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Sterol regulatory-element binding proteins (SREBPs), sirtuin (SIRT1), and liver X receptor
a (LXRa) play important roles in regulating cholesterol metabolism in mammals. However,
little is known about the relationship between cholesterol metabolism and SIRT1, LXRa,
and SREBP-1 in fish. In addition, knowledge of the effects of salinity on hepatic cholesterol
metabolism in euryhaline teleosts is fragmented. This study revealed that hepatic
cholesterol content was significantly different between fresh water (FW)- and seawater
(SW)-acclimated Indian medaka. Gene expression analysis indicated srebp-1, lxra, and
sirt1 transcripts were not affected by changes in ambient salinity. However, SREBP-1, but
not LXRa and SIRT1 protein expression, was significantly induced in the liver of FW-
acclimated medaka. When SREBP-1 Vivo-MO inhibited SREBP-1 translation, hepatic
cholesterol content was predominantly downregulated in FW- and SW-acclimated
medaka. This is the first study to show that SREBP-1 is involved in cholesterol
biosynthesis in fish. Furthermore, SREBP-1 knockdown had different effects on the
expression of hmgcr and fdps, which encode the key enzymes involved in cholesterol
biosynthesis. This study further enhances our knowledge of cholesterol metabolism in the
livers of euryhaline teleosts during salinity acclimation.
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INTRODUCTION

Cholesterol is an essential component of all animal cell membranes and functions as a precursor to fat-
soluble vitamins and steroid hormones (Lee, 2020). Mammalian physiology is usually influenced by the
modification of cholesterol metabolism (Goedeke and Fernández-Hernando, 2012). Both mammals and
fish acquire cholesterol from the diet (exogenous cholesterol) and de novo synthesis (endogenous
cholesterol) (Babin and Vernier, 1989). Cholesterol is largely a product of metabolism in animals. The
liver synthesizes more cholesterol than any other organ (Engelking, 2015). It could be absorbed by the
intestine or released from the liver into the bloodstream (Khan, 2005). When cholesterol is
supplemented in diets, it can significantly improve the growth of Atlantic salmon, catfish, rainbow
trout, Nile tilapia, and turbot (Farrell et al., 1986; Twibell and Wilson, 2004; Yun et al., 2011; Yun et al.,
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2012; Xu et al., 2018). Fish were found to grow well with exogenous
cholesterol supplementation might because the energy used to
synthesize cholesterol was saved for growth (Kemski et al., 2020).

The cholesterol contents in the tissues of aquatic animals
varied with environmental factors including temperature
(Hassett and Crockett, 2009), pollutants (Mohamed et al.,
2019), and toxicity (Binukumari and Vasanthi, 2014).
Environmental salinities were also reported to affect cholesterol
levels in aquatic animals. Serum cholesterol levels were
significantly higher in the 0 and 10 ‰ groups than the 20‰
group of pufferfish (Takifugu fasciatus, Wen et al., 2021).
Cholesterol levels were also higher in hepatopancreases of the
mud crab (Scylla paramamosainduring) of the 4 and 12 ‰
groups than the 25 ‰ group after overwintering. The adaptive
significance of these changes in cholesterol contents may
contribute to the building blocks necessary for modifying the
membrane properties in response to an environmental challenge
(Hazel and Williams, 1990). Cholesterol in excess of dietary
requirements could facilitate lipid mobilization and storage in
the hepatopancreas of the shrimp (Litopenaeus vannamei) to
play important roles in increasing their adaptability to
environments by improving osmoregulatory capacity, leading
to better survival and growth under low salinity conditions (Roya
et al., 2006). In addition, 0.4% dietary cholesterol was found to
increase branchial Na+, K+-ATPase activity, and serum cortisol
content of juvenile Nile tilapia to improve their ability for
hyperosmotic adaptation (Xu et al., 2018).

In addition to dietary uptake, de novo synthesis is the other
source of cholesterol. Cholesterol biosynthesis is tightly regulated
by sterol regulatory element-binding proteins (SREBPs, Amemiya-
Kudo et al., 2002; Horton et al., 2002). Mammalian cells produce
three SREBP isoforms, SREBP-1a, SREBP-1c, and SREBP-2.
Among them, SREBP-1c is the dominant isoform of SREBP-1 in
the livers of adult mammals and is involved in the activation of
genes related to the synthesis of fatty acids, but not cholesterol. No
alternatively spliced isoforms of the srebp-1 gene (e.g., srebp-1a and
1c in mammals) were found in fish (Minghetti et al., 2011; Thomas
et al., 2013; Dong et al., 2015). According to a comparison of the
deduced amino acid sequences, fish SREBP-1 is more similar to
human SREBP-1a than to human SREBP-1c (Dong et al., 2015).
On the other hand, SREBP-2 was found to specifically transactivate
cholesterol synthesis genes (Amemiya-Kudo et al., 2002; Horton
et al., 2002). In mammals, SREBP-2 plays a vital role in the
mevalonate pathway of cholesterol synthesis, involving the action
of more than 20 enzymes (Horton et al., 2002; Xue et al., 2020). 3-
hydroxy-3-methylglutaryl CoA reductase (HMGCR) and farnesyl
diphosphate synthase (FDPS, also known as farnesyl
pyrophosphate synthase; FPPS) among these enzymes are
involved in highly synchronized sterol and cholesterol synthesis
(Horton et al., 2002; Xue et al., 2020). HMGCR is a rate-limiting
enzyme in cholesterol biosynthesis (Smith et al., 1988) and is
induced by sterol depletion and repressed in response to sterol
accumulation (Goldstein and Brown, 1990; Wang et al., 1994). In
contrast, FDPS catalyzes the formation of farnesyl diphosphate, a
key intermediate in the synthesis of cholesterol and isoprenylated
cellular metabolites (Ishimoto et al., 2010). Feeding diets containing
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tuna fish oil for two weeks decreased the serum cholesterol
concentration by 50% in mice, and the hepatic mRNA levels of
fdps and hmgcr by 70% and 40%, respectively, in rats (Corcos
et al., 2005).

In fish, Zhu et al. (2018) reported that the plasma cholesterol
levels of rainbow trout decreased after being fed a plant-based diet.
Meanwhile, the gene expression of srebp-2 and hmgcr was
significantly increased in livers of the rainbow trout. In addition,
when cholesterol was supplemented in the plant-based diet to feed
Atlantic salmon, the gene expression of srebp-2 and fdps was
suppressed, hmgcr was not altered, and srebp-1 was induced in the
liver (Kortner et al., 2014). Thus, srebp-2 in trout and salmon was
suggested to have similar roles in cholesterol metabolism in
mammals. Cholesterol biosynthesis in fish may also be regulated
by ambient salinity. The gene expression of srebp-2, hmgcr, and
fdps was stimulated in livers of the tongue sole (Cynoglossus
semilaevis) after transfer from 30 ‰ to 15 ‰ SW for 60 days
(Si et al., 2018). In livers of the rabbitfish fed with the vegetable oil
diet reared at 10‰ salt-water, srebp-1 displayed higher expression
levels and increased biosynthesis ability of long-chain
polyunsaturated fatty acid, respectively, rather than those in the
32‰ seawater group (Zhang et al., 2016). Differential responses of
SREBP-1 in fish could assist in adapting to different ambient
salinity (Dong et al., 2017). Nevertheless, it remains unclear
whether SREBP-1 is involved in cholesterol metabolism in fish.

When oxysterols increase because of cholesterol overload, the
liver X receptors (LXRs) which are the oxysterol receptors could
act as the cholesterol sensor to protect cells (Zhao and Dahlman-
Wright, 2010). Two isoforms of LXR (Bertrand et al., 2004; Cruz-
Garcia et al., 2009), LXRa (NR1H3) and LXRb (NR1H2) were
identified in this nuclear receptor superfamily (Peet et al., 1998).
LXRa is abundantly expressed in the liver, intestine, adipose
tissue, kidneys, and immune macrophages, whereas LXRb is
ubiquitously expressed in mice (Schultz et al., 2000). LXRs can
promote hepatic lipogenesis by activating the transcriptional
program of fatty acid synthesis, especially by increasing the
transcription of srebp-1c, the key lipogenic activator, in mice
(Repa et al., 2000). LXRa is vital for cholesterol metabolism
through the increased expression of genes involved in bile acid
synthesis and cholesterol excretion in mouse livers (Schultz et al.,
2000). LXRs in fish is also involved in cholesterol metabolism
(Kortner et al., 2014; Zhu et al., 2018). After feeding with a plant-
based diet, hepatic lxra expression as well as plasma cholesterol
levels of rainbow trout decreased (Zhu et al., 2018). The
expression of lxr was also induced when cholesterol was
supplemented into the plant-based diet to feed Atlantic salmon
(Kortner et al., 2014). On the other hand, transcriptome analysis
revealed salinity effects on expression of genes related to lipid
metabolism including lxra and srebp-1 in livers of the turbot
(Scophthalmus maximus) and showed a significant downward
trend under low salinity stress (Liu et al., 2021).

In addition to SREBP-1 and LXRa, sirtuin 1 (SIRT1) also
plays a beneficial role in cholesterol metabolism by deacetylating
both LXR and SREBP-1/2 (Walker et al., 2010). Sirtuins (SIRTs)
are members of a protein family of NAD-dependent deacetylases
(Grozinger et al., 2001; Albani et al., 2010; Vassilopoulos et al.,
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2011). After deacetylation, SIRT1 destabilizes SREBP-1/2
(Ponugoti et al., 2010; Walker et al., 2010). Therefore, SIRT1
can modulate hepatic cholesterol metabolism by mediating LXR
(Kemper et al., 2013) and SREBP-1/2 activities. In SIRT1
knockout mice, decreased expression of LXR downstream
target genes involved in cholesterol metabolism and hepatic
cholesterol accumulation was reported (Feige and Auwerx,
2007; Li et al., 2017). These results are consistent with the
abnormal cholesterol accumulation observed in the liver-
specific SIRT1 knockout mice (Li et al., 2007).

Upon salinity challenge, the euryhaline fish are able to survive
well through efficient osmoregulatory mechanisms mainly
exhibi ted on the membrane of epi the l ia l ce l l s in
osmoregulatory tissues (Hwang and Lee, 2007). Previous
studies have indicated that in some fish cholesterol contents
which were pivotal for membrane structures and functions
changed with environmental salinities (Xu et al., 2018; Wen
et al., 2021). On the other hand, SREBP-1/2, LXRa, and SIRT1
were reported to be crucial for regulating cholesterol metabolism
in mammals (Schultz et al., 2000; Horton et al., 2002; Li et al.,
2007). Although in mammalian livers SIRT1 was known to
control SREBP-1 gene expression through the mechanism
involving the transcription factor LXR as described above, the
mechanisms in cholesterol biosynthesis and accumulation in
livers of euryhaline fish in response to ambient salinity changes
were not clear.

The euryhaline Indian medaka (Oryzias dancena, the
synonym of Oryzias melastigma, Yusof et al., 2011) is an ideal
model species for osmoregulatory studies (Yang et al., 2013), of
which the physiological, biochemical, and molecular responses
after exposure to contaminants and other environmental
stressors were commonly studied due to their characteristics,
i.e., small in size, short in generation time, easy to handle, and
strong intolerance to environmental stress (Dong et al., 2014).
Therefore, this study used this model species to investigate
whether changes in ambient salinity affected cholesterol
accumulation in livers of the Indian medaka through
the protein and gene expression of SREBP-1, LXRa, and
SIRT1. SREBP-1 knockdown was further performed by Vivo-
Morpholino to reveal its role in cholesterol biosynthesis
in livers of this euryhaline fish. This study will enhance
our understanding of the regulatory mechanisms of
cholesterol metabolism of the euryhaline teleost during
salinity acclimation.
MATERIAL AND METHODS

Experimental Fish and Treatments
Indian medaka with a total length of 3.5 ± 0.5 cm and weight of
8.0 ± 1.0 g) were purchased from an aquarium (Taichung,
Taiwan) and kept in laboratory conditions in brackish water
(15 ‰) prepared by adding appropriate amounts of Blue
Treasure Sea Salts (New South Wales, Australia) to aerated
tap water for at least two weeks before the experiments. The
medaka were then transferred into fresh water (FW; 0 ‰) and
seawater (SW; 35‰) tanks with re-circulatory filter units for at
Frontiers in Marine Science | www.frontiersin.org 3
least four weeks and 50% of the water was changed every two
days. The medaka were fed to satiation with a commercial diet
(A045F; Hai Feng, Nantou, Taiwan) containing 45% crude
protein, 6% crude lipid, 16% ash, and 8% water. Throughout
the experimental period, a 12:12 h light: dark regime (08:00 to
20:00 h light period) was maintained using timed lighting. The
water temperature of the control group was maintained at 28 ±
1°C (Juo et al., 2016), and 36 to 60 fish were kept in one tank.
The experimental protocol was reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC) of the
National Chung Hsing University, Taichung, Taiwan (IACUC
Approval No. 106-054).

RNA Extraction and Reverse Transcription
Medaka acclimated to SW or FW were placed on ice under
anesthesia, and the livers were immediately dissected. One
sample (50–100 mg) from each group contained six livers
collected from six individuals and was placed in an Eppendorf
tube containing 200 mL of TriPure Isolation Reagent (Roche,
Mannheim, Germany). The samples were frozen in liquid
nitrogen and stored at -80 °C. The RNA extraction method
used in this study was modified from that described by Hu et al.
(2017). The RNA pellet was dissolved in sterilized diethyl
pyrocarbonate (DEPC) water (20 mL). Extracted RNA integrity
was verified on a 1% agarose gel (SeaKem® LE Agarose; Lonza,
Basel, Switzerland) electrophoresed using SafeView™ Classic
(ABM, San Jose, CA, USA). The concentration and purity of
the total RNA were measured using a NanoDrop 2000 (Thermo,
Wilmington, DE, USA). The purity of the RNA was evaluated by
the ratio of absorbance A260/A280, with the accepted values
between the ranges of 1.9–2.1.

To prepare genomic DNA-free RNA samples, purified RNA
samples were further treated (10,000-25,000 units/mg) with DNase I
(Thermo Fisher Scientific,Waltham,MA, USA). First-strand cDNA
was synthesized using the iScript™ cDNA Synthesis Kit (Bio-Rad,
Hercules, CA, USA) and 1 mg of genomic DNA-free total RNA,
following the manufacturer’s instructions. After the reverse
transcription reaction, real-time PCR (qPCR) was used to
determine the mRNA levels using FastStart™ Universal SYBR
Green Master (04913850001; Roche).

Quantitative Real-Time PCR
Primers used for qPCR analyses were designed according to the
sequences of O. melastigma (also named O. dancena) in the
National Center for Biotechnology Information (NCBI) database
(www.ncbi.nlm.nih.gov). Primer and thermal cycling conditions
(Applied Biosystems® Veriti® 96-Well Thermal Cycler; Thermo
Fisher Scientific) were analyzed using gradient temperatures
ranging from 54–62°C. Thermal cycling is performed by
mixing with 1.6 mL dNTP mixture (Takara, Shiga, Japan), 2 mL
10x Ex Taq reaction buffer (Takara), 0.1 mL Ex Taq polymerase
(Takara), 1 mL of cDNA (20x dilution), 0.5 mL of each forward
and reverse primer (250–400 nM), and adding nucleotide,
DNase, and RNase-free water (Protech, Taipei, Taiwan) to the
total volume of 20 mL. The PCR product was verified by 1–2%
agarose gel electrophoresis (according to the length of the target
sequence). The confirmed PCR product was sent to Tri-I Biotech
May 2022 | Volume 9 | Article 891706

http://www.ncbi.nlm.nih.gov
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Ranasinghe et al. Cholesterol Accumulation in Medaka Livers
Company (Taipei, Taiwan) for sequence analysis. Sequencing
results were confirmed against O. melastigma using the online
database available in NCBI (https://www.ncbi.nlm.nih.gov).

The mRNA expression levels of sirt1, lxra, and srebp1 were
measured using a Rotor-Gene Q Real-Time PCR System
(QIAGEN, Hilden, Germany) in the reaction mixture for
real-time PCR containing 1 mL cDNA (20x dilution), primers
(0.5–1 mL) in the concentration range from 250–400 nM
(according to the primer efficiency), and 10 mL KAPA SYBR
FAST qPCRMaster Mix (KAPA Biosystems, Cape Town, South
Africa) to a total volume of 20 mL using nucleotide, DNase, and
RNase-free water (Protech). Non-specific products were
confirmed by melting curve analysis and gel electrophoresis
of the primers. The primer efficiency was maintained within
95–105% to verify the primer specificity (Table 1). The
corresponding values of the target genes were calculated
using the relative Ct method (Livak and Schmittgen, 2001)
using the following formula: Relative expression= 2^- [(Ct
target gene, n – Ct b-actin, n) – (Ct target gene, c – Ct
b-actin,c)]. Ct corresponded to the threshold cycle number,
“n” indicated each sample, and “c” indicated the control mixed
with cDNA samples of all experiments (Livak and Schmittgen,
2001). Actin was used as the normalization gene.

Preparation of the Nuclear Fraction
Livers were sampled from medaka as described in the previous
paragraph. After sampling, 100 mg of liver samples were ground
using disposable polypropylene pellet pestles in microtubes
containing 1 ml of 1x phosphate-buffered saline (PBS) using a
sonicator. The ground tissues were centrifuged at 1,300 × g at 4°C
for 10 min, and the supernatants were discarded. After
centrifugation, the pellets were used to extract nuclear and
cytoplasmic proteins using the Nuclear/Cytosol Fractionation
Kit (K266-25, BioVision, Milpitas, CA, USA) according to the
manufacturer’s instructions. Extracted cytoplasmic and nuclear
protein samples were stored at -80°C. Protein concentration was
determined using the Bradford assay (B6916, Sigma-Aldrich, St.
Louis, MO, USA) and bovine serum albumin (Pierce, Hercules,
CA, USA) as the standard.
Frontiers in Marine Science | www.frontiersin.org 4
Antibodies
Immunogens of the primary antibodywere alignedwith themedaka
sequence to the most suitable primary antibody using multiple
sequence alignments (Corpet, 1988). The primary antibodies used in
this study included (1) SIRT1, a rabbit polyclonal antibody (13161-
1-AP; Proteintech, Rosemont, IL, USA) raised against the residues
AG3808 of human SIRT1; (2) LXRa, a mousemonoclonal antibody
(sc-377260, Santa Cruz, Dallas, TX, USA) specific for epitope
mapping between amino acid 433-461 of LXRa of human origin
and (3) SREBP-1, a mouse monoclonal antibody (sc-13551, Santa
Cruz, Dallas, Texas, USA) raised against amino acids 301–407-
SREBP-1 of human origin. Primary antibodies were diluted 1:500
with antibody dilution buffer prior to immunoblotting. Secondary
antibodies used in this study included the (1) goat anti-mouse IgG
antibody (HRP) (GTX 213111-01, GeneTex, Irvine, CA, USA) for
detecting the LXRa and SREBP-1a antibodies, and (2) goat anti-
rabbit IgG antibody (HRP) (GTX 213110-01, GeneTex) for
detecting the SIRT1 antibody. To test the specificity of the
primary antibodies, negative controls were included using the
antibody dilution buffer to replace the primary antibodies of
SIRT1 (Supplementary Figure 1), LXR (Supplementary Figure
2), and SREBP-1 (Supplementary Figure 3). The antibody dilution
buffer contained 1% bovine serum albumin and 0.01% sodium azide
in 50 mL PBST.

Immunoblotting
Nuclear protein fractions with 6x sample loading buffer (12%
SDS, 0.06% bromophenol blue, 30% glycerol, 0.6 M
dithiothreitol, and 62.5 mM Tris at pH 6.8) added were
incubated at 65°C for 15 min to denature the proteins. The
protein ladder (PM2500, 3-color Regular Range Protein Marker,
SMOBIO, Hsinchu, Taiwan; #26616, PageRuler™ Pre-stained
Protein Ladder, Thermo Fisher Scientific) loaded for
immunoblotting of SIRT1, LXR, SREBP-1 were 24, 50, and 50
mg of protein per lane, respectively, and PARP1 (sc8007, Santa
Cruz Biotechnology, Dallas, TX, USA) was used as a positive
control. Proteins were separated on 8–10% SDS-PAGE gels using
a Mini-PROTEAN® II Electrophoresis Cell (Bio-Rad). The
separated proteins were transferred to a PVDF membrane
TABLE 1 | Primer sequences used for the cDNA cloning (PCR) and expression detection (qPCR) of medaka livers.

Gene Primer sequence (5′ to 3′) Amplicon size (bp) Reference number Primer efficiency Primer concentration

sirt1 F: CTAAGAGACCTTCTGCCTGA G 138 XM_024297249.1 0.96 250 nM
R: AGACTGGTGTAGAAG TTGC

lxra F: CTCAGGTTTCCACTACAACG 117 XM_024295306.1 1.02 400 nM
R: TACAG GTAAA GTGTC GCC

srebp-1 F: CAGCA GTCTAACCAGAAACTC 103 XM_024272328.1 1.05 400 nM
R: ACGATACCTCCATCTACCTG

srebp-2 F: GAAATAGAGAATGGACGGAGG 171 XM_030794047.1 1.05 400 nM
R: ACTGACAAACTGAAGCATCTC

hmgcr F: GGCTCTTCACCATCTTCTCC 117 XM_024260286.1 0.99 400nM
R: ACAGGTCTATGAGGAGCAGG

fdps F: ACAGAGACCACATATCAGACGG 151 XM_024268301.1 1.03 400nM
R: CTCGTTCTACCTCCCAGTGG

b-actin F: CCATTGAGCACGGTATTGTCA 102 XM_024296129.1 1.05 250nM
R: GCAACACGCAGCTCGTTGTA
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(Millipore, Bedford, MA, USA) by electrophoresis on ice. After
blocking with 5% (w/v) skim milk for 1 h to minimize the non-
specific binding, the blots were incubated overnight at 4°C with
the primary antibody. The membranes were washed three times
with PBST and incubated with the secondary antibody for 1 h at
room temperature. Images were developed with Immobilon™

Western Chemiluminescent HRP Substrate (Millipore) using a
cooling-charge-coupled device camera (ChemiDoc XRS+, Bio-
Rad) and associated software (Quantity One v 4.6.8, Bio-Rad).
The bands were converted to numerical values using ImageLab
3.0 (Bio-Rad) to quantify and compare the relative protein
abundance of the immunoreactive bands.
Assay of Cholesterol Contents
After sampling, medaka livers (16 ± 1 mg) were placed in a
microtube containing 200 mL of a mixture of chloroform (Merck,
14-650-505, Phillipsburg, NJ, USA), isopropanol (#SHBK4071,
Sigma-Aldrich), and NP-40 (IGEPAL® CA-630, Sigma-Aldrich)
in a ratio of 7:11:0.1, followed by grinding on ice. Samples were
centrifuged for 10 min at 15,000 × g at 4°C. Subsequently, the
supernatants were transferred to new and air-dried at 50°C to
remove chloroform. The cholesterol content in the liver was
assayed as described below using the Total Cholesterol Assay Kit
(STA384-192 assays, Cell Biolabs, San Diego, CA, USA)
according to the manufacturer’s protocol. Cholesterol levels
were measured at 570 nm using the colorimetric method with
the cholesterol standard. Cholesterol standards were prepared
before assays by diluting 10 mM stock solution in 1x Assay
Diluent at a ratio of 1:40 to make a 250 mM working solution.
The cholesterol standards were prepared promptly in serial
dilutions from 0–250 mM, including 10 points, according to
the manufacturer’s protocol. The formula for calculating
cholesterol content are:

Total cholesterol  mg=gð Þ

=
Sample corrected absorbance

Slope of standard curve

� �
x Sample dilution

Vivo-Morpholino Design
The translational blocking of SREBP-1 Vivo-Morpholino (5’-
GATAGGCGATTCATC TCTACGGTTG-3’) was designed by
Gene-Tools LLC (Philomath, OR, USA), reverse complementary
to the SREBP-1 full-length sequence of the O. melastigma
database (XM_024272328.1, https://www.ncbi.nlm.nih.gov/),
and confirmed by the Vivo-MO sequence by BLAST search
using the NCBI database. A standard Vivo-Morpholino (MO)
control (5′-CCTCTTACC TCAGTTACAATTTATA-3′) was
purchased from Gene-Tools.

FW- and SW-acclimated adult medaka were anesthetized
with 4% MS222 made with aerated water and then injected
with 0.5 mM SREBP-1 or control in 5 mL Vivo-MOs (either the
original solution supplied by the vendor, 0.5 or 0.05 mM diluted
with phosphate-buffered saline, pH 7.4 (PBS) using a BD insulin
syringe and Ultra-Fine II needle (0.22 mm, 31G x 8 mm, Becton
drive, Franklin lakes, NY, USA). Vivo-MO or control was gently
Frontiers in Marine Science | www.frontiersin.org 5
injected into the region closer to the anal pore in the abdomen of
the medaka. After injection, the fish were returned to their
acclimated environments (i.e., FW or SW) and maintained for
24 h and 72 h. The effects of Vivo-MO were evaluated in a
preliminary study using immunoblotting as previously
described. The livers of the Vivo-MO and control groups were
then sampled for cholesterol analysis.

Statistical Analyses
Statistical analyses were done in the statistical program Minitab
(Minitab® 17 Minitab Inc., PA, USA). Normality and
homogeneity of variance between the groups that were
statistically compared were tested (the significance level was set
at P < 0.05). For the mRNA and protein abundance and
cholesterol level results, data between the FW- and SW-
acclimated medaka of each temperature group were compared
using Student’s t-test (P < 0.05). The data of different temperature
groups in FW or SW were compared using one-way analysis of
variance (ANOVA) with Tukey’s test (P < 0.05). Values are
expressed as mean ± standard error of the mean (SEM).
RESULTS

Hepatic Cholesterol Content in FW- and
SW-Acclimated Medaka
To explore the effects of ambient salinity on cholesterol
accumulation in the livers of Indian medaka, fish were exposed
to fresh water (FW) or seawater (SW) for two weeks.
Subsequently, the livers were sampled to measure cholesterol
content. Figure 1 shows that the hepatic cholesterol content in
the FW group was significantly higher than that in the SW group.

The Gene and Protein Expression of
HMGCR, FDPS, and SREBP-1/2 in Livers
of FW- and SW-Acclimated Medaka
Real-time PCR analyses revealed the mRNA expression of hmgcr,
fdps, and srebp-1/2 in the livers of FW- and SW-acclimated
FIGURE 1 | Hepatic cholesterol content of fresh water (FW)- and seawater
(SW)-acclimated Indian medaka. Values are mean ± S.E.M. (N = 6). Student’s
t-test, *p < 0.05.
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medaka. Hepatic hmgcr, fdps, and srebp-1/2 transcripts were not
significantly different between FW- and SW-acclimated medaka
(Figure 2A). In contrast, the relative protein abundance of
SREBP-1 in the liver was significantly higher in FW- than in
SW-acclimated medaka (Figure 2B). Cholesterol content was
approximately 7-fold higher in FW-acclimated medaka than in
SW-acclimated medaka (Figure 2B).

The Gene and Protein Expression of
LXRa and SIRT1 in Livers of
FW- and SW-Acclimated Medaka
Real-time PCR analyses revealed that the mRNA expression of
lxra and sirt1 in the liver was similar in FW- and SW-acclimated
medaka (Figures 3A, 4A). Immunoblot analysis also revealed
that the relative protein expression of LXRa and SIRT1 in the
livers of FW- and SW-acclimated medaka was not significantly
different (Figures 3B, 4B).

The Effect of SREBP-1 Knockdown on
Hepatic Cholesterol Content of Medaka
Vivo-morpholino (Vivo-MO) of SREBP-1 was used to inhibit
SREBP-1 translation in Indian medaka. Figure 5A shows that
SREBP-1 Vivo-MO could inhibit SREBP-1 protein expression
Frontiers in Marine Science | www.frontiersin.org 6
predominantly in the livers of Indian medaka compared to the
control Vivo-MO. In contrast, SREBP-1 knockdown in FW- or
SW-acclimated Indian medaka significantly inhibited hepatic
cholesterol content (Figure 5B).

The Effect of SREBP-1 Knockdown on the
mRNA Expression of Cholesterol
Synthesis-Related Genes
In both FW- and SW-acclimated Indian medaka, SREBP-1
knockdown significantly decreased hmgcr, but increased fdps
expression (Figure 6). However, hepatic srebp-2 expression did
not change in either FW- or SW-acclimated Indian medaka with
SREBP-1 knockdown (Figure 6).
DISCUSSION

Steroid metabolism-related pathways, such as steroid and
steroid hormone biosynthesis, are important for salinity
adaptation in aquatic animals (Charmandari et al., 2005;
Aruna et al., 2015). The expression of genes involved in lipid
or steroid metabolism-related pathways in fish livers changes in
response to ambient salinity (Si et al., 2018; Liu et al., 2021).
Cholesterol is the sole precursor of steroids (Azhar et al., 2003).
A

B

FIGURE 2 | Relative gene (A) and protein (B) expression of SREBP-1,
HMGCR, FDPS, and SREBP-2 in livers of fresh water (FW)- and seawater
(SW)-acclimated Indian medaka. mRNA expression was analyzed by real-time
PCR. The immunoblots were used to detect SREBP-1 protein expression of
in the nuclear fractions of livers. Values are mean ± S.E.M. (N = 6). Student’s
t-test, *p < 0.05.
A

B

FIGURE 3 | Relative gene (A) and protein (B) expression of LXRa in livers
of fresh water (FW) and seawater (SW)- acclimated Indian medaka. mRNA
expression was analyzed by real-time PCR. The immunoblots were used to
detect the protein expression. Values are mean ± S.E.M. (N = 6).
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In this study, the cholesterol content of medaka liver, the
central organ for cholesterol biosynthesis in vertebrates, was
significantly higher in FW- than in SW-acclimated medaka.
Cholesterol biosynthesis in the livers of Indian medaka may
also be related to changes in ambient salinity, resulting in
changes in hepatic cholesterol content. Kang et al. (2008)
reported that plasma osmolality was significantly lower in
Indian medaka under freshwater (FW) acclimation than in
seawater (SW) acclimation. In contrast, the plasma osmolality
was similar between the hypertonic SW and isotonic BW
groups. The livers of FW-acclimated medaka may have
experienced hypoosmotic stress. This is because osmotic
stress can induce cell death; hence, maintenance of cell
osmolality is a vital issue (Lang et al., 2000; Burg et al., 2007).
Cholesterol biosynthesis in response to changes in ambient
salinity is related to the physical properties of the cell
membranes (Parasassi et al., 1995). The presence of
cholesterol leads to a decrease in the permeability coefficients
of phospholipid vesicles to Na+, K+, and Cl- (Papahadjopoulosa
et al., 1972). A previous study indicated that the erythrocytes of
guinea pigs containing an increased amount of cholesterol
showed a dominant decrease in membrane permeability to
both the active and passive components of Na+ efflux (Kroes
and Ostwald, 1971). Therefore, the increased cholesterol
A

B

FIGURE 4 | Relative gene (A) and protein (B) expression of SIRT1 in livers of
fresh water (FW) and seawater (SW)- acclimated Indian medaka. mRNA
expression was analyzed by real-time PCR. The immunoblots were used to
detect the protein expression. Values are mean ± S.E.M. (N = 6).
FIGURE 5 | The effect of SREBP-1 knockdown on hepatic cholesterol
content in fresh water (FW)- and seawater (SW)-acclimated Indian medaka.
(A) The specificity test of SREBP-1 Vivo-MO. (B) The measurement of hepatic
cholesterol content in Indian medaka with/without SREBP-1 knockdown.
Values are mean ± S.E.M. (N = 6). Student’s t-test, *p < 0.05.
FIGURE 6 | The effect of SREBP-1 knockdown on mRNA expression of
targeted genes in livers of fresh water (FW)- and seawater (SW)-acclimated
Indian medaka. mRNA expression was analyzed by real-time PCR. Values are
mean ± S.E.M. (N = 6). Student’s t-test, *p < 0.05.
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content in the livers of FW-acclimated medaka may help
protect fish against extracellular hypoosmotic stress.

Under salinity stress, the gill is the predominant organ for
osmoregulation in euryhaline teleosts. Na+/K+-ATPase (NKA) is
expressed in mitochondria-rich cells (i.e., ionocytes) of the gill
that actively transports Na+ from and K+ into cells and can
provide a primary driving force to activate other ion transport
systems involved in osmoregulation (Hwang et al., 2011; Lin C.
H. et al., 2021). NKA comprises a- and b-subunits. The a-
subunit is considered the catalytic center of NKA, with binding
sites for cations and ATP (Scheiner-Bobis, 2002). Lipid rafts
(LRs) are plasma membrane microdomains enriched in
cholesterol. Previous mammalian studies have shown that LRs
may play a crucial role in ion exchange. In milkfish and tilapia,
the branchial NKA a-subunit was mainly expressed in LR (Lin Y.
T. et al., 2021). In contrast, experiments on the mammalian
kidney epithelial cell line (LLC-PK1) revealed that plasma
membrane cholesterol positively affects NKA a1 expression
(Chen et al., 2011; Lambropoulos et al., 2016; Zhang et al.,
2020). A previous study indicated that FW-acclimated Indian
medaka have higher branchial NKA a1 protein expression than
SW-acclimated medaka (Kang et al., 2008). The liver is the
central organ involved in vertebrate cholesterol biosynthesis.
Therefore, the increased liver cholesterol content in FW-
acclimated medaka may increase the delivery of cholesterol to
the gill and increase membrane NKA a1 protein expression.

Sterol regulatory element-binding protein-1 and 2 (SREBP-
1/2) are vital regulators of cholesterol metabolism, and 3-
Hydroxy-3-Methylglutaryl CoA reductase (HMGCR) and
farnesyl diphosphate synthase (FDPS) are key enzymes
involved in cholesterol biosynthesis (Amemiya-Kudo et al.,
2002; Horton et al., 2002; Xue et al., 2020). HMGCR is an
important enzyme that controls the first rate-limiting step of
the cholesterol synthesis pathway (Sharpe and Brown, 2013). In
mammals, hmgcr is the transcriptional target of SREBP-1a and
SREBP-2 (Horton et al., 2002; Sundqvist et al., 2005; Xue et al.,
2020). Si et al. (2018) indicated that the gene expression of
srebp-2, hmgcr, and fdps was upregulated in the livers of
Cynoglossus semilaevis under long-term hypotonic stress. In
this study, we found that the hepatic gene expression of srebp-1/
2, hmgcr, and fdps was not different between FW- and SW-
acclimated medaka. In contrast, in this study, we found that the
nuclear protein expression of SREBP-1 was significantly
upregulated in FW-acclimated medaka. When SREBP-1
translation was knocked down by intraperitoneal injection of
SREBP-1 Vivo-MO, we found that SREBP-1 knockdown caused
a dominant decrease in hepatic cholesterol content in both FW-
and SW-acclimated medaka. The decreased percentage of
hepatic cholesterol content was approximately 70-80% in
SREBP-1 knockdown group compared to the control group.
These results revealed that SREBP-1 is positively related to
cholesterol biosynthesis in the liver of teleosts. Thus, higher
SREBP-1 protein expression in the liver of FW-acclimated
medaka may contribute to the upregulation of cholesterol
content. In addition, we found that SREBP-1 knockdown
caused a dominant downregulation in the transcription of
hmgcr in the livers of FW- and SW-acclimated medaka.
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There are two SREBP-1 proteins in mammals, SREBP-1a and
1c, in mammals (Horton et al., 2002). SREBP-1a is universal for
fatty acid and cholesterol biosynthesis, but SREBP-1c is
restricted to fatty acid biosynthesis (Horton et al., 2002). In
teleosts, several studies have indicated that only one SREBP-1
form was translated, and the analysis of amino acid sequences
showed that teleostean SREBP-1 was close to mammalian
SREBP-1a (Minghetti et al., 2011; Thomas et al., 2013; Dong
et al., 2015). Dong et al. (2015) reported that the gene
expression of SREBP-1 in the liver of Japanese seabass was
decreased by dietary polyunsaturated fatty acids compared to
dietary saturated or monounsaturated fatty acids. Hence, fish
SREBP-1 may be involved in lipid metabolism. This study
indicated that the knockdown of SREBP-1 caused a decrease
in hepatic cholesterol content in Indian medaka. Taken
together, teleost SREBP-1 may function universally in lipid
metabolism, similar to mammalian SREBP-1a.

In zebrafish, aplexone treatment disturbs the transcription of
enzymes in the HMGCR pathway and reduces cellular cholesterol
levels. This causes a feedback loop to induce fdps gene expression
(Choi et al., 2011). This study revealed that fdps gene expression
was predominantly upregulated in SREBP-1 knockdown medaka.
The decreased hepatic cholesterol content caused by SREBP-1
knockdown in Indianmedakamay also cause a feedback effect that
induces hepatic fdps gene expression. Inmice, the target disruption
of the srebp-1 gene caused the upregulation of the srebp-2
transcript and nuclear SREBP-2 protein expression, resulting in
increased cholesterol synthesis in the liver (Shimano et al., 1997).
In contrast, these results indicated that hepatic srebp-2 gene
expression was not changed in Indian medaka with SREBP-1
knockdown. Additionally, SREBP-1 knockdown did not positively
affect hepatic cholesterol synthesis in Indian medaka. The
regulatory mechanism for cholesterol homeostasis may have
subtle differences between fish and mammals. Therefore, the
impaired expression of SREBP-1 caused divergent SREBP-2
expression and cholesterol synthesis. SREBP-2 plays an essential
role in regulating cholesterol synthesis in mammalian experiments
(Amemiya-Kudo et al., 2002; Horton et al., 2002). Previous studies
have indicated that dietary cholesterol depletion and
supplementation induced a positive and negative feedback effect
on hepatic srebp-2 gene expression in fish (Kortner et al., 2014;
Zhu et al., 2018). This study indicated that the gene expression
level of srebp-2was approximately 5-fold higher than that of srebp-
1 in the livers of Indian medaka. Therefore, hepatic srebp-2 gene
expression was not significantly different between FW- and SW-
acclimated medaka and SREBP-1 knockdown did not change
SREBP-2 gene expression. The importance of SREBP-2 in
cholesterol metabolism in fish cannot be neglected.

Liver X receptor a (LXRa) plays a key role in controlling
cholesterol metabolism in mammalian livers (Zhao and
Dahlman-Wright, 2010; Jakobsson et al., 2012). To maintain
cholesterol homeostasis, LXRa induces the expression of a range
of genes involved in cholesterol transport and catabolism in the
target tissues (Zhao and Dahlman-Wright, 2010; Jakobsson et al.,
2012). In turbot (Scophthalmus maximus), lxra gene expression
was significantly decreased 24 and 48 h post-transfer from SW to
FW (Liu et al., 2021). On the contrary, our results indicated that
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both gene and nuclear protein expression of LXRa were
unchanged in the liver of Indian medaka acclimated to FW
and SW for one week. Additionally, we found that sirtuin 1
(SIRT1) gene and nuclear protein expression in the liver of
Indian medaka were not significantly different between FW and
SW acclimation. SIRT1 is an NAD+-dependent histone/protein
deacetylase that can deacetylate LXRs and increase their activity.
Increased activity of LXRs has a positive effect on cholesterol
catabolism in target tissues (Li et al., 2007). According to these
results, ambient salinity did not affect the nuclear protein
expression of LXRa and STIR1. Cholesterol elimination in the
liver may not change in Indian medaka after acclimation to FW
and SW for one week. However, FW-acclimated medaka showed
higher nuclear protein expression of SREBP-1, which may
contribute to the elevation of hepatic cholesterol biosynthesis.
Finally, these phenomena may result in elevated cholesterol
levels in the liver of FW-acclimated medaka.

In conclusion, these results showed that the knockdown of
SREBP-1 decreased the expression of cholesterol metabolism-
related genes and cholesterol content in the liver of Indian
medaka. This is the first study to show SREBP-1 may have a
positive effect on hepatic cholesterol metabolism in teleosts.
Thus, the SREBP-1 protein expression was upregulated in FW-
acclimated medaka, which may contribute to the higher hepatic
cholesterol content compared to that in SW-acclimated medaka.
We found that the gene and protein expression of LXRa and
SIRT1 did not differ between the FW and SW groups in Indian
medaka, implying that cholesterol catabolism and other lipid
metabolic reactions might not be regulated in Indian medaka
under salinity stress. Further experiments will help verify these
hypotheses in the future.
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Supplementary Figure 1 | Immunoblotting of SIRT1 in Indian medaka (O.
melastigma) livers detected with a polyclonal antibody (Proteintech-13161-1-AP).
(A) One immunoreactive band with a molecular mass of about 116 kDa was detected.
(B) The negative control did not indicate an immunoreactive band with the secondary
antibody. The arrow indicated the immunoreactive band. M, marker; N, nuclear fraction.

Supplementary Figure 2 | Immunoblotting of LXRa in Indian medaka (O.
melastigma) livers detected with a monoclonal antibody (Santa Cruz sc-377260).
(A) One immunoreactive band with a molecular mass of about 52 kDa was
detected. (B) The negative control did not indicate an immunoreactive band with the
secondary antibody. The arrow indicated the immunoreactive band. M, marker; N,
nuclear fraction.

Supplementary Figure 3 | Immunoblotting of SREBP-1 in Indian medaka (O.
melastigma) livers detected with a monoclonal antibody (Santa Cruz sc-13551). (A) The
major immunoreactive band had amolecular mass of about 85 kDa. (B)Negative control
did not indicate an immunoreactive band with the secondary antibody. The arrow
indicated the immunoreactive band. M, marker; N, nuclear fraction.
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