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Chasing the offshore wind farm
wind-wake-induced upwelling/
downwelling dipole

Jens Floeter1*, Thomas Pohlmann2, André Harmer1

and Christian Möllmann1

1Institut für marine Ökosystem- und Fischereiwissenschaften, Universität Hamburg,
Hamburg, Germany, 2Institut für Meereskunde, Universität Hamburg, Hamburg, Germany
The operational principle of offshore wind farms (OWF) is to extract kinetic

energy from the atmosphere and convert it into electricity. Consequently, a

region of reduced wind speed in the shadow zone of an OWF, the so-called

wind-wake, is generated. As there is a horizontal wind speed deficit between

the wind-wake and the undisturbed neighboring regions, the locally reduced

surface stress results in an adjusted Ekman transport. Subsequently, the

creation of a dipole pattern in sea surface elevation induces corresponding

anomalies in the vertical water velocities. The dynamics of these OWF wind-

wake induced upwelling/downwelling dipoles have been analyzed in earlier

model studies, and strong impacts on stratified pelagic ecosystems have been

predicted. Here we provide for the first time empirical evidence of the

existence of such upwelling/downwelling dipoles. The data were obtained by

towing a remotely operated vehicle (TRIAXUS ROTV) through leeward regions

of operational OWFs in the summer stratified North Sea. The undulating

TRIAXUS transects provided high-resolution CTD data which enabled the

characterization of three different phases of the ephemeral life cycle of a

wind-wake-induced upwelling/downwelling dipole: development, operation,

and erosion. We identified two characteristic hydrographic signatures of OWF-

induced dipoles: distinct changes in mixed layer depth and potential energy

anomaly over a distance < 5 km and a diagonal excursion of the thermocline of

~10–14 m over a dipole dimension of ~10–12 km. Whether these

anthropogenically induced abrupt changes are significantly different from the

corridor of natural variability awaits further investigations.
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Introduction
The pelagic effects of offshore wind farm (OWF) foundations

in the stratified North Sea have been analyzed by a combination

of empirical and modeling studies (Carpenter et al., 2016; Floeter

et al., 2017; Schultze et al., 2020; Dorrell et al., 2022). There are

currently few empirical data showing how the presence of an

OWF, which changes the wind stress at the sea surface, affects

the upper ocean and pelagic ecosystem. Offshore wind farms

(OWFs) convert kinetic wind energy into electricity, creating

regions of reduced wind speed and high atmospheric turbulence

intensity downstream of wind turbine arrays. Christiansen and

Hasager (2005); Christiansen and Hasager (2006) were the first

to describe these wind-wakes by synthetic aperture radar (SAR)-

derived wind speed images and well-known wind farm wake

photographs (Hasager et al., 2013). Numerical analyses by

Broström (2008) triggered a series of modeling studies

(Paskyabi and Fer, 2012; Paskyabi, 2015; Ludewig, 2015),

which all predicted that a wind speed of 5–10 m s-1 generates

so-called upwelling/downwelling dipoles in a stratified ocean

with vertical velocities exceeding 1 m day-1. The generated

oceanic response is predicted to extend several kilometers

around the OWFs and to be strong enough to influence the

local pelagic ecosystem, especially the surface mixed layer

(SML). These studies formulated prerequisite conditions for

the generation of an OWF wind-wake-induced upwelling/

downwelling dipole: the characteristic width of the wind-wake

has to be at least the internal radius of deformation (Broström,

2008), which is fulfilled for OWFs in the German Bight of the

North Sea, as both are ~10 km (Chelton et al., 1998; Platis et al.,

2018). An almost constant wind direction for at least ~8–10 h

with moderate speeds (5–10 m s-1) is the second condition which

needs to be met (Ludewig, 2015). Other theoretically derived

factors likely to influence the vertical velocities in OWF wind-

wake-induced upwelling/downwelling dipoles are the size of the

wind farm (Broström, 2008), surface waves and tidal advection

(Paskyabi and Fer, 2012), and atmospheric stability (Platis

et al., 2018).

Christiansen et al. (2022) forced a cross-scale hydrodynamic

unstructured-grid model with a realistic temporally changing

wind field. The authors observed that individual upwelling/

downwelling dipoles shift their spatial positions, following the

directional changes of their causative wind-wakes. Thereby in

some cases, specific dipoles superimposed, either combining

their effect or canceling/mitigating each other. Consequently,

on the monthly average time scale Christiansen et al. (2022)

obtained large-scale surface elevation dipoles with spatial

dimensions of up to hundreds of kilometers in the German

Bight, strong enough to structurally change the seasonal course

of stratification strength.

Due to their ephemeral nature, empirical evidence of the

underlying specific OWF wind-wake-induced upwelling/
Frontiers in Marine Science 02
downwelling dipoles is lacking. Besides the necessary

atmospheric and hydrodynamic conditions (i.e., stratification),

contrasting quasi-synoptic water column surveys of the leeward

area are required to fill this gap. In June 2016, we deployed a

high-speed remotely operated towed vehicle (ROTV) to

investigate the offshore wind farm wind-wake-induced

upwelling/downwelling dipole.
Materials and methods

Data analysis

Data analysis and visualization were conducted using the

software program R (R Core Team, 2022), the R-packages

‘‘ggplot2” Wickham (2016), “scales” (Wickham and Seidel,

2019), “NISTunits” (Gama, 2016), and “lubridate” (Grolemund

and Wickham, 2011) as well as Ocean Data View 5.40 (ODV,

Schlitzer, 2021). Data were gridded using the ODV-weighted

average or ODV/DIVA method with automatic scale lengths

(Troupin et al., 2012). We used the cmocean color maps within

ODV following the guidelines of Thyng et al. (2016).
OWF operation

The two OWFs that were surveyed, Global Tech I (GTI) and

BARD Offshore 1 (BARD), are located at a water depth of

around 40 m in the German EEZ, and a distance of

approximately 100 km offshore. Both OWFs had 80 wind

power plants installed, whereby the number of turbines ready

to operate varied over time (Figure 1). The available turbines

start to operate, i.e., turn the blades and generate a wind-wake, at

a wind speed of 4 m s⁻1. On June 26, all GTI turbines had to be

stopped around noon due to a technical reason. This complete

GTI shutdown lasted for ~33 h until 9:00 UTC on June 27.

During June 28, the number of operating turbines was stepwise

increased to 59 and further on to 60–67 during the following 2

days. The number of operating turbines in BARD was quite

stable over the entire survey time (mean: 72.64, cv: 2.4%, min: 69,

max: 75), creating contrasting situations for our investigations:

on June 27, BARD was generating a wind-wake, whereas the

neighboring OWF GTI did not. During the subsequent days

June 29 and June 30, both OWFs generated wind-wakes.
Satellite measurements

Moderate Resolution Imaging Spectroradiometer (MODIS)

sea surface temperature (SST) data and chlorophyll-a

concentrations originally obtained from the Physical

Oceanography Distributed Active Archive Centre (PODAAC,

ftp://podaac-ftp.jpl.nasa.gov/) were provided by the Integrated
frontiersin.org
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Climate Data Centre (ICDC, icdc.cen.uni-hamburg.de)

University of Hamburg, Hamburg, Germany. Due to extensive

cloud coverage, only data from 3 days could be analyzed (June

21, 30, July 3).
Water currents

Regional tidally and meteorologically forced currents were

obtained from the baroclinic 3D ocean circulation model

BSHcmod with a horizontal resolution of ~5 km and an

output time step of 0.25 h (Dick et al., 2001).
Wind

Wind speed [m s-1] and direction [°] measurements at 100-

m hub height within the GTI OWF were provided by GTI with a

temporal resolution of 10 min. The relative wind speed and

direction at vessel height were measured with an anemometer

maintained by Deutscher Wetterdienst (DWD) onboard RV

Heincke. From these data, absolute wind speed and direction

were calculated in real time by the onboard DShip system

(Werum Software & Systems, Lüneburg, Germany).
Survey

North Sea field measurements were conducted during a

summer cruise (HE466, June, 2016) with the RV Heincke
Frontiers in Marine Science 03
(Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und

Meeresforschung, 2017).

High-speed hydrographic transect measurements were

conducted with a MacArtney TRIAXUS ROTV equipped with

a calibrated pumped Seabird SBE 49 FastCAT CTD. Data were

recorded at a frequency of 1 Hz, and the ROTV was towed at a

speed of 8 knots (4.1 m s-1) with a 3° lateral offset to lessen any

disturbance from the vessel wake. The ROTV was undulating

with a vertical speed of 0.1 m s-1 from ~4 m below the sea surface

to ~8 m above the sea floor. This results in vertical data spacing

of 0.3 m and a horizontal resolution of around 560 m between

two surface undulation turning points.

The survey started on June 27 with seven 20-nm (~37 km)

TRIAXUS transects (T0–T6) which were orthogonally aligned to

the initial average 220° southwesterly wind direction. The

distances between the center of the transects and the center of

the eastern border of BARD increased from 6 to 21 km at the

leeward side of BARD and further on to 16 km at the leeward

side of GTI (Figure 2). To also cover the southern leeward area of

BARD, an eighth transect (T1A) was added on 29 June 2016,

with a continuous approximate distance of 4 km to the eastern

OWF border (Figure 6). During the third TRIAXUS

measurements on June 30, only three (T1, T2, T3) transects

could be covered (Figure 8).

Results

In summer, water temperature is affecting density more than

salinity in this region. In all transects, the thermal pattern
FIGURE 1

Numbers of wind energy turbines ready to operate during the HE466 survey period. The OWF GTI (red squares) provided data with a temporal
resolution of 3 h, whereby BARD (blue circles) had a daily reporting at 5 a.m. The vertical black lines indicate the TRIAXUS ROTV field
measurement periods (solid: June 27, dashed: June 29, dotted: June 30).
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generally resembled water density; therefore, most salinity and

density profiles are provided in Supplementary Material.

The average wind speed during the survey was 7.23 m s-1 (cv:

44.7%, min: 0.7 m s-1, max: 15.4 m s-1) coming predominantly

from the Southwest with an average direction of 221.67° (cv:

24.75%). The average southwesterly wind direction during the

24-h period preceding the first TRIAXUS tow was 234° at a

speed of 8 m s-1 (Figure 3). We hypothesize that the ambient

wind conditions would produce three distinct phases (A, B, C)

suitable to create wind-wake-induced upwelling/downwelling

dipoles during the survey period:

Phase A: Potential for an established dipole on June 27

Phase B: Potential for a developing dipole on June 29

Phase C: Potential for an eroding dipole on June 30
Phase A: potential for an established
dipole on June 27

In the ~20 h preceding the ROTV measurements, the stable

southwesterly wind blew with 4–5 Beaufort [~5–8 m s-1], so that

any potential upwelling/downwelling dipole should have been
Frontiers in Marine Science 04
manifested at the leeward side of BARD (Figures 2, 3).

Contrastingly, due to the complete GTI shutdown (Figure 1)

we did not expect to observe a dipole at its lee side.

During the June 27 TRIAXUS transects, the wind direction

changed from southwesterly 220° at the start of T0 to westerly

280° toward the end of T6 (Figures 2, 3). Wind speed at vessel

height first increased from ~9 to 13 m s-1 during T0 and T1 but

decreased to ~8 m s-1 from T3 onward (Supplementary

Figures 1, 2). The 20-nm (~37-km)-long T0 transect through

BARD (Figure 2) surveyed from 04:19 UTC to 06:55 UTC

revealed the latitudinal transition between an intense and a

weak thermally stratified water column (Figure 4). The vertical

temperature difference was ~1.0°C at the shallower (36 m)

southern starting position close to the border of the German

Bight traffic separation scheme (TSS), which prohibited ROTV

sampling, and 3.48°C at the deeper (41 m) northern end of the

transect. Enhanced vertical mixing caused wiggly excursions

(“E” in Figure 4) of the thermocline (~12.5°C–14.5°C) within

the OWF, but a consistent upward bending (“doming effect”,

Floeter et al., 2017) was missing. From the latitudinal

stratification trend along T0, it was obvious that a tidal mixing

front was located further south, most likely within the TSS.
FIGURE 2

2016 June 27 TRIAXUS transects (blue lines, T0–T6, 04:19–23:59 UTC) in relation to the BARD and GTI wind turbines (red dots) overlaying color
contours of the local bathymetry [m] of the survey area. The black arrows indicate the southwest-westerly directions in which the wind blew.
The yellow-dotted lines mark the wind wake during the measurements along T0–T2. The letters “U” depict upwelling, “D” downwelling, “E”
excursions of the thermocline, “F” tidal mixing front, and “FJ” frontal jet. The dashed gray line shows the distances [km] of the transects from the
center of the eastern row of BARD turbines. The centers of transects T4–T6 have a ca. distance of 2, 9, and 16 km to the most eastern turbine
of GTI.
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A pronounced upwelling/downwelling dipole was observed

along transect T1 at a distance of ~6 km to the eastern BARD

border (Figure 2). The mixed layer depth of 12 m in the well-

stratified northern transect part exhibited a downward excursion

to ~19 m followed by an upward excursion to ~5 m, i.e., a vertical

displacement range of ~14 m, leading to a pronounced diagonal

thermocline course (Figure 4). The horizontal distance between

the upwelling peak (“U1” in Figure 4) and the downwelling trough

(“D1”) of the dipole eddies was ~12 km. A ~10-km-wide cooler

surface patch between 6.1°E and 6.2°E exhibited a horizontal

temperature difference of ~1°C in relation to the surrounding

water. The surface-to-bottom temperature difference south of the

upwelling eddy (~6.25°E) was >1.3°C, i.e., substantially higher

than the mean 0.5°C threshold, which indicates the transition

from stratified to mixed waters (Holt and Umlauf, 2008; Skogen

et al., 2011; Christiansen et al., 2022). Therefore, the tidal mixing

front was, as at T0, located further south and the upwelling/

downwelling dipole was created by the OWF-induced wind-wake

in a previously stratified water column.

Transect T2 revealed a similar dipole pattern as T1, but the

downwelling trough (“D2” in Figure 4) of the dipole was larger

and more pronounced than the eroded upwelling cell (“U2”),

confirming the asymmetries predicted by models (Paskyabi and

Fer, 2012; Ludewig, 2015). Further, a reduction in wind deficit

with increasing distance from the OWF (Platis et al., 2018) leads

to lower horizontal and vertical water velocities, which increases

the impact of surface wind-wave-induced vertical mixing,

eroding pointy upwelling signatures.

On transect T3 (Figure 2), the diagonal thermocline of T1

and T2 was replaced by an ~8-km-wide downwelling trough

(“D3” in Figure 4) followed by an ~5-km broad upwelling peak
Frontiers in Marine Science 05
(“U3”). Further south, from 6.35°E to 6.42°E a cooler patch with

a horizontal temperature difference of ~0.3°C was above a

feature that resembled a miniature dipole structure (“DU3a”).

Around June 27 noon, the wind speed slowed down to ~10 m s-1

and turned from southwest to west and later northwesterly

directions. This led to a southeasterly shift of the expected

upwelling/downwelling area as well an advection of the upper

water body into this direction. Thus, the observed displacements

of the hydrographic dipole signatures had been caused by these

changes in the wind field, as found in modeling studies (Paskyabi

and Fer, 2012; Christiansen et al., 2022).

During the June 27 survey of transects T4–T6 (Figure 2) at

the lee side of the shutdown GTI, we did not expect any OWF-

induced wind-wake and hence no upwelling/downwelling

dipole. In the entire region leeward of GTI, we observed a

horizontal salinity gradient from coastal water masses (PSU

<34) to North Sea water (PSU >34, Lee, 1980; Otto et al., 1990).

This led to a tidal mixing front with thermal and salinity-driven

features: in the salinity profiles, frontal jets (“FJ” in Figure 5,

Simpson, 1981) were visible at T4 (6.52°E) and T6 (6.7°E). As

expected, upwelling/downwelling dipole signatures did

not occur.

The field measurements supported our working hypothesis

of an upwelling/downwelling dipole occurring leeward of BARD

but not of GTI. A 12-h period with stable wind of ~10 m s-1

generated an upwelling/downwelling dipole in a stratified water

column with a vertical temperature difference of ~3°C, leading to

a ~14-m vertical excursion of the thermocline, confirming

previous model results (Ludewig, 2015). The spatial

dimensions of the dipole observed on June 27 are depicted in

Figure 4. The area affected by the dipole was ~2–3 times the size
FIGURE 3

Average hourly wind speed [m s-1] and direction [°] at 100-m hub height within the GTI OWF during the field measurements. Arrows point
toward the direction in which the wind blew. The horizontal green line depicts the wind speed threshold of 4 [m s-1] at which the turbines start
to operate. The vertical black lines indicate the TRIAXUS ROTV field measurement periods (solid: June 27, dashed: June 29, dotted: June 30).
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of the OWF BARD; the distance between the upwelling peak and

the downwelling trough was ~12–14 km. The downwelling

trough was observed at a distance of ~2 km from the eastern

turbine row of BARD. The respective distance for the upwelling
Frontiers in Marine Science 06
peak was ~6 km, most likely closer, but we did not survey

transect T1A on June 27. The dipole region extended ~20 km

from the OWF, close to the border of the neighboring OWF

GTI (Figure 2).
FIGURE 4

Water temperature color contours of transects T0–T3 on 27 June 2016. The vertical red lines mark the edges of the OWF. The yellow-dotted
lines mark the wind-wake during the measurements along T0–T2. The letters “U” depict upwelling, “D” downwelling, and “E” excursions of the
thermocline. The thin black lines depict the TRIAXUS undulation path. Transects T1–T3 centers have a ca. distance of 6, 14, and 21 km to the
eastern border of BARD (see Figure 2).
frontiersin.org
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Phase B: potential for a developing
dipole on June 29

On June 28, the wind speed continued to decrease to levels

below the 4-m s-1 turbine operation threshold while its direction

shifted back to Southwest. In the evening, the wind direction

shifted further so that it blew for 9 h from easterly directions

while increasing rapidly up to ~12 m s-1 (6 Beaufort) and erasing

the previously existing upwelling/downwelling dipole in our

survey area. Subsequently, the steadily increasing southwest-

westerly wind (Figure 3) should have enabled the observation of

the different developmental stages of an emerging upwelling/

downwelling dipole: around 5:00 on June 29, it shifted back to

Southwest again, so that the TRIAXUS transects which started at

5:30 could be conducted at a quiet stable southwesterly wind
Frontiers in Marine Science 07
direction until ca. 18:00 (223.61°, cv: 4.07%). Hereby, the wind

speed at hub height within GTI was decreasing for 4 h to around

5 m s-1 but then it increased steadily until midnight (average

7.73 m s-1, cv: 20.7%), and from 20:00 onward it reached a speed

of 15 m s-1 (Figure 3). The resulting sea state prevented high-

speed ROTV undulations as well as its recovery back onboard

from 22:00 (end of T5, Figure 6) until the next morning (June 30,

4:45), so the TRIAXUS had to be towed slowly at a stable safety

depth of 15 m.

The first transect T1 started at the time when the wind

direction shifted to Southwest, creating a wind-wake northeast

of BARD (Figure 6). The T1 measurements took 2.5 h, a period

too short to establish a dipole (Ludewig, 2015). The northern

half of the transect was highly stratified, and the vertical

temperature difference was about 3.1°C (Figure 7). From 6.1°E
FIGURE 5

Salinity color contours of transects T4–T6 on 27 June 2016. The thin black lines depict the TRIAXUS undulation path. Transect T4–T6 centers
have a ca. distance of 34, 41, and 48 km to the eastern border of BARD (see Figure 2). The letters “F” depict the location of a tidal mixing front,
and “FJ” the occurrence of a frontal jet.
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to 6.175°E, we observed an upward excursion of the thermocline,

which intensified eastward and descended to the bottom. As the

surface-to-bottom temperature difference at 6.25°E was small

(<0.5°C), this pattern indicated a naturally occurring shelf sea

tidal mixing front (“F” in Figure 7, Hill et al., 1993), e.g., as

described by Munk (1993) for the southern North Sea. A “cold-

belt” is a typical surface signature of upwelling at a tidal mixing

front (Hill et al., 1993), which was seen as colder (~14.7°C)

surface water at ~6.15°E (“CB” in Figure 7), whereas the

neighboring northern (~14.9°C) and southern (~15°C) surface

waters were warmer. In deviation to the classic schematic tidal

mixing front circulation paradigm (Sharples and Simpson, 2019)

and to the dipole-related upwelling patch on June 27, we

observed an increasing trend of surface water temperature

toward the coast. Under the assumption of nearly constant

atmospheric heating over short distances, a shallow surface

layer becomes warmer than a deeper one (Otto et al., 1990;

Pohlmann, 1996).

The second transect T1A with a distance of ~4 km to the

eastern BARD border showed thermally stratified water with

vertical temperature differences of 2.5°C–3°C over a broad,

wiggly thermocline (Figure 7). Toward the southern end,

stratification weakened (vertical difference ~1.7°C) and the
Frontiers in Marine Science 08
horizontal surface temperature gradients were in the range of

0.1°C km-1. Thus, it can be deduced that the frontal transition

zone was further south, outside of T1A within the TSS.

Transect T2 with a distance ~14 km to the eastern BARD

border revealed a frontal situation like in T1, but with less sharp

vertical temperature differences (Figure 7). The “cold belt” (~14.7°

C) was wider (~6.18–6.23°E, “CB” in Figure 7) compared to T1.

The salinity profile (Supplementary Figure 3) revealed sharp

vertical and horizontal salinity gradients, indicating a frontal

jet (Simpson, 1981) next to the “cold belt” at ~6.16°E. Less

dense <25.4 kg m-3 surface water (Supplementary Figure 4) was

downwelled (“D2” in Figure 7) to 12.5 m around 6.17°E.

Therefore, in contrast to T1 we observed stronger upwelling

(“U2” in Figure 7) and downwelling signals within the tidal

mixing front, which matches with the longer (5-h) period of

stable southwesterly wind.

In transect T3 (Figure 7, ~21-km distance to BARD), the

“cold belt” between 6.3 and 6.4°E was sharply separated from the

SML in the stratified water column (<6.3°E) and the almost

mixed (vertical temperature difference <1°C) water body (>6.3°

E) south of the front. Approximately 10 h after the onset of the

wind-wake, we observed a diagonal shallowing of the

thermocline (13.5°C–14.5°C) depth from ~20 to ~10 m
FIGURE 6

29 June 2016 TRIAXUS transects (blue lines, T1–T5, 05:30–22:00 UTC) in relation to the BARD and GTI wind turbines (red dots) overlaying color
contours of the local bathymetry [m] of the survey area. The black arrow points toward the southwesterly direction in which the wind blew. The
yellow-dotted lines mark the wind wake during the measurements. The letters “U” depict upwelling, “D” downwelling, and “F” tidal mixing front.
The dashed gray line shows the distances [km] of the transects from the center of the eastern row of BARD turbines. The centers of transects
T4 and T5 have a ca. distance of 2 and 9 km to the most eastern turbine of GTI.
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between 6.25°E and 6.3°E. Both upwelling (“U3” in Figure 7) and

downwelling (“D3”) regions were more defined by steeper

temperature gradients.

The combined hydrography of all three transects revealed a

meandering tidal front, which was generally supported by
Frontiers in Marine Science 09
MODIS satellite-derived SST maps of the three cloud-free

non-surveyed days (Supplementary Figures 5–7) and which

can be explained by the local bathymetry (Figure 6): water

depth is slowly but continuously decreasing along T1 and

T1A, whereas the southern parts of T2 and T3 ran over a
FIGURE 7

Water temperature color contours of transects T1A–T3 on 29 June 2016. The thin black lines depict the TRIAXUS undulation path. The letters
“U” depict upwelling, “D” downwelling, and “CB” cold belt. Transect T1A–T3 centers have a ca. distance of 4, 6, 14, and 21 km to the eastern
border of BARD (see Figure 6).
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steeper depth gradient toward a small plateau (<39 m) with a

trench of slightly (~0.5 m) deeper water south of it. In

combination with the previously blown southeasterly wind,

this led to the creation of a tidal mixing front at the southern

parts of T1–T3, whereas in the region of T1A the frontal

transition zone was further south. The upwelling/downwelling

signatures gained intensity from T1 to T2 and T3 (Figure 7),

whereby T1 was measured during the first 2.5 h after the onset of

the wind-wake. The T2 hydrography was recorded 5–8 h and T3

9–11 h after the start of the atmospheric forces supposed to

create an upwelling/downwelling dipole at the lee side of BARD.

We interpret T1 as a naturally occurring tidal mixing front,

whereas the front-related upwelling/downwelling signatures of

T2 and T3 were caused by a mixture of natural bathymetric

effects and the increasing anthropogenic OWF-induced wind-

wake. The co-incidence of wind-wake duration, strengthened

dipole signatures, and changing bathymetry along the survey

route prevented the differentiation of their respective impacts.

At the lee side of the GTI transect, T4 showed a similar

hydrographic characteristic as T2, a tidal mixing front with small

vertical temperature differences and a weakly marked “cold belt”

between 6.4°E and 6.5°E. Upwelling (“U4” in Figure 6) and

downwelling (“D4”) signatures were visible, although the further

increasing wind speed (>12–15 m s-1) had already caused
Frontiers in Marine Science 10
substantial surface waves increasing the mixed layer depth and

eroding the thermocline (Supplementary Figure 8). The

shallowest (water depth 38–41 m, Figure 6) transect T5 with

the least steep depth gradient showed the smallest vertical

temperature differences and a deep, weakly defined

thermocline. Due to the high sea state, the ROTV high-speed

undulations had to stop at the end of this transect.
Phase C: potential for an eroding dipole
on June 30

As the wind blew from southwest with 5–15 m s-1 for a 25-h

period preceding the survey of T1, T2, and T3 at the lee side of

BARD on June 30 (Figure 8), the subsequent survey period

enabled the observation of possible changes in an upwelling/

downwelling dipole due to wind wave-induced turbulence in

the SML. The high sea state due to wind speeds up to 7 Beaufort

[15 m s-1] prevented the ROTV operation for 7 h, but then

the wind speed at hub height within GTI calmed down from 10

to 6 m s-1 t (mean: 7.05 m s-1, cv: 22.7%, min: 5.2 m s-1, max:

10.4 m s-1, Figure 3) enabling high-speed TRIAXUS undulations

during still stable southwesterly wind directions (238.63°, cv:

2.29%) until the end of the research cruise.
FIGURE 8

30 June 2016 TRIAXUS transects (blue lines, T1–T3, 04:41–13:00 UTC) in relation to the BARD and GTI wind turbines (red dots) overlaying color
contours of the local bathymetry [m] of the survey area. The black arrow points toward the southwesterly direction in which the wind blew. The
dashed gray line shows the distances [km] of the transects from the center of the eastern row of BARD turbines.
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The resulting sea state caused intense vertical mixing, which

led to a deepening of the SML from previously ~15 m (Figure 7)

to ~20–25 m (Figure 9). The courses of the thermoclines exhibited

neither the diagonal nor the pointy features we saw on June 27

(Figure 4). However, in T1 and T2 upwelling/downwelling

signatures were visible within the SML (“U”, “D”, Figure 9). The

temperature isolines at T1 indicated a tidal mixing front (“F”)

at ~6.2°E, upwelling around 6.1°E (“U1”), and downwelling

at ~6.05°E (“D2”), which created a warm signature in the

MODIS SST measurements (Supplementary Figure 6). On T2,

we saw upwelling features within the SML at ~6.2–6.25°E (“U2”)

and a downwelling signature at ~6.15°E (“D2”). Transect T3

revealed rather unstructured, wiggly patterns within and above

the deep thermocline.
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The working hypothesis of an erosion of the upwelling/

downwelling dipole due to increased surface-wave-induced

turbulence in the SML was supported by our measurements,

which again revealed the coexistence of a tidal mixing front in

this region.
Discussion

Our working hypotheses of observing three different phases

of an upwelling/downwelling dipole life cycle, i.e., early

development, established and eroding phases, were generally

confirmed. The coexistence of a tidal mixing front on June 29–30

in our investigation area prevented the observation of an
FIGURE 9

Water temperature color contours of transects T1–T3 on 30 June 2016. The thin black lines depict the TRIAXUS undulation path. Transect T1–
T3 centers have a ca. distance of 6, 14, and 21 km to the eastern border of BARD (see Figure 8).
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undisturbed OWF wind-wake-induced development and decay

of dipoles.
Wind-wakes

In situ wind and turbulence measurements of far-field OWF

wakes (Platis et al., 2018) confirmed previous model-

(Dörenkämper et al., 2015) and SAR-derived results (Li and

Lehner, 2013; Djath et al., 2018; Djath and Schulz-Stellenfleth,

2019) that higher atmospheric stability, i.e., the absence of

thermally produced turbulence, increases wake dimensions.

However, we do not know the atmospheric stability during

our survey.

SAR images quantifying wind-wake dimensions in a specific

situation are rare, as the repeat cycle of the satellite is about 11–

12 days (Platis et al., 2018), but promising (Elyouncha et al.,

2021). Airborne observational data showed that in the German

Bight stable atmospheric situations are most probable for

southwesterly wind directions, as in our survey period, from

which Platis et al. (2018) inferred that this is the most likely

direction producing long wakes. However, even in unstable and

neutral atmospheric situations, Platis et al. (2018); Platis et al.

(2020); Platis et al. (2021) frequently observed wind-wakes with

lengths between 5 and at least 35 km in our study area.

Therefore, we deduced that the southwesterly wind with
Frontiers in Marine Science 12
speeds >4 m s-1 which prevailed during our study generated

wind-wakes at the leeward regions of BARD and GTI, with

lengths between 5 and ~35 km. Observations of absolute

(Figure 10) and normalized (Supplementary Figure 9) wind

speeds recorded at FS Heincke revealed for June 27 a clear

wind deficit leeward of BARD only for T1 and T2—the transects

with identified upwelling/downwelling dipoles. The wind speed

deficit was ~3 m s-1 or 30%, which is well in the range reported

by Platis et al. (2018) for a similar-sized neighboring OWF. On

June 29, wind-wakes with a deficit ~25% were detected at FS

Heincke vessel height on transects T1, T2, T3, and T4

(Supplementary Figures 10, 11), supporting our analysis of the

developing dipole. Hence, the June 27 onboard wind

measurements suggest that the wind-wake had a length of ~14

km, and >20 km on June 29. On June 30, the wind-wake deficits

were relatively larger (~46%) on T1 and T2 but on a lower

absolute level (Supplementary Figures 12, 13).
Water currents

During the survey, maximum ambient currents in a depth of

15 m were in the order of 0.6 m s-1, which is about one (Ludewig,

2015) to two (Christiansen et al., 2022) magnitudes higher than

the mean wind-wake-induced changes in the horizontal surface

water velocity field. Therefore, the spatial orientation of the tidal
FIGURE 10

Absolute wind speed [m s-1] measured at FS Heincke vessel height of transects T1–T6 on 27 June 2016. Transect T1–T3 centers have a ca.
distance of 6, 14, and 21 km to the eastern border of BARD, and transect T4–T6 centers have a ca. distance of 34, 41, and 48 km to the eastern
border of BARD and of 2, 9, and 16 km to the most eastern turbine of GTI (see Figure 2). Transect km 0 depicts the northern, offshore, side of
the transects. The two transects T1, T2 with the identified upwelling/downwelling dipoles are depicted with bold lines.
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ellipse in relation to the direction of the wind-wake can be

expected to enhance or weaken the development of an

upwelling/downwelling dipole. Tidal excursions in this region

have a magnitude of ~6–9 km in an east–west direction (Floeter

et al., 2017), which was at an ~45° angle to the average wind-wake-

induced Ekman transport during our study. Subsequently, the

tidal phase can be expected to have an effect on the vertical

velocities and the spatial locations of the dipoles. The BSHcmod-

derived wind- and tide-driven ambient currents were similar

during the comparative measurements of T1 on June 27 and 29,

exhibiting a westward water movement with velocities around

0.2–0.3 m s-1 (Figure 11). However, the tidal phase was different as

on June 27 the 280° westward currents persisted for 12 h before we

surveyed T1, whereas the ambient current was eastward (100°)

during the 12-h period prior to the TRIAXUS measurements of

T1 on June 29. A hydrodynamic modeling analysis would be

needed to assess how the different tidal histories contributed to the

observed dipole shapes and dynamics.
Wind-wake-induced changes in potential
energy anomaly of the water column

Earlier model studies have demonstrated that OWF-induced

disturbances to the wind field modulate tidal mixing front-

related upwelling processes (Paskyabi, 2015) and change the

upper ocean stratification pattern (Ludewig, 2015). To

differentiate natural and anthropogenic effects, we calculated

the potential energy anomaly of the 5–20-m envelope of the

water column following the approach of Simpson (1981) by

considering changes in the potential energy relative to the mixed

condition [Eq. 2 in Simpson (1981)]. The calculation was based

on the potential density anomalies [kg m-3] of the transects,

gridded with ODV-DIVA (Schlitzer, 2021; Troupin et al., 2012)

applying a horizontal and vertical resolution of 250 m and 0.1 m.

All transects surveyed on June 27 and 29 revealed an overall

north–south decrease in the potential energy anomaly, following
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the stratification trend from offshore to the coast (Figure 12).

The trajectories of the transects with established OWF-induced

upwelling/downwelling dipoles (June 27 T1, T2, and June 29 T3)

were distinct from all others by showing abrupt changes in

potential energy anomaly of ~4 kJ m-3 over a short distance

of ~2–4 km (Figure 12).
Characteristic signatures of the observed
upwelling/downwelling dipoles

We identified two characteristic hydrographic signatures of

OWF-induced dipoles:

a. Distinct changes in mixed layer depth and potential

energy anomaly of the 5–20-m water column envelope over a

distance <5 km

b. Diagonal excursion of the thermocline of ~10–14 m over a

dipole dimension of ~10–12 km

Whether these anthropogenically induced changes in

potential energy anomaly and mixed layer depth are

significantly different from the corridor of natural variability

awaits further investigations. The same applies to the

representativity of the observed signatures.
Potential ecological consequences

In a modeling study, Christiansen et al. (2022) identified

reduced vertical mixing of the upper water column due to the

wind speed deficit in the OWF wake as the predominant process

impacting on the pelagic environment of the German Bight.

When the wind direction changes, the enhancement of

stratification and shallowing of the SML is affecting varying

areas. By analyzing monthly mean hydrodynamic results,

Christiansen et al. (2022) concluded that OWF wind-wake-

induced convergence and divergence of water masses lead to

the formation of large-scale sea surface elevation dipoles, which
FIGURE 11

Time series of ambient water currents [m s-1] in a depth of 15 m at 6.21°E 54.375°N, derived from the BSH operational circulation model. The
vertical black lines indicate the T1 TRIAXUS ROTV field measurements periods (solid: June 27, dashed: June 29).
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generate structural changes in the stratification strength in the

German Bight. However, because of almost constantly changing

wind directions, the magnitude of the monthly averages is so low

that it can hardly be distinguished from the interannual

variability (Christiansen et al., 2022).

A shallowing of the nutrient-depleted summer SML (Topcu

et al., 2011) brings the lower regions of the thermocline, and with

it high concentrations of nutrients and phytoplankton cells

(Richardson et al., 2000; Zhao et al., 2019) upward into more

illuminated water depth levels. As some light for net primary

production is available below the thermocline (Floeter et al.,

2017), it can be expected that these phytoplankton organisms are

viable and immediately increase their production.

Thus, when in a specific situation the wind direction is stable

over at least ~10 h, like the ones we encountered on 2016 June 27

and 29, the shallowing of the mixed layer depth by distinct OWF

wind-wakes has the potential to generate significant

anthropogenic pulses of enhanced primary production at the

lower spatial mesoscale (i.e., ~10–35 km). While Christiansen

et al. (2022) confirmed the correlations between the sea-level

dipole anomalies and changes in the vertical density and

temperature distributions derived by Ludewig (2015),

associated changes in the mean vertical velocity field, i.e.

upwelling/downwelling dipoles were not detectable. The cause

can be found in the different nature of the two main effects of

OWF wind-wakes on the water column:

1) Wherever a wind-wake leads to reduced vertical mixing,

the subsequent enhancement of the stratification is not reversed

when the wake direction changes because the wind deficit

prevails within the entire wake. Hence, the effects of this first

process remain detectable in monthly average flow fields.
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2) When a wind-wake directionally persists for some time, it

generates an upwelling/downwelling dipole. When the wind

direction changes, negative and positive vertical water

velocities wipe out each other as the downwelling cell is

shifted over the upwelling cell or vice versa. Hence, the effects

of this second process are vanishing in monthly average

flow fields.

The excursions of the thermocline due to this second wind-

wake effect of upwelling/downwelling dipoles are substantially

larger (~10–14 m, Figures 4, 7) than the shallowing of the

mixed layer depth caused by reduced vertical mixing.

Therefore, it can be expected that they generate more intense

but ephemeral pulses of primary production with spatial

dimensions at the lower meso-/upper submesoscale. Whether

the magnitude of this anthropogenic primary production

enhancement is similar to that of tidal mixing fronts awaits

further investigations. At the current developmental stage of

OWFs in the German Bight, their cumulative wind-wake-

induced upwelling area is smaller than the tidal front region,

but the potential of submesoscale features as drivers of

biophysical coupling in the German Bight was already

highlighted by North et al. (2016) and their location in

stratified regions may make a difference.

The further fate of the manmade additional primary

production, which fraction is cascading up the trophic chain

(Lévy et al., 2018; Wang et al., 2018; Slavik et al., 2019; Twigg

et al., 2020; Kaiser et al., 2021), how much will contribute to

oxygen minimum zones (Topcu and Brockmann, 2015; Große

et al., 2016; Queste et al., 2016), or the impact on fisheries

resources (Methratta and Dardick, 2019; Methratta, 2020; van

Berkel et al., 2020); add another level of complexity.
FIGURE 12

Potential energy anomaly [kJ m-3] of the 5–20-m sections of the water columns along the TRIAXUS transects of June 27 and June 29. The
transects start offshore at km 0 and the three clearly identified upwelling/downwelling dipoles are depicted in bold.
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