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Various mechanisms were proposed as substantial drivers of (sub)tropical South
American hydroclimate changes during the last deglaciation. However, the
interpretation of past precipitation records from the regions affected by the South
American Summer Monsoon, the dominant hydroclimatic system in (sub)tropical South
America, still insufficiently consider feedbacks between oceanic and atmospheric
processes evident in modern observational data. Here, we evaluate ocean-atmosphere
feedbacks active in the region from 19 to 4 ka based on a multi-proxy record comprising
lipid biomarker, bulk sediment elemental composition and foraminiferal geochemistry from
a sediment core retrieved from the tropical western South Atlantic offshore eastern Brazil
at ~22°S. Our proxy data together with existing paleoclimate records show that the
consideration of large scale synoptic climatic features across South America is crucial for
understanding the past spatio-temporal rainfall variability, especially during the last
deglaciation. While the paleohydrological data from our study site show relatively stable
precipitation across the deglaciation in the core region of the South Atlantic Convergence
Zone, distinct hydroclimatic gradients developed across the continent during Heinrich
Stadial 1, which climaxed at ~16 ka. By then, the prevalent atmospheric and oceanic
configuration caused more frequent extreme climatic events associated with positive
rainfall in the northern portion of eastern South America and in the southeastern portion of
the continent. These climatic extremes resulted from substantial warming of the sub
(tropical) western South Atlantic sea surface that fostered oceanic moisture transport
towards the continent and the reconfiguration of quasi-stationary atmospheric patterns.
We further find that enhanced continental precipitation in combination with low glacial sea
level strongly impacted marine ecosystems via enhanced terrigenous organic matter input
in line with augmented nutrient release to the ocean. Extreme rainfall events similar to
those that occurred during Heinrich Stadial 1 are likely to recur in South America as a
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consequence of global warming, because the projected reduction of the intra-
hemispheric temperature gradient may lead to the development of atmospheric
patterns similar to those in force during Heinrich Stadial 1.
Keywords: organic/inorganic geochemistry, South American Monsoon System, land-ocean teleconnection, South
Atlantic Convergence Zone, last deglacial and holocene, South American Low Level Jet
INTRODUCTION

Past precipitation records from (sub)tropical South America
highlighted that on orbital timescales, precipitation associated
to the South American Monsoon System (SAMS) and South
Atlantic Convergence Zone (SACZ), which is a particular feature
of the SAMS, was mainly controlled by austral summer
insolation. High (low) insolation lead to increased (decreased)
moisture convection across the Amazon basin, which in turn
increases (decreases) moisture export towards the southeast,
seasonally feeding the SACZ and resulting in increased
(decreased) SAMS rainfall over most parts of South America
(Cruz et al., 2005; Hou et al., 2020). However, millennial-scale
variations in South American precipitation during the last
deglacial, such as Heinrich Stadial 1 (HS1) were driven by a
different global climate forcing: induced by high-latitude forcing,
the reorganization of cross-equatorial heat transport resulted
from a marked slowdown of the AMOC leading to diminished
oceanic heat export into the Northern Hemisphere. In turn, the
distinct bi-polar distribution of heat in the Atlantic Ocean was
expressed by simultaneous cooling of the northern and warming
of the southern hemispheric sectors of the Atlantic Ocean. This
global redistribution of heat had a determining influence on the
latitudinal position and strength of atmospheric convection belts
over the tropical Atlantic and affected the latitudinal position of
the Intertropical Convergence Zone (ITZC). The southward shift
of the ITCZ results from increased northward atmospheric heat
transport into the colder hemisphere during phases of weak
AMOC that is necessary to compensate the interhemispheric
heat imbalance, and is in line with an intensification and a cross-
equatorial extension of the Northern Hemisphere Hadley-Cell
(Donohoe et al., 2012; McGee et al., 2014; Mulitza et al., 2017).
Past studies indeed show a direct influence on moisture
availability across South America by southward shifts of the
ITCZ during periods of weak AMOC, which are, however,
confined to the SAMS region in northern South America
(Zhang and Delworth, 2005; Deplazes et al., 2013; Zhang et al.,
2017; Bahr et al., 2018).

Southward shifts of the ITCZ and the associated adjustment
of moisture flux pathways across tropical South America were
further invoked to indirectly affect precipitation in the realm of
the SACZ (Wang et al., 2007; Kanner et al., 2012; Strıḱis et al.,
2015; Strıḱis et al., 2018). The latter studies implied that the
deglacial high-latitude forced climatic perturbations and
concomitant southward ITCZ shifts further boosted SACZ
strength, thereby favoring moisture transport towards tropical
and subtropical South America. However, Campos et al. (2019)
revealed that precipitation anomalies in E and SE Brazil during
in.org 2
phases of rapid climatic perturbations during the last
deglaciation, i.e. HS1, were related to enhanced moisture flux
from the tropical South Atlantic rather than SACZ
intensification as suggested by prior studies. Further, variability
in strength and extension of the SACZ, which determines
precipitation in SE Brazil, is independent of a direct influence
by the ITCZ. Instead, the SACZ strength appears to rather
depend on synoptic climatic features across the Southern
Hemisphere (Vera et al., 2002; Liebmann et al., 2004; Marengo
et al., 2004; Silva and Berbery, 2006; Gelbrecht et al., 2018).
Gelbrecht et al. (2018), for instance, found that eastward
propagating atmospheric Rossby waves were the main driver of
SACZ variability. The Rossby wave train determines the position
of cyclonic and anticyclonic circulation across South America
and the South Atlantic, which dominates the moisture flux
towards the realm of the SACZ and subtropical South
America. Yet, the ITCZ was found to play an indirect role in
the synoptic atmospheric configuration in the Southern
Hemisphere as southward shifts of the ITCZ weaken
(invigorate) the strength of the subtropical (mid-latitude) jet,
hence affecting the Southern Hemisphere Rossby wave train (Lee
et al., 2011; Ceppi et al., 2013).

Since such synoptic climatic features were not considered in
past paleo-precipitation studies from South America, the
variability of SACZ-related precipitation and its controlling
mechanisms during phases of rapid climatic perturbations
during the last deglaciation such as during HS1 are not well
constrained yet. Further, existing high-resolution SACZ
reconstructions covering the last deglaciation are primarily
based on terrestrial climate archives such as speleothems (Cruz
et al., 2006; Cruz et al., 2007; Strıḱis et al., 2015; Strıḱis et al.,
2018), while climate reconstructions from the core region of the
SACZ based on marine sediment archives are still sparse
(Campos et al., 2019).

Here we present a multiproxy record of marine sediment
Core M125-35-3 collected off SE Brazil close to the Paraıb́a do
Sul River mouth, whose catchment drains the core region of the
modern SACZ (Figure 1). Thus, Core M125-35-3 is ideally
located to reconstruct changes in the extension and intensity of
the SACZ, its impact on the regional environment and the
connectivity between SACZ and oceanographic changes during
the last deglaciation. Our focus lies on the most intense phase of
the interhemispheric seesaw during HS1 at ~16 ka which is
captured by a high, sub-centennial-scale temporal resolution (in
average ~57 yr). We first evaluate the capacity of the utilized
inorganic and organic geochemical proxies to capture
continental hydroclimate changes and their impact on
terrestrial and marine environments. Then we discuss our
June 2022 | Volume 9 | Article 878116
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findings in the context of large-scale atmospheric and oceanic
fluctuations. We highlight that past precipitation variability and
associated river run-off had a great influence on nutrient
availability and marine productivity in the western tropical
South Atlantic. Yet, the quantity of terrestrial influx to our
study site is largely determined by the shelf extension and only
subordinately controlled by precipitation intensity. Further we
find that deglacial variability in the SAMS/SACZ system depends
on a complex interplay of atmospheric and oceanographic
processes on hemispheric scales. Unexpectedly, the spatial
precipitation pattern reconstructed for glacial background
conditions during HS 1 resembles modern observations and
numerical model scenarios of future anthropogenic climate
change under rising greenhouse gas concentrations (Gonzalez
et al., 2013; Vera and Dıáz, 2015; Saurral et al., 2017; Masson-
Delmotte et al., 2021). Thus, improving our understanding of the
response of the SAMS to climatic perturbations is instrumental
in order to more reliably project how the spatial distribution and
intensity of rainfall events might develop in response to global
warming. This does not only relate to the socio-economic
impacts of water shortage or flooding on the continent but
must also consider the potential impact of marked changes in
the hydrological cycle on coastal marine ecosystems.
Frontiers in Marine Science | www.frontiersin.org 3
OCEANOGRAPHIC AND
CONTINENTAL SETTING

The Brazilian margin in the western tropical South Atlantic is
dominated by the southward flowing Brazil Current (BC), which
is the western boundary current of the South Atlantic subtropical
gyre carrying warm tropical and oligotrophic waters of the
Southern South Equatorial Current (SSEC) (Peterson and
Stramma, 1991) (Figure 1). The BC flows southwards along
the Brazilian margin from ~10°S as far as ~38°S where it
converges with the northward-flowing cold Malvinas Current
(MC) (Stramma and England, 1999) (Figure 1).

For the discussion of continental climate variability, we define
the following geographic regions (Figure 1): (i) eastern South
America (ESA) is defined as the region between ~10 and 20°S
along the coastal realm of Brazil; (ii) southeastern South America
(SESA) describes the region of Brazil south of 20°S including the
Paraıb́a do Sul catchment; (iii) southern southeastern South
America (SSESA), i.e. the region south of 30°S downstream the
Paraná River and comprising the La Plata catchment (Figure 1).

Since we defined SESA as the region between ~20° and ~30°S
it represents a transitional zone between tropical and subtropical
climate features. During austral summer, modern precipitation
FIGURE 1 | Map of monthly average austral summer precipitation (December-February) across (sub)tropical South America (Karger et al., 2021). The precipitation
pattern illustrates a fully established South American Monsoonal System. Note enhanced precipitation along the South Atlantic Convergence Zone (SACZ) indicated
by NW-SE oriented white dashed line. The yellow asterisk marks Core M125-35-3 (this study). White diamonds indicate marine sedimentary climate archives mentioned
in the text. Red diamonds reflect terrestrial paleo-rainfall reconstructions mentioned in the text. Black arrows indicate the South American Low Level Jet (SALLJ) in two
different modes: the southward oriented Chaco Jet Event (CJE) and the eastward oriented No Chaco Jet Event (NCJE). The red and orange outlines indicate the drainage
basins of the Paraıb́a do Sul located in the core region of the SACZ and the La Plata River. Countries mentioned in the main text (i.e. Brazil, Bolivia and Argentina) were
outlined. The thick orange arrows represent major oceanic surface currents in the western sub(tropical) South Atlantic, namely the southward flowing Brazil Current which
is fed by the southern South Equatorial Current (SSEC). ITCZ, Intertropical Convergence Zone.
June 2022 | Volume 9 | Article 878116
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over SESA is dominated by the seasonal expansion and
intensification of the SAMS/SACZ, which influence is greatest
in the northern part of SESA in the core region of the SACZ
including the Paraıb́a do Sul catchment (Figure 1). During
austral winter, rainfall is related to mid-latitude cyclonic
activity over the South Atlantic (Vera et al., 2002), affecting the
Paraıb́a do Sul catchment less intensively than the southern part
of SESA. With the onset of SAMS activity during austral
summer, increased summer insolation enhances convection
over tropical South America which induces increased moisture
flux towards the continent in line with prevailing NE trade
winds. The moist air is transported southward resulting in
strong precipitation in the SACZ (Gan et al., 2004). The SACZ
is a convective belt that extends from the Amazon basin
southeastward into the western South Atlantic (Marengo
et al., 2004).

Precipitation across ESA gradually decreases northward. In
the southern part of ESA, which is closer to the NW-SE axis of
the SACZ, precipitation seasonally increases in line with SAMS
activity. Although SE trade winds continuously bring moisture
towards the eastern headlands of Brazil, the hinterland region is
characterized by a marked dry season during austral winter (Rao
et al., 1993; Garreaud et al., 2009). The dry season becomes more
extreme towards the semi-arid northeastern Brazil where an
intensification of the Hadley Cell and descending convective
motion of the Walker circulation results in increased aridity
(Moura and Shukla, 1981; Ambrizzi et al., 2004; Garreaud et al.,
2009; Marengo et al., 2017).

Seasonal variability in rainfall amounts across SSESA is weak.
During austral summer, the coastal realms of SSESA receive
increased rainfall when the SACZ is connected with the area of
convection over the Amazon basin (Liebmann et al., 1999).
During the SAMS season, the La Plata basin (including the
Paraná catchment) receives large amounts of tropical moisture,
when a northerly low-level flow is channeled east of the Andes
and feeds convective storms over the subtropical plains (Saulo
et al., 2000; Saulo et al., 2004; Marengo et al., 2004; Garreaud
et al., 2009). This flow is known as the South American Low
Level Jet (SALLJ), which we describe in more detail in section 5.3
(Figure 1). During austral winter, the main source of
precipitation is frontal rainfall caused by incursions of sub-
Antarctic cold fronts meeting tropical air masses (Vera et al.,
2002; Garreaud et al., 2009).

The above described average precipitation pattern across
South America may be disrupted by annual to multi-decadal
climate phenomena (for a recent summary cf. Zanin and
Satyamurty (2020)). Most importantly, a consistently
described climate phenomenon is the occurrence of a
tropical to subtropical precipitation dipole between the
SAMS region influenced by the SACZ comprising the
Paraıb́a do Sul catchment in SESA on the one hand and
SSESA in the exit region of the SALLJ on the other hand
(Nogués-Paegle and Mo, 1997; Robertson and Mechoso, 2000;
Doyle and Barros, 2002; Dıáz and Aceituno, 2003; Liebmann
et al., 2004; Grimm, 2011; Boers et al., 2014; Grimm and
Saboia, 2015; Jones and Carvalho, 2018; Zanin and
Frontiers in Marine Science | www.frontiersin.org 4
Satyamurty, 2020). It is noteworthy that the SALLJ appears
in two different configurations (Figures 1, 2) (Salio and
Nicolini, 2006): (i) the Chaco Jet Event (CJE); and (ii) the
No Chaco Jet Event (NCJE). A main difference between those
jet events is the meridional extension of the jet. Both jet events
are channeled towards the southeastern portion of South
America. The CJE, however, shows a maximum southward
wind component above central Bolivia and continues
northern Argentina. Instead, the NCJE protrudes eastward
around 25°S, fostering moisture transport towards the SACZ
at similar latitudes (Salio et al., 2002; Salio and Nicolini, 2006;
Ramos et al., 2019) (Figure 2). This dipole pattern arises from
the midlatitude Rossby wave train progressing eastward
from the South Pacific Ocean and turns equatorward as it
crosses the Andes Mountains. The prevalent mode of the
SALLJ seems to be determined by the phase of the Rossby
wave as it crosses the Andes Mountains and strongly
modulates the upper and lower atmospheric circulation
pattern across South America, in particular the circulation
pattern and intensity of the SALLJ (Figures 1, 2) (Vera et al.,
2002; Liebmann et al., 2004; Vera et al., 2006; Silva and
Berbery, 2006). Accordingly, a dipole pattern is determined
by moisture flux carried during CJE (NCJE), leading to
enhanced (decreased) precipitation over SSESA and dryer
(wetter) conditions in the core region of the SACZ in SESA.
Further, the negative dipole pattern has been linked to
teleconnections associated with cooling of the North
Atlantic, which leads to a southward shift of the ITCZ and
enhanced cross-equatorial moisture flux over northwestern
South America, finally feeding the northerly SALLJ in its CJE
configuration during a negative SACZ/SALLJ dipole mode
(Jones and Carvalho, 2018; Zanin and Satyamurty, 2020)
(Figure 2). A positive SACZ/SALLJ dipole configuration
operates the opposite way. The SACZ/SALLJ dipole appears
to evolve as a feedback to changes in the spatial configuration
of sea-surface temperatures (SST) in the western South
Atlantic: a negative (positive) SACZ/SALLJ dipole is
associated with warming (cooling) north (south) of 30°S
(Venegas et al., 1997; Robertson and Mechoso, 2000; Doyle
and Barros, 2002; Chaves and Nobre, 2004; Marengo et al.,
2004; Garreaud et al., 2009). The spatial SST pattern, in
particular warming of the western (sub)tropical South
Atlantic north of 30°S, is fostered by radiative forcing after
strengthening of the South Atlantic subtropical high above
SESA induced by a stationary Rossby wave (Figure 2)
(Robertson and Mechoso, 2000; Grimm and Ambrizzi, 2009;
Grimm, 2011; Zanin and Satyamurty, 2020). This atmospheric
configuration determines the exit region of the SALLJ, which
corresponds to the CJE configuration: Atmospheric blocking
by the persistent anticyclone diminishes easterly moisture flux
during NCJE and reinforces northerly moisture flux towards
SSESA via the CJE (Figures 1, 2). This configuration could
cause extreme weather events with marked droughts in the
SACZ domain and floods in SSESA such as during the year
2014 as the SALLJ provides significant Amazon moisture
export towards SSESA (Coelho et al., 2016) (Figure 2).
June 2022 | Volume 9 | Article 878116
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MATERIALS AND METHODS

Gravity core M125-35-3 was retrieved from the upper continental
slope (21°53.606’S, 040°00.279’W, 428.6 m water depth), ~100 km
off the Paraıb́a do Sul River mouth in SE Brazil during R/V Meteor
cruise M125 in 2016 (Bahr et al., 2016). A total of 4.25 m of
sediment was recovered. For lipid biomarker and bulk sediment
elemental composition analyses, 89 sediment samples were taken
downcore along the study interval between 25 and 170 cm covering
the interval between 4 and 19 ka. Sample spacing for lipid
biomarker and elemental analyses was not equidistant (in average
~1.5 cm) and adjusted to changing sedimentation rates in Core
M125-35-3 to generate a temporally evenly resolved record. For
foraminiferal geochemical analyses, the core was sampled between
25 and 170 cm at 1 cm spacing. Sampling was performed on the
split-core working half of Core M125-35-3 using 10 cm3 syringes at
Universidade Federal Fluminense in Niterói, Brazil.

Lipid Biomarker Analysis
For biomarker analysis, sediment samples from Core M125-35-3
were freeze-dried and homogenized using an agate mortar.
Samples (ca. 7 g) were ultrasonically extracted using a 2:1
mixture of dichloromethane (DCM) and methanol (MeOH),
Frontiers in Marine Science | www.frontiersin.org 5
repeated 3 times. The extracts were combined and the solvent
was subsequently removed by rotary evaporation under vacuum.
The resulting total lipid extracts (TLE) were separated into
polarity fractions using silica gel column chromatography. The
apolar, ketone and polar fractions containing n-alkanes,
alkenones, and glycerol dialkyl glycerol tetraethers (GDGTs)
were eluted using n-hexane, DCM, and a 1:1 mixture of DCM
and MeOH, respectively. After drying, the apolar and ketone
fractions were dissolved in 50 μl n-hexane. The polar fractions
were dissolved in n-hexane:isopropanol (95:5, v:v) and filtered
through a 0.45 mm Polytetrafluoroethylene (PTFE) filter prior
to analysis.

Alkenone and n-alkane measurements were carried out on an
Agilent 7890 series II gas chromatograph equipped with an on-
column injector and a Flame Ionization Detector (GC-FID) at
the Institute of Geology and Mineralogy, University of Cologne.
A fused silica capillary column (DB-5MS; 50 m x 0.2 mm, film
thickness: 0.33 mm) was used with He as carrier gas. The samples
were injected at 70°C, and the consecutive GC oven temperature
was raised to 150°C at a rate of 20°C/min. By 150°C the
temperature increase was reduced to 6°C/min to 320°C, which
was held for 40 min. Both alkenones and n-alkanes were
determined and quantified by authentic external standards.
FIGURE 2 | Schematic representation of the mechanism active during the negative SALLJ/SACZ dipole phase in South America and the western South. Northern
hemispheric cooling (in line with a southward shift of the ITCZ into the warmer Southern Hemisphere) triggers the adjustment of the Southern Hemisphere mid-
latitude Rossby wave train (thick grey line). In turn, a persistent anticyclone (grey ellipse) establishes over eastern and southeastern Brazil. Increased radiative forcing
(yellow arrow) leads to increased sea surface temperatures (SST) in the tropical western South Atlantic. The persistent anticyclone blocks the easterly flow of the
SALLJ during its “non Chaco Jet Event” (NCJE) configuration (black dotted arrow) and prohibits tropical moisture flux towards southeastern South America (SESA).
This results in dryer conditions across SESA. Tropical moisture is rather channeled by the SALLJ towards subtropical southern Southeastern South America during
the “Chaco Jet Event” (CJE) (thick blue arrow), wich significantly increases rainfall in its exit region.
June 2022 | Volume 9 | Article 878116
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Analytical precision for alkenone and n-alkane measurements
was < 5% based on replicate standard analyses.

GDGTs were analyzed using ultra-high performance liquid
chromatography (UHPLC; Agilent 1290 Infinity II) coupled to
an Agilent 6460 Triple Quadrupole Atmospheric Pressure
Chemical Ionization Mass Spectrometer (QQQ APCI MS) after
the method from (Hopmans et al., 2016) at the Institute of
Geology and Mineralogy, University of Cologne. Improved
separation of 5- and 6-methyl branched GDGTs (brGDGTs)
was augmented by using two coupled UHPLC silica columns
(BEH HILIC columns, 2.1 x 150 mm, 1.7 μm; Waters™)
connected with a guard column maintained at 30°C at a
flowrate of 0.2 ml/min. Determination of specific GDGTs was
accomplished by single ion monitoring and quantified using an
internal C46 standard (Huguet et al., 2006), presuming a
congruent response between the standard and measured
GDGTs. Reproducibility of GDGT concentrations was < 9 %.

Concentrations of alkenones, n-alkanes, brGDGTs and
crenarchaeol were converted to Mass Accumulation Rates
(MAR) to ensure their independency of other sedimentary
components. MARs were calculated as follows:

MARbio
mg

ka   cm2

h i
=  DBD  

g
cm3

h i
� SR  

cm
ka

h i
� Cbio

mg
g

� �

where DBD is Dry Bulk Density calculated from sample volume
and its dry weight, SR is the sedimentation rate and Cbio

correspond to concentrations of alkenones, n-alkanes,
brGDGTs or crenarchaeol (Supplementary Material Figure S2).

The Branched and Isoprenoid Tetraether (BIT) index was
calculated as defined by (Hopmans et al., 2004):

BITindex =  
I + II + III½ �

I + II + III½ � + IV½ �  

where the roman numerals I, II and III refer to the non-
isoprenoidal brGDGTs originating from terrestrial anaerobic
soil bacteria. The group IV refers to the characteristic
isoprenoidal GDGT “crenarchaeol” of aquatic Thaumarchaeota
(formerly named Crenarchaeota) from marine environments.
The BIT index is used to assess the relative fluvial input of
terrestrial organic matter to marine environments and ranges
from 0 (exclusively marine organic matter) and 1 (exclusively
terrestrial organic matter) (Hopmans et al., 2004; Huguet
et al., 2007).

Alkenones in marine sediments originate from haptophyte
algae (i.e., coccolithophorides, dominated by Emiliania huxleyi)
and high flux rates may therefore reflect higher surface oceanic
productivity (Prahl et al., 1993; Rostek et al., 1997; Kirst et al.,
1999; Herbert, 2014; Jaeschke et al., 2017). Long-chain n-alkanes
are components of leaf-waxes from vascular plants and can be
used as tracer for terrestrial input of organic matter to marine
sediments (Freeman and Pancost, 2014; Jaeschke et al., 2017).
Yet, n-alkanes may also source from bacterial degradation or
matured contaminants. However, the calculated carbon
preference index (CPI) from Core M125-35-3 is at average 3.2
Frontiers in Marine Science | www.frontiersin.org 6
(not shown), thus relatively high and comparable to modern
soils, pointing to a predominance of well preserved terrestrial n-
alkanes (Freeman and Pancost, 2014). GDGTs are membrane
lipids synthesized by both aquatic archaea and terrestrial
bacteria. We present MARs of crenarchaeol, a unique
isoprenoidal GDGT, which is assumed to be specific to
nitrifying marine mesophilic Thaumarchaeota, which are the
most abundant single group of prokaryotes in the oceans, thus
reflecting secondary production in the upper ocean (Karner
et al., 2001; Sinninghe Damsté et al., 2002b; Sinninghe Damsté
et al., 2002a). Mass accumulation rates of crenarchaeol are
assigned to reflect secondary production by nitrifying
Thaumarchaeota in the upper ocean. Further, we focus on
accumulation rates of brGDGTs, which were attributed to
terrestrial soil bacteria (Schouten et al., 2000; Weijers et al.,
2006) and indicate changes in surface erosion and discharge
towards our core location.

Bulk Sediment Elemental Analysis
X-Ray Fluorescence (XRF) analysis was performed on an
ITRAX XRF Core Scanner (Cox Analytical Systems, Sweden)
at the Institute of Geology and Mineralogy, University of
Cologne. The freeze dried and homogenized aliquots of Core
M125-35-3 were pressed into sample cups and covered with
Ultralene® foil. The samples were placed into the core scanner in
series enabling continuous measurement sequences. The XRF
Scanner was equipped with a chromium (Cr) X-ray tube set to a
voltage of 30 kV and a current of 55 mA. All 89 measurements
were carried out at 1 mm resolution along the sample cup surface
and a counting time of 60 s per sample. The multiple
measurements per sample were averaged to determine most
representative elemental quantities. The measured XRF spectra
were quantified by external in-house standard measurements.
Samples of Core M125-35-3 were quantified by using a set of 30
in-house standards from DSDP Site 511. For each element
presented in this study, the standard calibration curves reveal a
strong correlation (r2 > 0.8).

XRF-derived geochemical data from Core M125-35-3 were
grouped into elements which were associated with terrigenous
run-off (i.e. Al, Si, K, Fe, Ti) and Ca, reflecting marine biogenic
carbonate. In addition, we utilize ln(K/Al) and ln(Al/Si) ratios,
which have been used to infer changes in continental moisture
availability favoring chemical weathering in monsoonal
dominated realms (Chiessi et al., 2010; Govin et al., 2012; Clift
et al., 2014; Croudace and Rothwell, 2015; Bahr et al., 2021).
Here, ln(K/Al) represents a measure of the intensification of
chemical weathering as K is indicative for minerals (i.e. illite,
potassium feldspar) which are predominant in dry regions with
increased rates of mechanical over chemical weathering
(Yarincik et al., 2000; Zabel et al., 2001; Burnett et al., 2011).
Al is associated in products of intensive chemical weathering,
being especially enriched in kaolinite, which is characteristic for
tropical humid conditions (Bonatti and Gartner, 1973; Govin
et al., 2012). Modern clay mineral compositions along the eastern
and southeastern South American continental shelf clearly reflect
the weathering regime of the hinterland as kaolinite is
June 2022 | Volume 9 | Article 878116

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Meier et al. South American Deglacial Hydroclimate Variability
predominant in the southeast and illite increase northward as
more arid conditions prevail in ESA (Tintelnot, 1995). Thus,
downcore ln(K/Al) of Core M125-35-2 is a pertinent proxy
reflecting changes in the clay mineral composition which is
strongly dependent on hinterland chemical weathering
intensity and hence, moisture availability (Bahr et al., 2021).
As related to past hydroclimate, low (high) ln(K/Al) reflect
wetter (drier) conditions within the catchment area. We
further compare the ln(K/Al) record with the ln(Al/Si) ratio,
which has previously been used as proxy for chemical weathering
intensity in South America (Chiessi et al., 2010). Decreased ln
(Al/Si) are due to increased fluvial input of fine-grained quartz-
rich material caused by higher rates of physical erosion in line
with less humid conditions, while higher Al indicates stronger
chemical weathering during wetter conditions (Biscaye, 1965;
Govin et al., 2012).

Foraminiferal Geochemistry
For stable carbon isotope (d13C) analysis, all samples were wet-
sieved over a 63 μm mesh and oven-dried at 40°C. To avoid size-
related ontogenetic effects (Elderfield et al., 2002), foraminiferal
tests were sampled from the 355-400 μm size fraction (Friedrich
et al., 2012) of the dried sediment. At minimum 50-60 individual
foraminiferal tests of the surface-dwelling foraminifera
Globigerinoides ruber (pink variety) (Chiessi et al., 2007) were
handpicked under a stereo microscope. Subsequently,
foraminiferal tests were gently crushed between two glass
plates and residual detrital sediments from the exposed test
chambers was removed. The crushed foraminiferal tests were
rinsed three times with ultrapure methanol and ultrasonicated
between each rinsing step. Stable isotope measurements were
carried out on a Thermo Fisher MAT 253plus mass spectrometer
equipped with an automatic Kiel IV carbonate preparation
system at the Institute for Earth Sciences, Heidelberg
University (Germany). Isotope values were calibrated to an in-
house carbonate standard (Solnhofen limestone) and are
reported in per mil (‰) relative to Vienna Peedee belemnite
[VPDB]. Analytic precision based on repeated measurements of
the in-house standard is < 0.03 ‰ for d13C.

Venancio et al. (2017) inferred from sediment-trap studies
located off SE Brazil at 23.6°S, that G. ruber (p) is the best-suited
planktonic foraminiferal species to reconstruct surface-ocean
conditions in the western South Atlantic. The sediment trap
study revealed no significant seasonal changes in the occurrence
of G. ruber (p), thus likely reflecting annual mean conditions.
The calcification depth of G. ruber (p) at this study site was
determined by (Venancio et al., 2017) as the mixed layer between
30 and 40 m water depth, which is comparable to the estimated
calcification depth of G. ruber in the Pacific Ocean (Rippert
et al., 2016).

The d13C of planktonic foraminifera shells are used to
reconstruct the carbon isotopic composition of dissolved
inorganic carbon (DIC) in seawater during calcification. The
ambient seawater d13CDIC during foraminiferal calcification is
influenced by numerous processes, which may be distinguished
into biotic and non-biotic processes. With respect to biotic
effects, d13CDIC of seawater reflects local changes in the balance
Frontiers in Marine Science | www.frontiersin.org 7
between photosynthesis (increasing in d13C) and respiration
(decreasing d13C). In the surface ocean (i.e. habitat of G. ruber
(p)), however, photosynthesis dominates over respiration
(Ravelo and Hillaire-Marcel, 2007). Thus, d13Cplank of Core
M125-35-3 likely reflects the rate of photosynthesis and
amount of exported 12C enriched particulate organic matter
from the reservoir. Non-biotic effects may comprise advection
or upwelling of water masses with different d13CDIC signatures.
Since G. ruber (p) occurs throughout the entire record of Core
M125-35-3 and this species is associated to the oligotrophic
waters carried by the Brazil Current one would not expect a
substitution of different water-masses. Additionally,
foraminiferal respiration and symbiont activity may bias d13C
in foraminiferal tests. However, as we analyze a single species
within a narrow size range, our record should be uniformly
affected by these influences. Thus, next to other productivity-
proxies shown in this study, d13Cplank may give supporting
evidence in the interpretation of oceanic paleo-productivity.

Age Model
The initial age model of Core M125-35-3 was published in (Meier
et al., 2021). For this study, we modified the initial model as we
added one additional AMS 14C age to improve the accuracy of the
late deglacial shift from the Bølling-Allerød (B/A) interstadial to the
Younger Dryas (YD) stadial (Table 1). The AMS 14C dating was
performed by BETA Analytics Limited in Miami (USA). All
AMS 14C ages (Table 1) were recalibrated with the most recent
MARINE20 calibration curve (Heaton et al., 2020) and as recent
findings on the marine radiocarbon reservoir effect off the Brazilian
coast were published by Alves et al. (2021), we considered a DR =
-84 ± 125. As done in (Meier et al., 2021) we used the CRAN R
package Bacon (version 2.5.7) (Blaauw and Christen, 2011) to
constrain the chronostratigraphy of Core M125-35-3. AMS 14C
were calibrated within the Bacon software using a student-t-
distribution (Christen and Pérez, 2009) The improved age model
covers the interval from ~19.3 ka to the late Holocene around
~4.0 ka comprising the last deglaciation, which we define as the
period between the Last Glacial Maximum (LGM) and
the beginning of the Holocene (H) including HS1, the B/A, and
the YD. Sedimentation increase from ~10 cm/kyr during the latest
LGM to maximum values of ~18.0 cm/kyr during the early
deglaciation along HS1. After ~14.2 ka, sedimentation rates
decrease rapidly to minimum values of ~4.0 cm/kyr. From the
onset of the Holocene at ~11.7 ka, sedimentation rates slightly
increase to 8 cm/kyr at the youngest part of the record at 4.0 ka
(Figure S1 in Supplementary Material).
RESULTS

The elemental ratios (S Fe, Al, Ti, K)/Ca and biomarker proxies
(MARs of brGDGTs and the BIT index) which are typically
associated with continental runoff, reveal a steady deceasing
trend during HS1 (Figures 3H–J). In contrast, mass
accumulation rates of n-alkanes show increasing values and
higher variability during HS1 (Figure 3G). Plant input, as
inferred from long-chain n-alkanes, show an increased input of
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plant-derived organic matter at Core M125-35-3 from the end of
LGM towards the late HS1 with maximum values around
3200 ng cm-2 ka-1 at ~15.0 ka. Remarkably, all biomarker-
based proxies of Core M125-35-3 (alkenones, n-alkanes,
brGDGTs and crenarchaeol) reveal a rapid decrease in
coincidence with the onset of the B/A at ~14.6 ka (Figures 3D,
E, G, H). Subsequently, the BIT index, n-alkane MARs and
(S Fe, Al, Ti, K)/Ca remain stable at very low values throughout the
rest of the study interval. MARs of brGDGTs, crenarchaeol and
alkenones of Core M125-35-3 mimic this pattern, but show an
increase after ~7.0 ka during the mid-Holocene, which is of
much higher amplitude in crenarchaeol and alkenone MARs
(Figures 3D, E, H).

d13Cplank remains relatively constant during HS1 and
increases steadily by ~0.5 ‰ during the Holocene (Figure 3C).
In contrast, alkenone and crenarchaeol MARs reveal distinctly
higher oceanic productivity during HS1, approach minimum
values during the early Holocene, and show a subsequent
continuous increase that accelerates after ~7 ka.

Both, ln(Al/Si) and ln(K/Al) ratios indicate slightly wetter
conditions across the catchment of the Paraıb́a do Sul during
HS1 compared to the LGM (Figures 3A, B). Drier conditions
prevail during the B/A followed by a slight increase in moisture
availability across the Paraıb́a do Sul catchment during the YD
stadial. During the Holocene, a long-term decrease of ln(K/Al)
and an increase of ln(Al/Si) reveals successively wetter
conditions. Overall, precipitation variability in the Paraıb́a do
Sul catchment during the deglacial is comparable or even slightly
smaller than that of the Holocene (Figures 3A, B).
DISCUSSION

Effects of Enhanced Deglacial and
Holocene Fluvial Run-Off on the
Marine Environment
On longer time scales, spanning the entire record, our results
reveal that a number of proxies from Core M125-35-3, which are
commonly used to reconstruct terrestrial related environmental
changes reveal a distinct correlation with the deglacial sea level
rise defining the extension of the exposed continental shelf
(Figures 1, 3). Namely, elemental ratios typically associated
Frontiers in Marine Science | www.frontiersin.org 8
with continental runoff (S Fe, Al, Ti, K)/Ca, MARs of brGDGTs
and the BIT index are clearly anti-correlated with the deglacial
rising sea level (Figures 3H–K) and reveal a steady decreasing
trend from the LGM towards the B/A. Yet an exception are n-
alkane MARs, which display increasing values during HS1 prior
to their rapid decrease at the onset of the B/A (Figure 3G). A
secondary source of n-alkanes, which may bias the n-alkane
MARs can be excluded, as the calculated carbon preference index
(CPI) from Core M125-35-3 is at average 3.2 (not shown), thus
relatively high and comparable to modern soils, pointing to a
predominance of well preserved terrestrial n-alkanes (Huang
et al., 1996; Freeman and Colarusso, 2001; Freeman and Pancost,
2014). The HS1 pattern of n-alkane concentrations corresponds
well to the evolution of speleothem d13C values of Botuverá Cave
located in SE Brazil (27°S) (Cruz et al., 2005) (Figures 3F, G).
Amongst others, speleothem derived d13C provides information
of biogenic activity above the cave and/or changes in the relative
proportion of C3 (trees and shrubs) to C4 (drought-adapted
grasses) vegetation, with C3-plants having a lighter d13C
signature than C4 plants (Fleitmann et al., 2008; Novello et al.,
2019). Here, we ascribe increasing n-alkane concentrations
occurring parallel to decreasing d13C values of Botuverá Cave
to the expansion of C3-dominated Atlantic rainforest (tropical
evergreen forest) onto the exposed shelf and the presence of
subtropical gallery forests along the Paraıb́a do Sul during HS1
both substituting the tropical seasonal forest, savanna and
grassland-dominated flora prevalent during the LGM. This is
in line with late Pleistocene pollen-based reconstructions from
Southern and SE Brazil suggesting an expansion of Atlantic
rainforests and gallery forests after 17.0 ka (Behling, 1997;
Behling, 2002; Gu et al., 2018) and somewhat later starting at
15 ka in SESA (Gu et al., 2017; Gu et al., 2018). The numerical
modelling experiments from Maksic et al. (2022) further
corroborate the described changes in biomes. Simultaneously,
soil run-off decreased as observed from brGDGTs mass
accumulation rates during HS1, which may indicate suppressed
top-soil erosion induced by forest expansion (Figure 3H). The
successive decrease in organic matter of terrestrial origin and
especially the sudden decrease in both n-alkanes and brGDGTs
during the B/A and Holocene point at a significantly reduced
input of terrigenous organic matter to the upper slope likely
amplified by other mechanisms (see Discussion below).
TABLE 1 | Calibrated AMS 14C ages measured on the planktonic foraminifera Globigerinoides ruber (pink) using the software Calib (version 8.2) and the MARINE20
calibration curve with DR = -81 ± 124.

Depth (cm) Lab code 14C age (yr BP) Error of 14C ages (yr) 2s calibrated age range
(cal yr BP)

Calibrated Median Age Probability (cal yr BP) Remarks

25.5 BE-7261.1.1 3743 ± 42 3261 - 3971 3610
44.5 Beta-530016 6800 ± 30 6878 - 7468 7189
60.5 BE-7267.1.1 9414 ± 43 9760 - 10535 10178
67.5 Beta-606506 11200 ± 30 12313 - 12927 12633 This study
75.5 Beta-530017 12890 ± 40 14161 - 15104 14660
90.5 BE-7268.1.1 12781 ± 52 14027 - 14968 14492
120.5 BE-7269.1.1 13516 ± 54 15153 - 15970 15552
150.5 BE-72701.1 14254 ± 59 16118 - 16930 16518
159.5 Beta530018 15780 ± 40 18019 - 18685 18357
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Terrestrial input into oligotrophic waters carried by the Brazil
Current alongshore southeastern Brazil would provide an important
nutrient source for oceanic biota. In fact, high marine productivity
at Core M125-35-3 during HS1, reflected by the increase in
alkenone and crenarchaeol accumulation rates (Figures 3D, E)
aligns with elevated accumulation rates of terrigenous elements (Fe,
Al, Ti, K) (Figure S3 in Supplementary Material), n-alkanes and
brGDGTs (Figures 3G, H) pointing at high siliciclastic and organic
matter input of terrestrial origin. Notably, the accumulation rates of
Fe, Al, Ti, and K as well as Ca are high during HS1, which agrees
with the presumption that enhanced marine productivity during
Frontiers in Marine Science | www.frontiersin.org 9
higher terrestrial run-off increases deposition of carbonate and the
relative content of Ca in the sediment (Govin et al., 2012). Thus, it is
consistent to assume that a slightly invigorated continental
hydrological cycle and particularly a marked low sea level
enhanced nutrient and organic matter flux into the western
tropical South Atlantic during HS1, boosting oceanic productivity.
This proposed link between river run-off and marine productivity
further fits to the suggestion that cold-water coral mounds in the
vicinity of Core M125-35-3 flourished during times of enhanced
organic-matter input from the continent due to enhanced nutrient
and organic-matter availability (Bahr et al., 2020). To summarize,
FIGURE 3 | Time series of lipid biomarker (D, E, G, H, I), bulk sediment elemental composition (A, B, J) and foraminiferal geochemistry (C) data of Core M125-35-
3 (this study) compared to a deglacial sea level (K) sea level reconstruction (Austermann et al., 2013) and terrestrial speleothem d13C (F) of Botuverá Cave (Cruz
et al., 2005). Thick lines in panels a-h indicate 3-point running average. Bulk sediment elemental composition from Core M125-35-3: (A) ln(Al/Si), (B) ln(K/Al), j)
(S Fe, Al, Ti, K)/Ca. Lipid biomarker of Core M125-35-3): (D) Mass accumulation rate (MAR) of crenarchaeol, e) alkenone MAR, g) n-alkane MAR, (H) brGDGTs MAR, i)
BIT index. (C) Stable carbon isotopes (d13C) composition of Globigerinoides ruber (p). Arrows indicate direction of increases. Red shaded area marks the timing of
Meltwater Pulse 1a (Brendryen et al., 2020). LGM, Last Glacial Maximum; HS1, Heinrich Stadial 1; B/A, Bølling-Allerød interstadial; YD, Younger Dryas; H, Holocene;
MWP1a, Meltwater Pulse 1a.
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we infer that terrestrial siliciclastic sediment and organic-matter flux
to the upper slope off the Paraıb́a do Sul was maximal during HS1
and subsequently declined during the late deglacial and Holocene,
largely owing to the rising eustatic sea level and ensuing
coastline retreat.

Against the above discussed scenario, one might argue that
d13Cplank values remain constantly low during HS1, instead of the
expected more enriched values in response to high surface
productivity. However, the isotopic fractionation of DIC due to
enhanced marine productivity during HS1 may have been
compensated by the enhanced input of terrestrial organic
matter which is considerably depleted in 13C. The d13C in the
western subtropical South Atlantic must be considered an open
system, where the reservoir and fixation of light 12C by oceanic
productivity is constantly compensated by run-off of terrestrial
organic matter resulting in no notable fractionation in our
d13Cplank record during HS1.

Interestingly, the rapid decrease in MARs of crenarchaeol,
alkenones, n-alkanes and brGDGTs at ~14.6 ka at the onset of
the B/A coincides with meltwater pulse 1a (Weaver et al., 2003;
Brendryen et al., 2020), a phase of rapid sea level rise in which sea
level rose by ~20 m within ~500 years (Liu et al., 2016)
(Figures 3D, E, G, H). We note, that the rapid decrease in n-
alkanes and brGDGTs might be intensified by a shift to slightly
dryer conditions during the B/A onset as reflected by our ln(K/
Al) and ln(Al/Si) records leading to decreased terrestrial run-off
(Figures 3A, B). However, as existing pollen-based vegetation
records of the Atlantic rainforest do not reveal a marked decrease
or retreat (Gu et al., 2017; Gu et al., 2018), we infer that changes
in the hydroclimate were rather small. Thus, we argue that
meltwater pulse 1a marks a threshold, facilitated by the broad
shelf off SE Brazil, when transgression suddenly flooded a wide
area (Figure 1), which functions as a sediment trap during
interglacial high sea level stands. Indeed, a similar situation
was previously described for southern Brazil and Uruguay
(Chiessi et al., 2008; Lantzsch et al., 2014). After flooding the
shelf, the influx of terrestrial (organic) matter to the continental
slope was substantially reduced and became rather insensitive to
continental climatic variability compared to the period before the
B/A that is characterized by high sediment input to the slope.
Yet, during the Holocene, high d13Cplank as well as high
accumulation rates of alkenone and crenarchaeol synthesizing
Coccolithophorides and Thaumarchaeota, respectively
(Figures 3C–E), point at increased oceanic productivity.
Further, the BIT index remains low during the Holocene,
although a slight increase of terrestrial-derived brGDGTs is
observed (Figures 3H, I). This slight enhanced input of
brGDGTs is apparently compensated by the increase of
crenarchaeol in Core M125-35-3 due to higher marine
productivity, which in sum leads to a low BIT index
(Figures 3D, H, I). The dominance of marine organic matter
during the Holocene is in line with the more distant shore line,
especially after MWP 1a flooded the shelf (Figure 3), when
terrestrial sediment and organic matter input to the upper slope
were significantly reduced. However, as increasing ln(Al/Si) and
decreasing ln(K/Al) ratios indicate successively wetter conditions
Frontiers in Marine Science | www.frontiersin.org 10
after 8.5 ka, we argue that increased oceanic productivity during
the Holocene was caused by increased terrestrial runoff fostered
by successively wetter conditions across the Paraıb́a do Sul
catchment eventually providing nutrients to the sub(tropical)
South Atlantic. Nonetheless, increased river runoff in line with
higher precipitation during the Holocene was less efficient in
affecting the oceanic nutrient inventory than the sea-level
fluctuations during the deglacial. This is also supported by the
lower Holocene MARs of alkenones and crenarchaeol when
compared to HS1. In addition, the isotopic fractionation
displayed by d13Cplank may point to limited influx of 13C-
depleted terrestrial organic matter and diminished deposition
in terrestrial derived sediments.

Deglacial and Holocene SAMS/SACZ
Precipitation Variability Across
South America
Previous studies have emphasized the role of an intensification
and/or expansion of the SACZ for providing enhanced moisture
for ESA and SESA during HS1 (Strıḱis et al., 2015; Novello et al.,
2017; Strıḱis et al., 2018; Venancio et al., 2020). As the Paraıb́a do
Sul catchment is within the core region of the SACZ, our record
from Core M125-35-3 is, when combined with available paleo-
hydrological records from its northern and southern boundaries,
ideally suited to track both the strength and area of the SACZ.
For this purpose, we compare our results with published trace
metal data from speleothems from Botuverá Cave (27°S), which
is located just south of the modern domain of the SACZ (Cruz
et al., 2007) and d18O records of Lapa Sem Fim (16.1°S) and
Paixão Caves (12.6°S) located to the north of the SACZ
(Figures 1, 4C, D, I, J).

Based on the ln(K/Al) and ln(Al/Si) data from Core M125-35-
3 (Figures 4A, B), we suggest that precipitation intensity in the
core domain of the SACZ (at least over the Paraıb́a do Sul
catchment) did not vary markedly over the deglaciation, with
slightly more precipitation during HS1 and the YD compared to
the drier B/A. Indeed, neither of these intervals stick out as a
climatic extreme in Core M125-35-3.

Trace metal data from Botuverá Cave (Sr/Ca and Mg/Ca)
(Cruz et al., 2007) indicate an overall decreasing trend during
HS1 pointing to progressively drier conditions (Figures 4C, D).
Today, Botuverá Cave receives precipitation all year round with
no pronounced dry season (during austral summer moisture
derives from the SACZ/SAMS, during austral winter moisture is
related to extra tropical cyclones (Gan and Rao, 1991; Vera et al.,
2002). During HS1, however, a greater seasonal contrast in
rainfall probably characterized the region, with a dry season
during austral winter and wet austral summer season induced by
the SAMS/SACZ. This is supported by palynological studies
from southern and southeastern Brazil indicating the
dominance of Poaceae reflecting rather cold and dry
conditions, while modern-like Araucaria forests, which are
intolerant to long dry seasons, were absent (Behling, 2002; Gu
et al., 2017; Gu et al., 2020). A greater seasonal contrast is also
supported by low d18O values in Botuverá Cave speleothems that
point at the Amazon basin as the dominant moisture source
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FIGURE 4 | Compilation of paleo precipitation records from South America together with sea-surface temperature (SST) reconstructions from the sub(tropical) South
Atlantic. The blue shaded area marks the timing of the atmospheric adjustment to a negative like SALLJ/SACZ dipole pattern across South America at ~16.0 ka as
explained in the main text (SALLJ: South American Low Level Jet, SACZ: South Atlantic Convergence Zone). (A) ln(Al/Si)) and (B) ln(K/Al) of Core M125-35-3 (this
study). (C) Speleothem-based Sr/Ca, (D) Mg/Ca and (E) d18O of Botuverá Cave located in southeastern South America (Cruz et al., 2005, 2007). (F) g-radiation
based precipitation record from Salar de Uyuni located in the central Andes (Baker et al., 2001). (G) Speleothem-based d18O of Jaraguá Cave in central South
America (Brazil) (Novello et al., 2017). (H) Mg/Ca-based SST reconstruction from Core M125-35-3 (Meier et al., 2021), (I) Paixão Cave speleothem based d18O ‰

records and (J) Lapa Sem Fim Cave speleothem based d18O compilation (Strıḱis et al., 2015, 2018) from eastern South America, (K) 231Pa/230Th compilation from
Core GGC5 and ODP Site 1063 representing Atlantic Meridional Overturning Circulation strength (McManus et al., 2004; Böhm et al., 2015; Lippold et al., 2019),
(L) SSTMg/Ca record of Core GeoB6211-2 (Chiessi et al., 2015) collected off southern Brazil, (M) XRF-derived Fe/K from Core GeoB13861-1 close to the La Plata
River mouth (Warratz et al., 2017). (N) and (O) XRF derived ln(K/Al) and Fe/K from Core GL-1090 from the La Plata River mouth (Mathias et al., 2021). Thick lines in
panels a-d and g-i indicate 3-point running average. LGM, Last Glacial Maximum; HS1, Heinrich Stadial 1; B/A, Bølling-Allerød interstadial; YD, Younger Dryas; H,
Holocene; MWP1a, Meltwater Pulse 1a.
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during HS1 (Bernal et al., 2016), which today fuels the SACZ.
Hence, based on available data from Botuverá Cave, a reduction
in winter-time precipitation can be inferred, while the SACZ-
related precipitation appeared to have been relatively stable.

Intensification of SAMS/SACZ activity over ESA during HS1
was previously suggested by Strıḱis et al. (2015) based on
speleothem precipitation records from Lapa Sem Fim and
Paixão Caves (Figures 1, 4I, J). The positive precipitation
anomalies in Lapa Sem Fim and Paixão Caves were related to
so-called “Mega-SACZ-Events” that were presumed to be a
consequence of enhanced convection of tropical-sourced
moisture towards ESA and SESA (Strı ́kis et al., 2015).
However, the new ln(K/Al) and ln(Al/Si) records of Core
M125-35-3 do not support a strong intensification of the
SACZ during HS1 (Figures 3A, B). The more frequent d18O
minima in both cave records may be explained by northward
expansions of the SACZ leading to increased precipitation above
the cave sites. The core region of the SACZ, on the other hand,
seems unaffected by potential northward expansions as the
Paraıb́a do Sul catchment remains within the SACZ influence
as inferred from ln(K/Al) and ln(Al/Si) of Core M125-35-3. An
exception occurred around ~16 ka, when a minimum in d18O
indicate the wettest phase in the Paixão record. Minimum d18O
occurs synchronously with slightly dryer conditions across the
Paraı ́ba do Sul catchment area suggesting a northward
displacement of the SACZ.

Interestingly, the Paixão Cave d18O record closely follows the
Mg/Ca-based SST reconstruction of Core M125-35-3 (Meier
et al., 2021) (Figures 3H, I). Further, the compiled d18O
records of Lapa Sem Fim Cave (Strıḱis et al., 2015; Strıḱis
et al., 2018) match remarkably well with the 231Pa/230Th
compilation record of cores GGC5 and ODP Site 1063 from
the North Atlantic (McManus et al., 2004; Böhm et al., 2015;
Lippold et al., 2019), indicating a sluggish AMOC during HS1
(Figures 3J, K). These correlations may imply a connection
between large-scale oceanographic changes in the western South
Atlantic and precipitation pattern across ESA during HS1.
Campos et al. (2019) showed that precipitation variability in
ESA and SESA was driven by a mechanism independent of
SAMS/SACZ activity. Campos et al. (2019) proposed that
precipitation availability in ESA and to a lesser degree in SESA
depended on atmospheric and oceanographic changes that
resulted from the diminished interhemispheric heat transfer
caused by a weakened AMOC. Based on model and proxy
data, Campos et al. (2019) inferred that increased (decreased)
moisture sourced from the warmer (colder) tropical South
(North) Atlantic was transported with the SE (NE) trade winds
during austral summer (winter). In fact, the good correlation of
high SSTs at Core M125-35-3 and increased precipitation above
Paixão Cave indicate that SSTs from the sub(tropical) South
Atlantic played a crucial role in determining the amount of
moisture advected by the SE winds towards ESA and SESA. High
(low) SSTs in the sub(tropical) western South Atlantic probably
contributed to warm and moist (cool and dry) air towards the
continent. In contrast, the southerly located Botuverá Cave in
SESA seems to be unaffected by this oceanic sub(tropical)
Frontiers in Marine Science | www.frontiersin.org 12
moisture source as its precipitation record reveals continuously
dryer conditions, especially during austral winter. It thus appears
that during HS1 SE trade winds delivering oceanic-sourced
moisture were primarily responsible for enhanced precipitation
in tropical ESA (e.g., at Paixão and Lapa Sem Fim Caves) and to a
lesser degree in the south where they contributed to the slightly
wetter conditions across the Paraıb́a do Sul catchment. A gradual
trend towards increasing precipitation in the northern portions
of ESA may imply a relative increase in convective rainfall
associated with a marked southward shift of the ITCZ during
HS1. However, reconstructions of deglacial migrations of the
ITCZ during northern hemispheric cooling suggest southward
shifts of no more than 7° from its modern position (Arbuszewski
et al., 2013; Schneider et al., 2014; Portilho-Ramos et al., 2017). A
significant contribution of ITCZ rainfall to ESA is hence unlikely.

In addition, Chaves and Nobre (2004) showed that, based on
observational data, positive SST anomalies in the western
subtropical and tropical South Atlantic lead to a northward
shift of the SACZ. This corroborates the interpretation that not
a substantial intensification of the SACZ increased precipitation
during HS1, but northward shifts/expansions of the SACZ
additionally amplified precipitation in SESA as illustrated by
the synchronous SST maximum at Core M125-35-3 and peak
precipitation at the Paixão Cave record at ~16.0 ka (Figures 4H,
I, 5). Our findings lead us to recede from the previously
suggested “Mega-SACZ-Event” and suggest that the slight
increased precipitation in ESA and SESA during HS1 was
primarily due to enhanced moisture advection from the
tropical western South Atlantic. However, northward
expansion or potential shifts of the SACZ might have
additionally reinforced precipitation in ESA. Hence, our
findings corroborate the mechanism proposed by Campos
et al. (2019) for positive precipitation anomalies over tropical
South America.

South American Low Level Jet Dynamics
During the Deglaciation
While the deglacial hydroclimate variability in ESA and partially
in SESA might be well explained by changes in trade wind
intensity and SACZ dynamics, precipitation patterns across
SSESA are strongly influenced by synoptic-scale climate
features, that are usually insufficiently considered in
paleoclimatic studies

The XRF-derived Fe/K record from Core GeoB13861-1 (38.0°
S) (Warratz et al., 2017) collected off the La Plata River mouth
(Figures 1, 4M), as well as the Fe/K and Al/Si records from Core
GL-1090 (24.92°S) (Mathias et al., 2021) retrieved off SE Brazil
potentially show precipitation changes over SSESA, the southern
part of the dipole. We updated the age model of Core GL-1090
applying the new MARINE20 calibration curve (Heaton et al.,
2020) to enable a robust correlation with Core M125-35-3.

From the LGM towards ~16 ka, the Al/Si record of Core GL-
1090 reveals relatively high values indicating smaller amounts of
sediments from the La Plata River (Figure 4N) in SSESA. The Fe/
K record of Core GeoB13861-1 displays decreasing values from
the LGM to 16 ka, indicating a decreasing runoff of deeply
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weathered material from the Paraná catchment and the La Plata
basin (Figure 4M). However, these values need to be interpreted
with caution since decreased bottom current activity favors the
deposition of fine grained clays of Al-rich illite and chlorite
(which may contain significant amounts of Fe) from the
circumantarctic area, potentially increasing Fe/K values during
the late LGM and early HS1 (Warratz et al., 2017). However, the
Fe/K record from Core GL-1090, collected ca. 10° to the north
and ca. 1500 m shallower than GeoB13861-1, constantly displays
low values from the LGM towards ~16.0 ka (Figure 4O) which is
unlikely an effect of the northward dispersal of clays from the
Southern Ocean [cf. Figure 4 in (Warratz et al., 2017)]. Overall,
we infer that hinterland runoff via the La Plata River and
associated precipitation across the Paraná catchment in SSESA
was relatively low between ca. 18 and 16 ka. As discussed above,
ln(K/Al) and ln(Al/Si) ratios from Core M125-35-3 reveal
slightly elevated precipitation during this interval (Figures 4A,
B). Silva and Berbery (2006) observed a strong thermal front in
the vicinity of southern Brazil during positive precipitation
anomalies in SSESA. If this thermal front is not or only weakly
established, precipitation in the SACZ region is enhanced.
Indeed, SST from Core M125-35-3 are rather low and show an
Frontiers in Marine Science | www.frontiersin.org 13
increasing trend from ca. 18 until 16 ka, comparable to the
southerly located Mg/Ca-based SST record of Core GeoB6211-2
(32.5°S) collected off southern Brazil (Chiessi et al., 2015)
(Figure 4L) pointing at a weak meridional SST gradient. Thus,
we suggest that more moisture was transported towards the
SACZ realm in SESA via the NCJE configuration. The dipole
precipitation pattern was thus rather adjusted to a positive
(increased) precipitation in SESA at the expense of dryer
conditions in SSESA (Figures 1, 5).

At ~16.0 ka a distinct change in the SACZ-SALLJ dipole
configuration occurs, as displayed by the signal and spatial
distribution of ensemble of precipitation records across South
America presented in Figure 4. Noteworthy, the interval around
16 ka was associated to the most intense phase of Heinrich Event
1 (HE1) during HS1 and was characterized by the strongest
thermal imbalance according to the interhemispheric seesaw
(Meier et al. , 2021). This pronounced phase of the
interhemispheric thermal seesaw led to warming in the high-
latitude southern South Atlantic, implying a markedly reduced
equator to pole thermal gradient (Barker et al., 2009). These
boundary conditions were also invoked to explain the vigorous
warming in the western South Atlantic as observed in Mg/Ca-
FIGURE 5 | Schematic illustration of atmospheric circulation patterns and rainfall anomalies in South America during Heinrich Stadial at ~16 ka. The blue shaded
area marks the low-pressure system related to the steady eastward propagating Rossby wave train. High-pressure systems propagate northward as they pass the
Andes (indicated by the red arrow). The quasi-stationary system that occurred at ~16 ka during HS1 foster a subtropical high-pressure system across South
America (red area above South America). Substantial moisture transport via the Chaco Jet Event (CJE) configuration (black arrow) enhances rainfall in southern
southeastern South America. Under this situation, the South Atlantic Convergence Zone (SACZ) was likely displaced northward relative to its modern position. Green
and yellow diamonds indicate terrestrial and marine previously published precipitation records respectively. Px, Paixão Cave; LSF, Lapa Sem Fim Cave The yellow
star marks Core M125-35-3 (this study).
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based SSTs of Core M125-35-3 (Figure 4H) (Meier et al., 2021).
During this interval at ~16.0 ka, the Jaraguá Cave speleothem
record from central South America marks a distinct drying
event (Figures 1, 3G). Simultaneously, a distinct increase in Fe/
K from Core GeoB13861-1 (Warratz et al., 2017) argues for
marked wet events over the La Plata basin in SSESA
(Figure 3M). Noteworthy, the Fe/K peak at ~16 ka at Core
GeoB13861-1 coincides with a marked decrease in Al/Si of Core
GL-1090 (Figure 4N), minimizing a potential imprint of
allochthonous Al-enriched circumantarctic clays during times
of relatively weak northward-flowing bottom currents (Warratz
et al., 2017). We also infer that early diagenetic effects (e.g. by
changing redox conditions) (Riedinger et al., 2005) are not the
main cause for the Fe/K peak in Core GeoB13861-1 at ~ 16 ka
as it coincides remarkably well with moist conditions over
SSESA implied by the sudden decrease (increase) in Al/Si (Fe/
K) of Core GL-1090 which during the deglacial was situated in a
more proximal location relative to the La Plata River mouth due
to the low sea level (Lantzsch et al., 2014; Mathias et al., 2021).
At the same time, our ln(K/Al) and ln(Al/Si) record reveals a
short intermittent dry period at 16.0 ka at the Paraıb́a do Sul
catchment (Figures 4A, B). We note that ln(K/Al) and Si/Al
from Core M125-35-3 as well as trace metal data from Botuverá
Cave display rather moderate drying across the SACZ realm
(Figures 4A–D). Missing tropical moisture export towards the
SACZ domain in SESA via the NCJE would cause severely dry
conditions which were, however, likely compensated by
enhanced oceanic moisture flux in line with a vigorous
warming in the western tropical South Atlantic (Figure 4H)
at 16.0 ka. Thus, the precipitation pattern changed rapidly
across South America at 16.0 ka towards a negative dipole
configuration, where central South America (i.e. Jaraguá Cave)
and SESA represented by Core M125-35-3 are characterized by
drying and SSESA (i.e. the Paraná and Uruguay catchment)
experienced distinct wet events. Notably, this precipitation
dipole between SESA and SSESA coincided with the
development of a distinct oceanographic front at around 16.0
ka in the western (sub)tropical South Atlantic as suggested by
SST cooling at mid-latitude Core GeoB6211-2 (32.5°S) (Chiessi
et al., 2015) parallel to pronounced warming at Core M125-35-
3 (21.9°S) (Meier et al., 2021) (Figures 4H, L). As mentioned
above, this thermal front is in line with increased precipitation
in SSESA and drying in SESA, as observed by (Silva and
Berbery, 2006). This pattern suggests that a strong and
persistent CJE enhanced the flow of Amazon moisture
towards the La Plata basin around 16.0 ka leading to
anomalously high rainfall in SSESA. In this context, the
concomitant dry phase at Jaraguá Cave is in line with the
majority of Amazon moisture being transported southwards
along the eastern margin of the Andes and to a lesser extend
southeastward towards Jaraguá Cave and the Paraıb́a do Sul
catchment area (Figure 5). Increased southward advection of
Amazon moisture is also corroborated by a precipitation record
from Salar de Uyuni on the Bolivian Altiplano in the central
Andes showing increased rainfall throughout HS1 (Figure 4F)
(Baker et al., 2001).
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Although the negative precipitation dipole observed at ~16 ka
fits to observational data such as the thermal front arising near SE
Brazil (Figures 4H, I) (Silva and Berbery, 2006), there is still lack of
a sufficient mechanism explaining the substantial reconfiguration of
the lower atmospheric circulation and consecutive moisture
transport across South America. Modern observations revealed
that vast flooding and rainfall events may be strongly related to
the behavior of Rossby wave propagation patterns. Extreme climate
phases may be explained by high amplitude quasi-stationary Rossby
waves resulting from a decreased atmospheric circulation caused by
a reduction of the temperature difference between polar and mid-
latitudes (Andreoli and Kayano, 2005; Coumou et al., 2014;
Coumou et al., 2015; Coelho et al., 2016; Mann et al., 2017; Wolf
et al., 2018). It is well documented that moisture flux by the SALLJ is
largely dependent on the dynamics of synoptic-scale Rossby wave
propagation (e.g. Salio et al., 2002; Carvalho et al., 2004; Liebmann
et al., 2004; Marengo et al., 2004). We therefore suggest that around
16.0 ka, a time of maximum warming of the southern hemisphere
due to the interhemispheric seesaw (Broecker, 1998; Stocker, 1998;
Pedro et al., 2011; Barker and Diz, 2014; Meier et al., 2021), the
overall decreased thermal gradient across the Southern Hemisphere
led to a slowdown of the atmospheric circulation. Thus, the Rossby
wave propagation became more stationary, leading to extreme and
sustained climatic conditions in SSESA and SESA. The pattern
suggests, that a strong subtropical high developed, which spread far
across SESA, forcing the SALLJ to a NCJE-like configuration with
an exit region above subtropical South America. Consequently,
subsiding airmasses associated with a strong and stable subtropical
high inhibited cloud cover leading to persistent radiative forcing,
which likely fostered anomalously high SSTs as observed in Core
M125-35-3 at 16 ka. This atmospheric and oceanic configuration in
turn, led to vast increases in precipitation across SSESA. This
pattern might be indirectly enhanced by a significantly southward
shifted ITCZ at 16 ka. Climate models reveal a similar precipitation
pattern across South America after significant weakening of the
Southern Hemisphere Hadley cell affecting the subtropical andmid-
latitude jets (Figure 1 in Lee et al., 2011; Ceppi et al., 2013).
Contrary, during the early and late phases of HS1, the
atmospheric circulation and Rossby wave propagation was
enhanced, leading to less pronounced and ephemeral extreme
conditions similar to modern-like conditions. The dipole
reconfiguration at 16 ka hence marks an anomalously persistent
negative dipole mode lasting at least ~500 yrs (cf. blue shading in
Figure 4). As discussed in Section 2, the occurrence of the negative
dipole configuration such as at ~16 ka resembles hydroclimatic
extremes of decadal- to interdecadal scales occurring under present-
day conditions. However, modern trends and future projections of
precipitation suggest an increase in the occurrence of the negative
dipole pattern under quasi-stationary Rossby waves with
hazardously increased rainfall across subtropical South America in
SSESA due to global warming (Gonzalez et al., 2013; Junquas et al.,
2013; Vera and Dıáz, 2015; Saurral et al., 2017; Masson-Delmotte et
al., 2021). It is astonishing that a similar climatic configuration could
occur under considerably different boundary conditions. We
hypothesize that both the future and the SACZ/SALLJ dipole
evolution at ~16 ka respond to a common pattern, i.e., a reduced
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hemispheric equator to pole thermal gradient as it is typical for both
global warming scenarios (Masson-Delmotte et al., 2021) and HS1
(Barker et al., 2009).

Evolution of SAMS Dynamics After HS1
After HS1 (i.e., the late deglacial), ln(Al/Si) and ln(K/Al) of Core
M125-35-3 suggest drier conditions during the B/A interstadial
pointing to a weaker SAMS/SACZ which lasted until the
beginning of the YD, when precipitation increased towards the
onset of the Holocene (Figures 4A, B). This late deglacial pattern
is consistent with the precipitation record from Jaraguá Cave
(Novello et al., 2017) from the central domain of the SAMS/
SACZ in central South America (Brazil) (Figure 4G). The strong
late deglacial coupling of precipitation in the Paraıb́a do Sul
catchment and Jaraguá Cave indicates that rainfall associated
with the SAMS/SACZ intensity similarly determined
precipitation in SESA and above Jaraguá Cave. If oceanic
moisture would have dominated precipitation across the
Paraı ́ba do Sul catchment, one would a expect no clear
correlation with the Jaraguá Cave speleothem record, located
in central South America, distant from the coast (Figure 5).
Indeed, SST cooling after 16 ka at the site of Core M125-35-3
implies less moisture export towards South America provided by
evaporation over the sub(tropical) South Atlantic. Hence, we
infer that during the late deglacial after HS1, oceanic moisture
sourced from the (sub)tropical South Atlantic did not
substantially contribute to moisture budget across SESA and a
more modern-like precipitation pattern was established. Further,
during the late deglacial the Fe/K and Al/Si of cores GeoB13861-
1 and GL-1090 do not show any marked abrupt shift in
precipitation across SSESA (Figures 4M–O). Thus, we assume,
that late deglacial precipitation pattern associated with SACZ/
SAMS variability was stabilized by the configuration of
perpetually propagating non-stationary Rossby waves
inhibiting sustained phases of extreme rainfall in SSESA such
as during ~16 ka.

Drier conditions above the Paraı ́ba do Sul catchment
(Figures 4A, B) during the B/A can be assigned to the
stabilization of temperatures in South America in coincidence
with the Antarctic Cold Reversal indicating overall cooler and
likely dryer conditions at the southern margins of the SAMS
(Blunier et al., 1997; Chiessi et al., 2015; Pedro et al., 2016).
Similarly to HS1, during the YD our records reflect a slight
increase in SAMS/SACZ activity as recorded in Jaraguá Cave.
This precipitation increase was likely related to warming of the
Southern Hemisphere and enhanced moisture influx into South
America due to Northern Hemisphere cooling leading to a
southward shift of the ITCZ (Cruz et al., 2006; Novello et al.,
2017). This is in contrast to the HS1, where the (sub)tropical
western South Atlantic was involved as an important moisture
source. SSTs of Core M125-35-3 indeed show a parallel warming
trend during the YD, however, we assume that the quantity of
oceanic-sourced moisture feeding SESA was greatly reduced
because warming of the western tropical South Atlantic was
much weaker compared to HS1.

From the mid Holocene (~8.5 ka) to the top of Core M125-
35-3 our ln(K/Al) and ln(Al/Si) records reveal an increase in
Frontiers in Marine Science | www.frontiersin.org 15
precipitation across the Paraıb́a do Sul catchment (Figures 4A,
B). Simultaneously, the SST record from Core M125-35-3 shows
an increase in temperatures towards ~30°C, which is somewhat
lower as the SST peak at 16 ka (Figure 4H). At the same time,
d18O from Jaraguá Cave shows decreased rainfall across central
South America (Figure 4G). Supported by a slight decrease in the
d18O Botuverá Cave record (Figure 4E), which shows an
increased portion of oceanic moisture, we infer that during the
mid- and late Holocene precipitation across SESA was enhanced
by increased moisture flux from the sub(tropical) South Atlantic
in line with higher SSTs.
CONCLUSIONS

Our deglacial multiproxy dataset of Core M125-35-3 reveals a
strong impact of riverine run-off on marine biota in the western
tropical South Atlantic and discloses new insights in the
dynamics of the SAMS/SACZ. First, our data show that
enhanced terrigenous nutrient and organic matter input fueled
marine productivity in the realm of Core M125-35-3 during HS1,
a consequence of low sea level and slightly enhanced continental
precipitation. Second, vigorous warming of the (sub)tropical
South Atlantic and substantial alteration of the atmospheric
circulation during HS1 enhanced oceanic moisture flux
towards eastern South America. Consequently, our findings
imply that SAMS variability in SESA cannot be explained by
changes in the intensity and geographic extent of the SACZ
alone. Last, we demonstrate that reconstructions of rainfall
patterns across SESA and SSESA need to consider the
dynamics of Rossby wave trains and their influence on the
SALLJ dynamics. Interestingly, numerical models imply that
extreme climate conditions, as reflected by the persistent
negative SALLJ/SACZ dipole pattern around ~16 ka during
HS1, will likely recur under decisively different boundary
conditions in the future as a consequence of global warming.
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