamics (Chaudhary et al., 2016).
Several works referred to national/regional spatial planning
either directly or indirectly (Gormley et al., 2013; Nature
Conservation Bureau Ministry of the Environment
Government of Japan, 2014; Shirayama, 2016). Therefore,
databases, species distribution data, and species distribution
modelling influence the identification of important marine
areas, particularly in the context of insufficient data.

For the collection of the genetic data, GenBank and the
European Nucleotide Archive were established in 1982; the
DNA Data Bank of Japan was established in 1986 (Benson
et al., 2013) which is more than 10 years earlier than OBIS and
GBIF. Data linked to a geographical location and standardized
for a particular marker can be used to identify geographical or
temporal differences (e.g., farm crops) (Hijmans and Spooner,
2001; Gratton et al., 2017). Although databases lack useful
information regarding marine species that do not use the same
marker, the recent increase in the number of readable genes will
enable standardization. For example, genome-wide genotyping
by MIG-seq (Suyama and Matsuki, 2015) enables the
identification of single nucleotide polymorphisms using a
universal primer set. Therefore, it can be used to detect cryptic
species and other genetic differences as a future perspective
(Hoban et al., 2020).

The use of coral DNA is hampered by the lack of variability in
mitochondrial DNA (Hellberg, 2007; Shearer and Coffroth,
2008), which is typically used to estimate inter- and intra-
species differences (Avise, 2000; Bowen et al., 2014). However,
next-generation sequencing enables the assessment of genome-
wide genetic variation (Iguchi et al., 2019; Takata et al., 2019).
eDNA analysis, which targets mitochondrial DNA, is difficult to
apply to corals because of low resolution to identify coral species;
nonetheless, trials involving nuclear DNA regions with high
resolution are underway (Alexander et al., 2020). eDNA
analysis is also capable of detecting adaptive genetic markers,
coralline algae that promote coral settlement, and macro algae
that compete with corals, thereby enabling the evaluation of coral
distribution in terms of interspecies interactions. eDNA analysis
also can provide the detailed biodiversity information of bacteria
and plankton communities in coral ecosystems, and probably it
would be a useful tool to evaluate the healthy and preferable
environments for coral propagation.

In addition to the lack of genetic information, the structure of
EBSA workshops may lead to bias. The proposed area of each
EBSA initially relied on the opinions of a small number of
experts. Although the proposal was made after review of
potential EBSAs in each geographic unit, there were limited
time and information available for the review. This was partly
because completion of the EBSA identification work was
required soon after the CBD-COP10. The possibility of
providing more global data and systematic information was
suggested after the first round of the workshop (Ardron et al.,
2014; Bax et al., 2016). Because the aim was to establish protected
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areas by negotiation after the identification of scientifically
important marine areas, strong evidence, high resolution, and
geographically wide genetic and species factors were needed. A
flame work for the data accumulation and integrative analysis of
such data (especially including genetic data) is needed to
elaborate a new strategic plan (CBD Secretariat, 2020; Hoban
et al., 2020; Laikre et al., 2020).

Usefulness of the Proposed Indicators and
Perspectives
At least three of seven EBSA criteria can be evaluated using
population genetic indicators. Genetic indicators of connectivity,
productivity, and naturalness had different feasibilities. Connectivity
can be evaluated immediately using pre-existing numerical values.
In the future, productivity may be evaluated using genetic measures
if an appropriate survey design and analysis of local population
structures are employed. Naturalness may not be evaluated using
genetic measures. It may need to combine with other measures,
such as the use of coral growth rings or human activity itself.

Although it is not essential to evaluate all criteria, nor is it
required to use genetic indicators for all criteria, the use of genetic
information is expected to increase over time. Genetic data have not
been used for indicators of EBSA, other than biodiversity and
endemism, partly because of insufficient examples. Each EBSA
criterion has an assumed levels of ecological hierarchy; most
criteria are considered compatible with community- and species-
level indicators (Asaad et al., 2017). However, there were levels in
which genetic data contributed to indicators as well as species-level
and community-level indicators. In addition, the adaptability of
indicators to multiple criteria (Table 3) and the similarity of the
criteria suggests that prioritization including weighting of the
criteria, or visual representation used in integrated evaluations
may be preferable [e.g., ecosystem health or services (Halpern
et al., 2013; Yamakita et al., 2020)]. For such representation more
amount of systematic sampling will be needed in the future.
Recently, the world wide application of eDNA surveys has been
considered in future planning for the Asia–Pacific and marine
components of The Group on Earth Observations, Biodiversity
Observation Network (AP-BON and MBON) (Muller-Karger et al.,
2018; Takeuchi et al., 2021). Such efforts have already begun in some
places, such as the ANEMONE project in Japan. Amuchmore ideal
approach would be to collect specimens directly in many locations.
However, water sampling is probably a more easily accessible way to
obtain genetic data on dominant corals on a global scale.

The application of genetic indices to the major taxa, including
dominant species, allowed the identification of important areas
of coral reefs, particularly in the temperate zone. The
biogeographic boundary between the Amami Islands of
Kagoshima Prefecture and the Tanegashima and Yakushima
Islands, which are separated by the Kuroshio Current, has been
established (Sato, 1969). Although this boundary is not definitive
for marine organisms (Sakai et al., 2009), it was consistent with
several genetic boundaries detected in the present study and a
previous study (Nakabayashi et al., 2019).

The two types of assessments yielded similar results on a
broad spatial scale especially for nature restoration area and
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important areas for conservation efforts are identified as well as
selection based on species. However, they did not show
sufficiently high agreement with the species-based indicators.
Therefore, a more detailed study is needed. There is a need
to determine whether the proposed indicators adequately
reflect the biodiversity of the target taxa. The small number
of sites, limitation of used species, and criteria; use of means
for integration; and lack of information regarding rare
species are the weaknesses of the present study. In addition,
some issues remain, such as understanding the regional
historical changes in biodiversity (e.g., temporal change and
biogeography of species distributions). A notable finding of
this study was the selected EBSAs for corals in the temperate
zone, which will inform future conservation planning. Integrated
assessment of species-based and genetic methods will be
complementary and useful for investigations of important
marine areas.

In conclusion, genetic surveys have become easier to conduct;
species distribution and biodiversity can be assessed. However,
the CBD targets did not consider enough for genetic diversity
(CBD Secretariat, 2020; Hoban et al., 2020; Laikre et al., 2020).
Using the EBSA report of CBD as an example, we quantified the
shortfalls in marine biodiversity assessments using genetic
information in terms of geographic area, species, and criteria.
We also conducted a case study concerning the application of
genetic indicators in assessments of important areas using the
EBSA criteria and revealed important areas in the temperate
zone, particularly for coral reefs. Our findings will enhance
assessments based on macro ecological and biogeographic
analysis using genetic information.
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