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Within the rapidly changing Arctic region, accurate sea ice forecasts are of crucial
importance for navigation activities, such as the planning of shipping routes. Numerical
climate models have been widely used to generate Arctic sea ice forecasts at different time
scales, but they are highly dependent on the initial conditions and are computationally
expensive. Recently, with the increasing availability of geoscience data and the advances
in deep learning algorithms, the use of artificial intelligence (AI)-based sea ice prediction
methods has gained significant attention. In this study, we propose a supervised deep
learning approach, namely attention-based long short-term memory networks (LSTMs),
to forecast pan-Arctic sea ice at monthly time scales. Our method makes use of historical
sea ice concentration (SIC) observations during 1979–2020, from passive microwave
brightness temperatures. Based on the persistence of SIC anomalies, which is known as
one of the dominant sources of sea ice predictability, our approach exploits the temporal
relationships of sea ice conditions across different time windows of the training period. We
demonstrate that the attention-based LSTM is able to learn the variations of the Arctic sea
ice and can skillfully forecast pan-Arctic SIC on monthly time scale. By designing the loss
function and utilizing the attention mechanism, our approach generally improves the
accuracy of sea ice forecasts compared to traditional LSTM networks. Moreover, it
outperforms forecasts with the climatology and persistence based empirical models, as
well as two dynamical models from the Copernicus Climate Change Service (C3S)
datastore. This approach shows great promise in enhancing forecasts of Arctic sea ice
using AI methods.
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1 INTRODUCTION

Total pan-Arctic sea ice extent (SIE) displays a strong seasonal
cycle corresponding with the seasonality of solar radiation, with
the maximum SIE appearing in March and minimum in
September. The inter-annual variations of SIE are relatively
larger in late summer and early autumn (from August to
October), indicating the larger variability in the ice edge
location due to the higher mobility of the thinner and younger
ice during these months of year (Maslanik et al., 2007). A series
of dramatic changes are taking place in the Arctic climate system
due to global warming, including the accelerated near-surface
warming called “Arctic amplification” (e.g., Screen and
Simmonds, 2010; Serreze and Barry, 2011) and the rapid
decline of the sea ice cover, observed since 1979 (e.g., Stroeve
et al., 2007; Comiso et al., 2008; Serreze & Meier, 2019). Based on
sea ice observations provided by the National Snow and Ice Data
Center (NSIDC), it is found that pan-Arctic SIE has experienced
Frontiers in Marine Science | www.frontiersin.org 2
an unprecedented year-round reduction, with a declining rate of
13.16% per decade in September and 2.67% per decade in March
during 1979–2020 (Figure 1). Specifically, in winter, the decrease
of Arctic sea ice concentration (SIC) occurs mainly in Barents
Sea, Greenland Sea, and the sea of Okhotsk (Figure 2A), while in
summer, it occurs in a large part of the whole Arctic Ocean basin
(Figure 2B). According to future projections of CMIP6 models,
the Arctic Ocean is likely to become ice-free (sea ice area lower
than 1 million km2) in September for the first time before
2050 due to ongoing anthropogenic warming (Notz and
Community, 2020).

With the significant observed retreat of sea ice in recent years,
socio-economic activities in the Arctic region are growing,
motivating the need for accurate and timely forecasts of sea ice
to serve advanced planning of shipping routes (Lee and Song,
2014; Eguıĺuz et al., 2016). In addition, seasonal to inter-annual
sea ice prediction is valuable for managing policy responses,
which are closely related to the resource development and are
FIGURE 1 | The monthly Arctic sea ice extent (SIE) anomaly relative to the 30-yr reference period from 1981 to 2010. Blue and red dotted lines represent the linear
fitting of the extent anomaly in March and September, respectively, and the trends of SIE in the two months are also given. Data are obtained from NSIDC.
A B

FIGURE 2 | Multi-decadal trend of the Arctic sea ice concentration (SIC) in March (A) and September (B) during 1979–2020. Only trends that are significant at 95%
confidence level based on Mann-Kendall test are shown. Data are obtained from NSIDC.
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beneficial for coastal communities, industry stakeholders, and
wildlife in the Arctic (Meier et al., 2014; Segal et al., 2020).
Developing and improving sea ice forecasting methods is also a
science-motivated effort to test our understanding and ability in
predicting changes in the Arctic (Blanchard-Wrigglesworth
et al., 2017).

Monthly to seasonal forecasts provide a long-range outlook of
changes in the sea ice cover over periods of a few weeks or
months. Possible predictability of Arctic sea ice in different
seasons has been explored extensively in many studies. The
persistence of anomalies in the initial sea ice state, as well as
physical interactions between sea ice and atmospheric or oceanic
conditions, provide the basis for forecasting sea ice
characteristics in the Arctic (Guemas et al., 2016; Batté et al.,
2020). Previous studies using global coupled models (GCMs)
have provided estimates of potential seasonal to decadal sea ice
prediction skill limits. For instance, Day et al. (2014) found that
the memory or lagged correlations for total sea ice extent in the
Arctic are around 2–5 months in GCMs, dependent on the
initialization month (see their Figures 7A, 8A), which are
consistent with the results of Blanchard-Wrigglesworth et al.
(2011) using satellite observations. Whereas, Cruz-Garcıá et al.
(2019) found that the potential predictability of sea ice volume in
the Arctic may be up to three years ahead but with a significant
spatial variation. Previous studies also analyzed the regional
prediction skill and predictability of Arctic SIE using seasonal
forecasts of dynamical prediction systems (Bushuk et al., 2019;
Bushuk et al., 2022). These studies show that winter SIE can be
skillfully predicted up to 11 months in advance benefit from the
persistence of both SIE and upper ocean heat content, while the
prediction skills of summer SIE are limited within 4 months by
the Arctic springtime predictability barrier (Blanchard-
Wrigglesworth et al., 2015; Bonan et al., 2019; Bushuk et al.,
2020). Currently, physics-based numerical climate models are
widely used to generate the Arctic sea ice forecasts at sub-
seasonal and seasonal time scales (Day et al., 2014; Zampieri
et al., 2018; Yang et al., 2020). However, numerical models are
computationally expensive and the predictive accuracy is highly
dependent on the initial conditions (Blanchard-Wrigglesworth
et al., 2011). It has been found that current numerical models
have little additional skill beyond persistence forecasts in sea ice
prediction at lead times longer than several weeks (Blanchard-
Wrigglesworth et al., 2015; Wayand et al., 2019).

Meanwhile, the data-driven artificial intelligence (AI)
approaches, including machine learning and deep learning
approaches, have been increasingly applied to the earth system
science including climate prediction (Reichstein et al., 2019). For
example, Ham et al. (2019) successfully made skillful forecasts of
El Niño/Southern Oscillation with lead times up to one and a half
years using a deep neural network, showing a great potential of
deep learning approaches in climate prediction. Some relatively
popular machine learning or deep learning methods have also
been utilized in the Arctic sea ice forecasts. Regression
techniques using only sea ice input or additional predictors
could provide adequate sea ice predictions and have proven
their ability to be competitive with the dynamical model
Frontiers in Marine Science | www.frontiersin.org 3
counterparts (Gregory et al., 2020; Horvath et al., 2020). Chi
and Kim (2017) proposed a prediction model using the long
short-term memory network (LSTM). Their model shows better
performance in the 1-month lead prediction of sea ice than a
traditional statistical model, but the predictions were less
accurate in the melting season. Kim et al. (2020) investigated
the skill of an intelligent Arctic sea ice prediction model based on
convolutional neural networks (CNNs) and found that the model
is effective in sea ice prediction at 1-month lead time. Andersson
et al. (2021) designed a prediction system using an ensemble of
U-Net (a kind of CNN variant) networks and made skillful
probabilistic Arctic sea ice forecasts on seasonal time scale.
Convolutional LSTM networks have also been used to make
extended range sea ice forecast. For example, Liu et al. (2021)
indicated that Convolutional LSTM is able to forecast regional
Arctic SIC skillfully at weekly to monthly time scales.

The formation and evolution of sea ice involves complex
nonlinear processes caused by the atmosphere-sea ice-ocean
interactions. Compared with traditional statistical models, deep
learning methods are good at expressing non-linear relationships
of variables and simulating the complex dynamical systems. In
light of the previous studies, we try to develop a monthly to sub-
seasonal forecast model of sea ice using LSTM networks.
Compared to the previous studies on LSTM-based sea ice
prediction, two improvements will be implemented in the
original LSTM networks to pursue better forecasting skills: the
optimization of the loss function and the introduction of an
attention module. Moreover, forecasting skills on sea ice edge
will also be evaluated to provide a more comprehensive
assessment of the method proposed in this study. By
comparing the model performance with other approaches, we
will discuss the applicability and reliability of our deep learning
method in Arctic sea ice prediction.

The rest of the paper is organized as follows. Section
“Dataset” briefly introduces the observational data used for the
building and assessments of our LSTM networks. Section
“Methods” describes the structure of our LSTM networks and
the evaluation methods for the forecasting skills. Detailed results
analyses, including the Arctic sea ice variability in observations
and the evaluation of forecasting skills of different sea ice
characteristics, are shown in section “Results”. Section
“Conclusions and Discussion” summarizes the results of the
present study and outlines possible directions for future works
on sea ice forecast in the Arctic.
2 DATASET

In this study, a satellite-based product of Arctic SIC (https://
nsidc.org/data/NSIDC-0051/versions/1) (Cavalieri et al., 1996)
provided by the NSIDC is used as the training data of LSTM
forecasting models and as the ground truth for evaluating the
models’ forecasting skills during the test period. SIC is computed
from passive microwave satellite measurements of brightness
temperature since 26 October 1978, using the NASA Team
retrieval algorithm developed by the Oceans and Ice Branch,
June 2022 | Volume 9 | Article 860403
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Laboratory for Hydrospheric Processes at NASA Goddard Space
Flight Center (GSFC). The brightness temperature is observed
from different sensors, including the Nimbus-7 Scanning
Multichannel Microwave Radiometer (SMMR), the Defense
Meteorological Satellite Program (DMSP) -F8, -F11 and -F13
Special Sensor Microwave/Imagers (SSM/Is) and the DMSP-F17
Special Sensor Microwave Imager/Sounder (SSMIS). The dataset
of SIC is provided on a Lambert azimuthal equal area projection
with a nominal spatial resolution of 25 km × 25 km. In total,
there are 304 × 448 data points in each month. The spatial
domain focused in this study is the Arctic region covered by the
satellite-based observation (about 31–90°N, 180°W–180°E).
Considering the higher uncertainties of observation in late
1978, we only use SIC data with the temporal coverage of 42
years between 1979 and 2020.

In this study, the large sea ice dataset from NSIDC is
employed to train our deep neural networks and then to
predict Arctic SIC, without incorporating any other physical
parameters to ensure a relatively fast computing speed. Before
fitting SIC data into LSTM models, non-sea ice grid points,
including points of land, open ocean, and lake ice, are removed.
In addition, points in the “pole hole” (the region around the pole
not imaged by the sensor) are set to fully ice-covered, i.e., SIC
equals 100% on these points. Forecasting skills are evaluated for
both SIC and SIE; the latter is defined as the area of ocean with at
least 15% SIC.
3 METHODS

3.1 Predictability of Arctic Sea Ice
Using anomaly correlation coefficients (ACCs) for different
target months at different lead times (Figure 3), we examine
the persistence of pan-Arctic SIC and total SIE based on the
satellite observations during 1979–2020. Persistence of SIC is
represented as the regional averaged ACC for SIC on all grid
points. It is obvious that the persistence is much longer in
September, October, and March, for both the ice concentration
and the extent. In contrast, low correlations exist between
successive months in the transition season (e.g., May and June)
Frontiers in Marine Science | www.frontiersin.org 4
when sea ice is rapidly growing or melting. In this study, we
mainly focus on the sea ice situation in summer and
early autumn.

Sea ice in September and October is highly correlated with sea
ice in the previous 1–3 months, and thus months from June to
August show predictive skills in forecasting late summer sea ice.
As pointed out by Andersson et al. (2021), the precondition of
the sea ice pack is a key predictor, with persistence of sea ice
anomalies potentially lasting at seasonal timescales, especially for
the ice in late summer. In addition, correlations are extremely
low for sea ice between summer and spring for the same year.
The weak correlation may be a manifestation of the springtime
predictability barrier.

The above-mentioned possible sources of sea ice
predictability, including the seasonal cycle, the multi-decadal
trend, and the persistence of sea ice anomalies (especially in
summer months), are essential for our data-driven forecasting
approaches used in this study.

3.2 Long Short-Term Memory Networks
LSTMs is a special type of Recurrent Neural Networks (RNNs)
introduced by Hochreiter and Schmidhuber in 1997 (Hochreiter
and Schmidhuber, 1997). Like RNNs, LSTMs are networks in the
form of a chain of repeating modules, allowing information to
persist, so that they are generally used to deal with time series
problems. However, when training a classic RNN using back-
propagation, the long-term gradients can “vanish” or “explode”,
because the computations involved in the process use finite-
precision numbers. LSTMs could partially solve the vanishing
gradient problem, because LSTM modules or units allow
gradients to also flow unchanged, making LSTM capable of
handling long-term dependencies (Calin, 2020).

Generally, a single LSTM cell contains four interacting neural
network layers acting as four activation functions [three sigmoid
(s) and one hyperbolic tangent (tanh) functions], which are
marked by yellow boxes in Figure 4B. This kind of module
structure is more complex than that in RNNs, which contains
only one layer of tanh. LSTM controls the transfer and loss of
information by a memory cell state (the straight black line at the
top of Figure 4B) and three “gates” (marked by red dashed boxes
A B

FIGURE 3 | Persistence of the Arctic SIC (A) and total SIE (B) based on the anomaly correlation coefficients (ACCs) of monthly SIC and SIE in January to December
at different lead times. Note that ACCs in (A) are the regional averaged values for SIC on all grid points. Data of SIC and the calculated SIE during 1979–2020 are
from NSIDC.
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in Figure 4B). The cell state is responsible for remembering the
previous state while the gates are responsible for controlling the
amount of memory to be exposed.

Chattopadhyay et al. (2020) have found that deep neural
networks including LSTM are able to reproduce both the short-
term evolution and the long-term statistics of dynamical systems,
which provides a basis for this study to extract the nonlinear
relations of sea ice time series and to make sea ice forecasts based
on observational data. In contrast to the traditional statistical
methods, the nonlinearity introduced by LSTM could effectively
contribute to the skill of the sea ice forecast. Based on the finding
of Chi and Kim (2017), we use the observed SIC in the preceding
12 months {xt-12, xt-1} as the input data to make 1-month lead
forecast at each grid point. These data are fed into LSTM one by
one, and the final hidden state ht-1 at the last month is used to
predict yt via a fully-connected operator. The whole network is
trained by the widely used loss function based on the mean
squared error (MSE) between the predicted yt and observed SIC
xt, which can be described as 1

non
i=1(x

(i) − y(i))2 Then, we keep
the network structure unchanged, and only add the mean
absolute error (MAE) into the original loss function, resulting
in a combined loss function of MSE and MAE, i.e., 1

n

on
i=1(x

(i) − y(i))2 + jx(i) − y(i)j Such a loss function could
effectively reduce the impacts of outliers, thus expecting to
achieve better predictions. Using this loss function, we finally
develop an improved LSTM model.
Frontiers in Marine Science | www.frontiersin.org 5
As shown in Figure 4, our final model incorporates an
attention module into the original LSTM network. Different
from the traditional LSTM models which only consider the
contribution of the last hidden state ht-1 to the final prediction,
the attention module is able to deal with all of the hidden states
{ht-12, ht-1} in the preceding 12 months, and automatically
recognize the importance of them. To achieve this goal, we
construct the module by two fully-connected layers, and the
last one outputs the importance of the weights {wt-12, wt-1} for 12
months. After that, the hidden states are multiplied by the
corresponding weights to get the final hidden value, which can
be formulated as hf =o12

i=1½wt−i � ht−i� Same as traditional
LSTM models, hf is finally fed into a fully-connected layer to
get yt. In addition, during the training phase, we employ a
combination loss of MSE and MAE to better optimize the
proposed network. For LSTM in the network, there is 1 hidden
layer with 24 neurons. For the attention module, the number of
neurons in the first and the second fully connected layer is 96 and
12, respectively. We choose Adam as the optimizer to optimizing
the weights. The learning rate and the batch size are set to 0.001
and 128, respectively. For simplicity, the three forecasting models
are abbreviated as LSTM_MSE (original LSTM with MSE-based
loss function), LSTM_MAE (LSTM with MSE and MAE
combined loss function), and LSTM_Attention (attention-
based LSTM with MSE and MAE combined los s
function), respectively.
A

B C

FIGURE 4 | The overall architecture of the attention-based LSTM with combination loss (A) and the details of a single LSTM cell (B) and the attention module (C). In
(A), “x” is the input SIC, “y” is the forecasted SIC, “h” denotes hidden state of LSTM, “hf” is the final hidden state processed by the attention module. In (C), “concat”
represents the concatenating of all the hidden states together.
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For sea ice forecast at longer lead times (2–6 months), we use
a recursive approach. The predicted values at shorter lead time
are treated as new inputs into the same forecasting model to
make predictions at longer lead time. Take the forecast of
September 2019 SIC as an example. For the 1-month lead time
forecast, SIC observation from September 2018 to August 2019 is
used as inputs to LSTM network. Then to generate a 2-month
lead time forecast, we use SIC observation from September 2018
to July 2019 and SIC forecast of August 2019 as inputs. Monthly
SIC of the passive microwave observations (see the section
“Datasets”) from 1979 to 2014 (36 years, 432 months) are used
to construct the training set for LSTM network, while data from
2015 to 2020 (6 years, 72 months) are used to construct the test
set to verify the skills of the prediction models. To generate the
training set, the 432-month data needs to be divided into input-
output data pairs. The input consists of preceding 12-month
data, while the output is the subsequent 1-month data. At each
month, all of the grid points could be used. Thus, more than 10
million of training samples were generated to train the proposed
model. Similar methods are used to the 72-month test data, and
more than 3 million of test samples were produced. The LSTM
related models are implemented on a personal computer with an
Intel core i7-4790, 3.60-GHz processor, 32-GB RAM, and a GTX
TITAN X graphic card. The training time for LSTM_MSE,
LSTM_MAE, and LSTM_Attention are 69.07, 69.08, and 69.31
minutes, respectively, while the testing time for them are 0.90,
0.91, and 1.21 seconds, respectively.

3.3 Benchmark Models: Empirical and
Numerical Models
Referring to the work of Liu et al. (2021), we also assess our
LSTM mos against two empirical benchmark models using sea
ice persistence and climatology. The persistence is defined as the
SIC anomaly at lead time step 0 added to the SIC climatology of
the target forecast month, while the climatology of SIC in each
month is defined as the average of SIC in a 10-yr sliding window
preceding the respective forecast target time. For example, the 1-
month lead persistence forecast of SIC in September 2019 is the
anomaly of August 2019 plus the climatology of September SIC
in 2009–2018.

To compare LSTM with numerical model-based forecasts, sea
ice prediction results from two numerical climate models are also
analyzed. Previous studies have indicated that the numerical
systems from the European Centre for Medium-Range Weather
Forecasts (ECMWF) and the U.K. Met Office (UKMO) provide
the state-of-the-art Arctic sea ice prediction skills (Zampieri
et al., 2018; Wayand et al., 2019). In this study, the seasonal
ensemble forecast products from these two systems are
compared with forecasts of our deep learning methods. The
two model systems (hereafter, abbreviated as ECMWF-C3S and
UKMO-C3S) are contributing to the Copernicus Climate
Change Service (C3S). The dataset includes forecasts created in
real-time (since 2017) and retrospective forecasts (hindcasts)
from 1993 to 2016. The brief information of these two models is
given in Table 1. These models are chosen because of their time
range (January 2015–December 2020 for ECMWF, and January
Frontiers in Marine Science | www.frontiersin.org 6
2015–December 2016 for UKMO) available for the
intercomparing in this study and the popularity of their sea ice
models. Forecasts of SIC from the two models are re-gridded
from their latitude-longitude grid to the NSIDC equal area grid
using bilinear interpolation method. The interpolation is
performed after converting the latitude-longitude coordinate to
distance coordinate.

3.4 Evaluation Metrics
This study evaluates the forecasting model performance based on
the standard deterministic accuracy metrics: the root-mean-
square error (RMSE), mean absolute error (MAE) and
anomaly correlation. Taking the evaluation of SIC prediction
as example, the RMSE and MAE of SIC are defined in formulae
(1) and (2). SICf

i is the forecasted value of SIC, SICo
i is the

observed SIC, and N is the total number of grid points. The
errors are spatially averaged after masking the land, open ocean,
and the observational “pole hole” grids.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 SICf

i − SICo
i

� �2
r

(1)

MAE =
1
No

N
i=1 SIC

f
i − SICo

i

��� ��� (2)

In addition, the assessment of the skills in predicting the
Arctic sea ice edge is based on the Integrated Ice Edge Error
(IIEE, Goessling et al., 2016). The IIEE is defined as the sum of
ocean areas where the presence of sea ice (defined with a 15% SIC
threshold) is overestimated and underestimated with respect to
the observations. In other words, this verification metric
describes the area where the forecasts and observations
disagree on the presence of sea ice with concentration being
above or below 15%. In this study, the two components of IIEE,
i.e., the overestimated error and underestimated error of sea ice
edge, are abbreviated as OE and UE for simplicity.

IIEE = OE + UE (3)

OE =
Z
A
max cf − co, 0

� �
dA (4)

UE =
Z
A
max co − cf , 0

� �
dA (5)

where c=0 when the SIC is higher than 15% and c=1 when SIC
is less than 15%. The subscripts f and o denote the forecast and
observation. A denotes the area of interest.

The IIEE has been widely used in previous studies focusing on
the sea ice forecast (e.g., Blockley and Peterson, 2018; Roach
et al., 2018; Allard et al., 2020; Batté et al., 2020; Liu et al., 2021).
By taking into account possible error compensations between the
overestimation and underestimation of the presence of sea ice,
the IIEE could present a better estimate of the ability of forecast
models to predict SIC in different Arctic basins.

It is noteworthy that only the mean forecast results of the
dynamical models are concentrated on in this study, thus the
June 2022 | Volume 9 | Article 860403
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evaluation metrics used here are relatively simple and can only
partly reflect the skills of the forecasting model. Besides,
considering that the reliability of a forecast model comes from
its ensemble forecasts while our preliminary LSTM-based
approach has no ensemble component at present, this
approach used here is not yet able to report on the reliability
of the sea ice forecast.
4 RESULTS

4.1 Forecasting Skills of Pan-Arctic Sea
Ice Extent
At first, we evaluate the hindcast or re-forecast skills of LSTM
models for pan-Arctic SIE derived from SIC forecasts at 1-month
lead time. We examine the month-to-month and inter-annual
variability of the predicted pan-Arctic SIE during January 2015–
December 2020. Figure 5 shows the monthly SIE anomaly
obtained by three LSTM models and three benchmark models
(ECMWF-C3S, Climatology, and Persistence), as well as the
absolute errors of their SIE forecasts compared to the satellite
observation. When calculating the anomaly, the common
reference period is the 30-yr climatology from 1981 to 2010,
which is also used in this study. In general, all the forecasts from
three LSTM models are consistent with observation in the
seasonal variations of SIE anomaly. Greater anomaly occurs in
Frontiers in Marine Science | www.frontiersin.org 7
summer to early autumn compared to the rest of the year
(Figure 5A). Obviously, LSTM_Attention and LSTM_MAE
perform better than LSTM_MSE in reproducing the extreme
low SIEs in October of 2016, 2019, and 2020. Monthly SIE
anomaly from LSTM_Attention forecast shows a significant
positive correlation with observation during our test period
2015–2020, with the correlation coefficient reaching about 0.8.
The absolute errors of SIE between LSTM forecasts and
observation (Figure 5B) also show that, in most time of the
test period, predicted SIEs from LSTM_Attention and
LSTM_MAE are closer to the observation compared to that
from LSTM_MSE. This result confirms that the optimization of
the deep learning network could improve the forecasting skills by
considering previous sea ice conditions as much as possible. It is
nevertheless noteworthy that all the three models predict a false
minimum SIE in October 2017. This loss of skill reflects the
dependence of deep learning-based forecasts on the training
data, or their weak capacity reflecting the impacts from strong,
synoptic-scale processes on sea ice development.

In comparison, forecast from ECMWF-C3S demonstrates
slightly higher absolute error against observation (Figures 5C, D).
During the test period of 2015–2020, mean absolute errors of
monthly SIE are 0.23 and 0.25 million km2 for LSTM_Attention
and ECMWF-C3S, respectively. Consistent with LSTM_Attention,
ECMWF-C3S also underestimates total Arctic SIE significantly in
October 2017, which is quite interesting and worthy of further
TABLE 1 | Brief information of the two C3S models.

Label Organization Model name Sea ice model Sea ice model
resolution

Hindcast ensemble size Forecast ensemble size

ECMWF-
C3S

European Centre for Medium-Range
Forecasts

SEAS5 LIM2 ORCA 0.25° 25 51

UKMO-C3S U.K. Met Office GolSea5 CICE4.1 ORCA 0.25° 7 2
June 2022 |
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FIGURE 5 | Monthly Arctic SIE anomaly predicted by three LSTM models during January 2015–December 2020, with the satellite observation as a reference (A).
Absolute errors of monthly SIE between forecasts from three LSTM models and the observation (B). (C, D) are similar to (A, B), but for sea ice forecasts from
ECMWF-C3S, Climatology, and Persistence.
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study. The two empirical models of Climatology and Persistence
show much higher SIE errors compared to forecasts from
other methods.

For long-term (i.e., the test period of 2015–2020) averaged SIE
in different months among the year, LSTM_Attention
demonstrates higher skill than LSTM_MSE and LSTM_MAE in
most months of the year. The RMSE and MAE (Figure 6A) of
forecasted SIE are the largest in early autumn (October to
November). The relatively low skill is probably due to the higher
sea ice mobility and thus the larger uncertainty of forecasted ice
edge location during this season of year. This is also a common
characteristic for sea ice forecasts from the dynamical model
ECMWF-C3S and two empirical benchmark models (Figure 6B).
Except for February and July, LSTM_Attention shows comparable
RMSE andMAE with ECMWF-C3S, especially in late summer and
early autumn. Combined with their absolute errors in Figure 5, this
result suggests that LSTM_Attention is comparable to dynamical
models in predicting ice extent, especially in the season when
marine operations peak.

Since 2008, the Sea Ice Outlook (SIO) initiative (Stroeve et al.,
2014), which is now under the auspices of the Sea Ice Prediction
Network (SIPN, http://www.arcus.org/sipn/sea-ice-outlook), has
collected several sources of seasonal forecasts (statistical,
dynamical and heuristic) for the September pan-Arctic SIE at
up to three month lead times. To further evaluate the skill of
LSTM_Attention, we compare our results with the SIO median
and the best SIO estimates for the 2015–2020 September SIE as
shown in Table 2. The SIO forecasts are based on the August
Frontiers in Marine Science | www.frontiersin.org 8
reports (i.e., with 1-month lead time) submitted by all the
contributors each year. Although showing overestimation and
underestimation of SIE in the first two years, the prediction of
LSTM_Attention is slightly closer to the observations than the
SIO median since 2017; this demonstrates the potential of deep
learning approaches in operational monthly to sub-seasonal sea
ice forecasting. Meanwhile, there is still a gap between
LSTM_Attention forecasts and the best SIO approaches,
indicating that more work is needed to improve the skills of
our LSTM-based method.

4.2 Forecasting Skills of Sea Ice
Concentration
To explore the possible explanations of SIE forecasting skills
from LSTM models, we examined the performance of
LSTM_Attention in representing the spatial distribution of sea
ice cover. Examples of the September SIC forecasts from
attention-based LSTM at 1-month lead time are shown in
Figures 7, 8. We examine the extreme years with record
minimum September SIE, including 2015, 2016, 2019, and
2020 (the second-lowest ice extent on record). Prediction
results from the UKMO-C3S are only available in 2015 and
2016 during our test period, and thus the inter-comparisons
including this model are performed only in these years.

As shown in Figures 7, 8, the attention-based LSTM
successfully reproduces the spatial pattern or the regional
variation of summer sea ice cover in extreme years that
recorded unforeseen SIE minimums. In the first two years,
A B

FIGURE 6 | RMSEs (solid lines) and MAEs (dotted lines) of forecasted monthly SIE in 2015–2020 using three LSTM models (A) and using LSTM_Attention,
ECMWF-C3S, and two empirical models (B). In both (A, B), the lead time is one month.
TABLE 2 | Values of the observations, the SIO contributions (August report of SIO median and the best SIO forecast), and the LSTM_Attention 1-month lead forecast
for September monthly mean pan-Arctic SIE in the year 2015–2020 (unit: 106 km2).

Year Observation SIO median Best SIO forecast LSTM_Attention

2015 4.62 4.80 4.60 4.82
2016 4.53 4.38 4.55 4.36
2017 4.82 4.54 4.79 4.74
2018 4.79 4.57 4.75 4.73
2019 4.36 4.22 4.35 4.48
2020 4.00 4.30 3.93 4.09
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LSTM_Attention outperforms UKMO-C3S and is comparable to
ECMWF-C3S in predicting the location of sea ice edge. Yet, in
September 2016, the concentration underestimation in central
Arctic from LSTM_Attention is obvious and is probably the
cause of total SIE underestimation in this September.

The spatial distribution of year-round mean MAE of ice
concentration in January 2015–December 2020 forecasted by
LSTM_Attention is shown in Figure 9. For all 12 months,
concentration errors are the largest in marginal ice zones.
Frontiers in Marine Science | www.frontiersin.org 9
Physically, marginal ice zones are characterized by extremely
active ice motions and air-sea-ice interactions (e.g., Zippel and
Thomson, 2016; Boutin et al., 2020), making it more challenging
for sea ice prediction. For the whole Arctic, RMSE of ice
concentration forecasted by LSTM_Attention is lower than the
two empirical models and ECMWF-C3S in each month
(Figure 10B). Also shown in Figure 10B is that RMSE of
forecasted SIC from LSTM_Attention is relatively low in late
summer (August and September) but higher in October, similar
to the situation of pan-Arctic SIE (Figure 6B). ECMWF-C3S also
has higher forecasting skill than persistence during this time, but
it does not outperform the 10-yr climatology forecast.

We also show the July-August-September (JAS) RMSE of
lead-time-dependent SIC forecasts by different approaches
(Figure 10A) to examine the sea ice predictive skills of
LSTM_Attention. In general, RMSE increases with the
increased lead time except for the climatology forecast.
LSTM_Attention outperforms both the persistence and the
ECMWF-C3S forecast for lead times from 1 month to 6
months. In particular, the RMSE over time of SIC from
LSTM_Attention is lower than the persistence with lead times
up to 2 months, providing the basis for its skill in total ice extent
prediction. At lead time of 2 months, the skil l of
LSTM_Attention is comparable to the climatology and thus it
is vanished.

The above-mentioned assessments confirmed the potential of
LSTM_Attention to predict summer concentration fields. In
practice, it is important to know whether a region is ice free or
not for the increasingly frequent shipping and related activities in
the Arctic Ocean. The Integrated Ice Edge Error (IIEE), which is
first introduced by Goessling et al. (2016), has been proved to be
an appropriate objective metric. This metric could well evaluate
the model’s forecasting skill in the position of the ice edge (with
the concentration threshold of 15%) and will be analyzed in the
following section.
FIGURE 7 | Observed and predicted Arctic SIC by LSTM_Attention, ECMWF-C3S and UKMO-C3S in September 2015 (upper panel) and September 2016 (lower
panel). The yellow line in each subplot represents the observed or predicted ice edge for that month.
FIGURE 8 | Observed SIC and predicted SIC by LSTM_Attention, and
ECMWF-C3S in September 2019 (upper panel) and September 2020 (lower
panel). The yellow line in each subplot represents the observed or predicted
ice edge for that month.
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4.3 Forecasting Skills of Sea Ice Edge
Figure 11 shows the monthly IIEE and its two components, OE
and UE, during the test period 2015–2020 from the three LSTM
models. Similar to the absolute error in total ice extent (recall
Figure 5B), IIEE of LSTM_Attention is much lower than
LSTM_MSE and LSTM_MAE. The seasonal cycle (Figure 12)
of IIEE shows that the forecasting ice edge error is relatively
larger in early autumn (October) than in other months, which is
consistent with LSTM_Attention’s low skill in forecasting
October ice extent (recall Figure 6). Figure 10 also
demonstrates that the improvement of IIEE from the
attention-based LSTM is mainly contributed by the decrease of
OE in the forecast fields of LSTM_Attention. As for the UE in
Frontiers in Marine Science | www.frontiersin.org 10
LSTM_Attention forecast, it gets worse instead of better
compared to the previous approaches (Figure 11C). Future
effort is warranted to explain and reduce this underestimated
component of IIEE in LSTM model.

The extremely high IIEE and its two components in October
and November (Figure 12) is associated with the high MAE of
total ice extent forecasted by LSTM_Attention (Figure 6A).
Moreover, the discrepancy between IIEE and MAE also
highlights the limitations of conventional metric for ice extent
evaluations like MAE: the IIEE contains the “misplacement
error”, reflecting too much ice in one area and too little in
another, which is not included in MAE of the total ice extent.

Figure 13 shows the IIEEs of summer (July–August–
September, JAS) sea ice forecasts over 2015-2016 versus lead
time. Forecasts are from LSTM_Attention and the two C3S
dynamical models, respectively. It is not surprising that the
IIEE increases with the increasing lead time. LSTM_Attention
is comparable to ECMWF-C3S and UKMO-C3S in 1-month
lead time forecast, while it outperforms the two dynamical
models at lead time of 2 months. IIEEs of forecasts from
LSTM_Attention and ECMWF-C3S in 2015–2020 are similar
to those for 2015–2016 and thus are not shown here. Besides,
LSTM_Attention obviously differs from the dynamical models in
the allocation of the two components OE and UE.
LSTM_Attention forecast provides comparable amounts of OE
and UE, while in the two dynamical models’ forecasts, UE
dominants the total IIEE error.

We take September 2016 as an example to examine the spatial
structures of the gridded two components of IIEE (Figure 14).
For all the three forecast fields, the overestimated and
underestimated error components are mainly located in the
Pacific sector of the Arctic Ocean. One possible reason is that
sea ice in the Atlantic sector (including the Kara Sea and Barents
Sea) has almost completely melted in September, pushing the ice
edge northward to the central Arctic Ocean. The larger ice edge
error in the Pacific sector reflects the great inter-annual variation
of sea ice cover due to strong advection and melting processes in
this region (e.g., Bi et al., 2019). Actually, in addition to the most
FIGURE 9 | Mean MAE of LSTM_Attention forecasted SIC in January 2015–
December 2020 at 1-month lead time.
A B

FIGURE 10 | Averaged RMSEs (solid lines) and MAEs (dotted lines) in 2015–2020 of the July–August–September (JAS) SIC forecasts at lead times of 1 month to
6 months (A) and averaged RMSEs and MAEs in 2015–2020 of monthly SIC forecasts at 1-month lead time (B) using LSTM_Attention, ECMWF-C3S, climatology,
and persistence.
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obvious decreasing trend (Figure 2B) since 1979, September ice
concentration in the Pacific sector also shows the largest inter-
annual variation in contrast to other Arctic regions (figure
not shown).

Compared to UKMO-C3S, LSTM_Attention and ECMWF-
C3S mainly capture the observed sea ice edge especially in the
Frontiers in Marine Science | www.frontiersin.org 11
Atlantic sector, indicating that our improved LSTM network is
reliable in monthly to sub-seasonal Arctic sea ice edge forecast in
the melting season. This confirms the potential of our LSTM
network in providing a monthly to sub-seasonal outlook of ice
edge changes, which could help planning the routes in the Arctic
Ocean 1 to 1.5 months in advance.
A

B

C

FIGURE 11 | Monthly Integrated Ice Edge Error (IIEE) (A), overestimated (B) and underestimated (C) ice edge error of the three LSTM-based forecasting models for
the test period 2015–2020.
FIGURE 12 | Seasonal cycle of IIEE and its two components, overestimated error (OE) and underestimated error (UE), during the test period 2015–2020 from sea
ice forecast of LSTM_Attention.
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5 CONCLUSIONS AND DISCUSSION

In this study, we propose an improved Long short-term memory
network (LSTM) for the monthly to sub-seasonal forecast of
pan-Arctic sea ice concentration (SIC). Two improvements are
implemented in the original LSTM neural network: first, the
mean absolute error (MAE) is added to the traditional loss
function using mean square error (MSE) to reduce the impacts
of outliers in the data; second, an attention module is used to
fully extract the linkage between sea ice in the target month and
those in the preceding 12 months. Forecasts from the attention-
based LSTM with improved loss function (LSTM_Attention) are
evaluated and compared with forecasts from four benchmark
models, including two empirical models (climatology and
Frontiers in Marine Science | www.frontiersin.org 12
persistence) and two dynamical model systems provided by the
Copernicus Climate Change Service (C3S) (ECMWF-C3S and
UKMO-C3S).

With lead time of 1 months, the proposed LSTM_Attention
model outperforms the persistence-based and climatology-based
empirical models for summer (JAS) sea ice forecasts.
LSTM_Attention is comparable to the climatology for the 2-
month lead forecast but does not beat it, indicating that its
forecasting skill is lost at 2-month lead. Forecasting results of
LSTM_Attention are comparable to those obtained with
ECMWF-C3S and UKMO-C3S, indicating that our LSTM-
based method provides a good alternative to the computational
expensive large models. By taking local ice concentration
variations into consideration, LSTM_Attention successfully
FIGURE 13 | Averaged IIEEs (solid lines), OEs (dashed lines), and UEs (dotted lines) in 2015–2016 of the July–August–September (JAS) sea ice forecasts at lead
times of 1 month to 6 months using LSTM_Attention, ECMWF-C3S, and UKMO-C3S.
A B C

FIGURE 14 | The spatial structure of gridded OE (red area) and UE (blue area) of sea ice forecast in September 2016 using LSTM_Attention (A), ECMWF-C3S (B),
and UKMO-C3S (C), respectively, at 1-month lead time. Note that the sign of UE has been reversed from positive to negative for convenience.
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reproduces observed spatial distribution of the Arctic SIC as well
as the position of the sea ice edge. The derived monthly sea ice
extent (SIE) anomaly from the 1-month lead SIC forecast of
LSTM_Attention shows high correlation (0.8) with observation
during our test period 2015–2020. The 1-month lead September
SIE forecast is slightly closer to observation than the Sea Ice
Outlook (SIO) median since 2017, although large gap still exists
between our LSTM forecasts and the best SIO approaches. Those
results demonstrate the potential of our deep learning method in
operational pan-Arctic sea ice forecasting.

We show that our data-driven LSTM model demonstrates
comparable forecasting skills with two state-of-the-art dynamical
models in monthly to sub-seasonal forecasts of pan-Arctic sea
ice, particularly for summers with extreme sea ice retreat.
However, large errors of ice concentration and ice edge still
exist in the marginal seas and in the early autumn. Particularly,
more attention should be paid to the low predictive capacity in
LSTM models for October sea ice. Considering the complex ice-
ocean and ice-atmosphere interactions, ice and non-ice variables
related to these processes and the surface energy budget should
be introduced as predictors into neural networks to produce
more accurate forecasts. As suggested by Batté et al. (2020),
combining single-model forecasts into a multi-model ensemble
may bridge the gap between potential and actual forecasting skill.
More importantly, when building the neural networks of LSTM
in this study, we only take the sea ice variation itself into
consideration to speed up the calculation. Thus, active physical
processes related to sea ice development in ice-ocean boundary
areas and in the transition seasons have been neglected. Besides,
the predictability and prediction skill of sea ice in the Arctic may
also vary depending on the region of interest (e.g., Germe et al.,
2014; Bushuk et al., 2017).

In addition, it’s worth noting that since only the mean
forecast results of the dynamical models are concentrated on in
this study, the currently used evaluation metrics are relatively
simple and can only partly reflect the skills of our forecast model.
To provide comprehensive assessments, ensemble forecast
results from both dynamical models and statistical deep
learning models are needed to be analyzed in the future.
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Based on the aforementioned issues, the undergoing work
includes the building of an ensemble forecast framework
consisting of different neural networks like LSTM and
Convolutional Neural Network (CNN), or the combination of
both LSTM and CNN, to allow for probabilistic sea ice forecasts.
CNNs are suitable for mining spatial correlation in data or
images, and thus could improve the forecasts on spatial
distribution of Arctic sea ice cover, especially in marginal ice
zones. Oceanic and atmospheric variables influencing the surface
energy budget and the sea ice drift motion will be selected as
predictors. Building different deep neural networks in different
sub-regions of the Arctic is also necessary to reflect various
dominant processes associated with regional sea ice changes in
the Arctic. These warrant future studies.
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Eguıĺuz, V. M., Fernández-Gracia, J., Irigoien, X., and Duarte, C. M. (2016). A
Quantitative Assessment of Arctic Shipping in 2010–2014. Sci. Rep. 6 (1), 1–6.
doi: 10.1038/srep30682
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