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Stock enhancement based on hatchery-reared fish has become one of the most common
forms of management practices in marine fisheries resource restoration. However,
unnatural rearing environments may cause hatchery-reared fish to diverge
phenotypically from wild conspecifics, with negative consequences for post-release
performance in the natural environments. To better evaluate the suitability of releasing
hatchery-reared fish, it is necessary to understand the phenotypic effects of captive
rearing, through comparisons with wild conspecifics. In this study, we compared body
morphology, swimming performance, and biochemical body composition between
hatchery-reared and wild marbled rockfish (Sebastiscus marmoratus) from the same
general gene pool. The results show that the overall body profile differed significantly
between the groups, with hatchery-reared individuals having a deeper body (in particular
in the head and trunk regions), narrower caudal peduncles, and higher condition factor, as
compared to wild conspecifics. Hatchery-reared marbled rockfish also had relatively
shorter fins, for a given size. In terms of swimming performance, the hatchery-reared
marbled rockfish performed worse than the wild, with slower burst swimming speeds and
poorer endurance. Wild rockfish had higher body protein content but lower lipid levels
compared to the hatchery-reared individuals. These results suggest that hatchery rearing
conditions have a great impact on the phenotypic development, with possibly high effects
on their post-release performance of the hatchery-reared marbled rockfish. Modifications
for the hatchery environment and operation should be investigated with an aim to minimize
the divergence in phenotypic development for production of more wild-like fish
for stocking.
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1 INTRODUCTION

With the development of modern aquaculture techniques,
releases of hatchery-reared aquatic animals into natural waters
has become one of the most common forms of enhancement
practices in fisheries resource management and restoration
around the world (Bell et al., 2008; Lorenzen et al., 2021).
According to Kitada (2018), at least 187 marine species were
released by 20 countries around the world between 2011 and
2016. In China alone, over 190 billion aquatic animal juveniles
were released into natural waters for stock enhancement between
2016 and 2020 (Ministry of Agriculture and Rural Affairs of the
PRC, 2022). While these aquaculture-based enhancement
programs have been carried out widely, many concerns have
been raised regarding the efficiency of these massive releases of
hatchery-reared aquatic animals. One major issue concerns is the
viability of hatchery-reared animals in natural environments,
with high mortality rates being observed among released
individuals, especially in marine fish (Brown and Laland, 2001;
Araki et al., 2008; Johnsson et al., 2014).

Several studies have pointed out that the low survival rate of
hatchery-reared fish can be attributed to the altered
morphological, physiological and behavioral traits in hatchery-
reared individuals, as compared to their wild conspecifics. Fishes
generally exhibit substantial plasticity in their phenotypic
development, as a consequence of several factors in their rearing
environment (e.g. Ebbesson and Braithwaite, 2012; Johnsson et al.,
2014; Venney et al., 2021). Since divergence in phenotypic
expressions is common for hatchery-reared fish and can be
detected even in the first hatchery-reared generation stemming
from wild parents (Christie et al., 2012), maladaptive changes in
the phenotype constitutes a possible cause for poor post-release
performance (Araki et al., 2008; Fraser et al., 2018; Näslund, 2021).
For example, rapid morphological divergence has been found
between the cultured and wild Atlantic cod Gadus morhua from
the same ancestral population (Wringe et al., 2015) and elevated
rates of morphological defects (e.g. in lateral line morphology)
have been observed in hatchery-reared steelhead trout
Oncorhynchus mykiss (Brown et al., 2017) and turbot
Scophthalmus maximus (Ellis et al., 1997). General body shape
differences between hatchery- and wild-origin fish have been
reported in many cultured species [e.g. steelhead trout (Pulcini
et al., 2013); June sucker Chasmistes liorus (Belk et al., 2008);
Chinook salmon Oncorhynchus tshawytscha (Tiffan and Connor,
2011) and Atlantic salmon Salmo salar (Von Cramon-Taubadel
et al., 2005)].

Many studies suggest that body morphology has great impact
on fish swimming efficiency and maneuverability (Ohlberger
et al., 2006; Belk et al., 2008; Hatanpää et al., 2019; Zhao et al.,
2020). The critical swimming speed (Ucrit) and burst swimming
speed (Uburst) are two of the most fundamental parameters
reflecting the fish swimming ability. Critical swimming speed
often refers to the maximum aerobic swim speed of the fish,
which can be used to indicate swimming endurance or determine
the oxygen consumption capacity of the fish during swimming
(Reidy et al., 2000). Burst swimming speed usually assesses the
Frontiers in Marine Science | www.frontiersin.org 2
fast-start swimming performance (e.g. during the process of
chasing prey or avoiding predators) of fish and can be used to
evaluate the anaerobic ability (Marras et al., 2010). Hence, for
hatchery-reared fish, theUcrit andUburst can be used as predictors
to evaluate the immediate post-release predatory and anti-
predation abilities, respectively (Lu et al., 2020; Zhao et al.,
2020; Hou et al., 2022). In association to rearing effects on
body morphology, lowered swimming abilities indicative of
poor predatory ability and anti-predator performances have
been documented in many fish species [e.g. European sea bass
Dicentrarchus labrax (Handelsman et al., 2010; Benhaïm et al.,
2012); Atlantic salmon (McDonald et al., 1998; Hammenstig
et al., 2014)]. Accordingly, the poor swimming performance may
result in the observed negative post-release fitness effects in
captive-reared fishes (Araki et al., 2008; Johnsson et al., 2014;
Lu et al., 2020; Hou et al., 2022).

Due to the large differences between hatchery- and wild-origin
fish, it is necessary to make the comparisons of phenotypic
differences between hatchery- and wild conspecifics prior to the
initiation of massive stock-enhancement releases to optimize the
performance of stocked fish in the wild (Huntingford, 2004;
Johnsson et al., 2014). Such comparisons will not only provide a
benchmark for assessing the general performance of hatchery-
reared individual after release (Lorenzen, 2006; Näslund, 2021),
but they also provide valuable information to help to redesign
artificial rearing environments to optimize post-release
performance, as well as to recognize the limitations of what can
be achieved by modifying hatchery rearing practices (Johnsson
et al., 2014). However, though substantial investment has been put
into the culture of many marine fish species (Wringe et al., 2016),
efforts are mostly restricted to commercially important taxa like
salmonid fishes, owing to the long history of restocking and
farming in this taxonomic group (Von Cramon-Taubadel et al.,
2005; Näslund, 2021). These studies provide valuable information,
but the lessons learned in salmonid rearing may not be applicable
to other species (Salvanes and Braithwaite, 2006; Näslund, 2021).
Additionally, most studies aiming to identify the phenotypic
differences between hatchery- and wild-origin fish focus solely
on a single aspect of the phenotype (e.g. Araki et al., 2007;
Handelsman et al., 2010; Wringe et al., 2016) but combined
comparison of morphological, behavioral and biochemical
variables are very valuable, albeit scarce.

The marbled rockfish, Sebastiscus marmoratus (Cuvier,
1829), also known as ‘sea ruffe’, ‘false kelpfish’ and ‘dusky
stingfish’, is an ecologically and economically important
inshore species in eastern Asia, distributed within the coastal
areas of China, Japan, Korea, and the Philippines (Kita et al.,
1996). Its ecology resembles that of many of the Sebastini tribe
members (which e.g. also includes commercially important
rockfish species in the Sebastes genus), with a preference for
demersal habitats in littoral rocky areas where it shows obvious
territorial behavior associated to relatively small home ranges
(Fujita and Kohda, 1998; Wu, 1999; Zhang et al., 2015). In China
and Japan, marbled rockfish is one of the most popular
recreational fish species (Zhang et al., 2015). Due to
overfishing, the wild stock of this species has undergone a
June 2022 | Volume 9 | Article 912129
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steep population decline (Zhang et al., 2015; Wang et al., 2020).
In recent years, with the breakthrough of the aquaculture
techniques for this species, small pilot-scale stocking projects
have been conducted in eastern China, to evaluate the potential
for supplementary rearing and stocking prior to initiating large-
scale stocking efforts (Zhu, 2020). However, during the hatchery-
rearing process, several visually distinguishable divergences from
the wild phenotype were noted in the cultured fish (Figure 1).
Considering the widely reported poor performance of hatchery-
reared fish in the wild, it is crucial to carry out evaluations of
potential phenotypic deficits of the hatchery-reared marbled
rockfish before the full implementation of stock enhancement
of this species commences.

The purpose of the present study was to investigate effects of
hatchery rearing on body morphology, swimming performance,
and biochemical body composition in marbled rockfish, by
comparisons of hatchery-reared and wild fish with similar
genetic origin. We aimed to identify the effects of hatchery
culture on (i) non-genetic morphometric variation, (ii)
swimming performance, in terms of critical- and burst
swimming capacity, and (iii) biochemical composition. The
results will not only provide valuable baseline information for
future assessments of general post-release performance of
hatchery-reared individuals, but also provide fundamental
information for further investigations of potential behavioral
differences (e.g. acquisition and processing of food, antipredation
behavior, shelter-seeking, habitat choice, inter-individual
interactions, etc.) between the hatchery-reared and wild-origin
marbled rockfish.
2 MATERIALS AND METHODS

2.1 Animal Collection and Acclimation
All the hatchery-reared marbled rockfish were the progeny of
350 wild fish, which were caught from the sea around Dongji
Island, Zhoushan, China (30°12’ N, 122°40’ E). All these wild-
caught broodstock fish had been reared in captivity for two years
in concrete tanks (sand-filtered natural seawater; pH 8.0-8.3;
dissolved oxygen ≥6.0 mg/L; temperature fluctuating seasonally
between 12°C and 28°C; fed with forage fish). The hatchery-
reared population used for this study were produced in January
2020 and then reared in nursery ponds (size: 5 m × 6 m × 1 m) in
a commercial hatchery (Xixuan Technology Island) in
Zhoushan, China, according to the standard methodology for
the intensive culture of this species (Yan et al., 2018). The
nursery ponds were provided with sand-filtered natural
seawater (flow rate: 2 m3 h-1) and gently aerated with air-stone
diffusers. After spawning, the larvae were gradually weaned from
cladocerans and copepods to a commercial pellet diet over
approximately 1 month. In early December 2020, a total of 500
hatchery-reared fish of uniform size (total body length: 8.02 ±
0.91cm, mean ± SD) were selected and transported to a single
circular holding tank (water volume: 1780 L; inside diameter:
1.6 m; height: 0.8 m; recirculating seawater system) at the
Laboratory of Marine Ranching Stock Enhancement (LMRSE),
Frontiers in Marine Science | www.frontiersin.org 3
Zhejiang Ocean University. The water temperature in the
holding tank was kept at 17°C, which was consistent with the
temperature in the sea during the same period. The dissolved
oxygen was ≥6.0 mg/L, unionized ammonia nitrogen maintained
at <0.05 mg/L, salinity was 28‰, and pH kept at 8.0-8.3. The
photoperiod followed an 11-h light/13-h dark cycle. From the
third day after transport, fish were fed twice daily (at 9:00 and
18:00; to apparent satiation) with commercial dry pellets
(Hayashikane Sangyo, Co., Ltd., Yamaguchi Prefecture, Japan;
composition: crude protein ≥ 50.0%, lipid ≥ 6.0%, fiber ≤ 3.0%,
and ash ≤ 17.0%).

Wild marbled rockfish were caught by angling in December
2020, in the same place as where the wild parents of the hatchery-
reared fish had been caught. Thus, the hatchery and wild-caught
fish are likely to be of the same stock and being genetically
similar. After capture, the wild fish were transported to the
LMRSE. In total, 450 wild marbled rockfish, size-matched with
the cultured experimental fish (total body length: 8.01 ± 1.21 cm,
mean ± SD), were selected and held in a holding tank for
recovery, to mitigate potentially negative effects of
transportation stress. The size and water conditions of the wild
fish holding tank were similar with the one used for the hatchery-
reared fish, since both two tanks shared one recirculating
seawater system. Enrichment structures (plastic tube and
rocks) were added into the wild fish holding tank to mimic
some elements of the natural environment as well as possible.
From the third day post-transport, wild fish were provided with
live ridgetail white prawns Exopalaemon carinicauda every other
day to make sure live preys were constantly available in the tank.

All animals were treated in accordance with the Guidelines
for Use of Experimental Animals provided by Zhejiang Ocean
University and all animal holding and experimental procedures
were approved by the Institutional Animal Care and Use
Committee at Zhejiang Ocean University.

2.2 Geometric Morphometrics
On the second day after being transported to the laboratory
facilities, 244 wild (total body length: 8.83 ± 1.53 cm, mean ±
SD) and 276 hatchery-reared (total body length: 8.93 ± 1.03 cm,
mean ± SD) marbled rockfish were randomly selected for
morphometric assessment. The age of individuals was
determined from their scales (microscope Olympus BX43;
Olympus Life Science, Tokyo). All the selected individuals were
around one year old. No significant difference was detected in total
body length between these two groups (P = 0.362, independent
sample t-test). After being anesthetized (tricaine methanesulfonate,
MS-222; 50 mg · L−1), fish were arranged left side up on a white
background panel and photographed with a tripod mounted digital
single-lens reflex camera (Nikon D3400, Nikon, Minato City,
Japan), with a 18-55 mm lens (AF-S DX 18-55mm F/3.5-5.6 G
VR II, Nikon, Minato City, Japan). A millimeter ruler was included
in each photograph for size calibration (Figure 1). Prior to the
photography, all fish were fasted for 24 h to ensure that no gut
contents affected body shape. The body shapes were examined
using landmark-based geometric morphometrics (Rohlf and
Marcus, 1993; Zelditch et al., 2004; Pulcini et al., 2013). Twenty
June 2022 | Volume 9 | Article 912129
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landmarks were digitized from each photograph (Figure 1), using
TpsDig2.0 software (Rohlf, 2015). Landmark configurations were
aligned and superimposed using the Generalized Procrustes
Analysis (GPA) to remove effects of differences in body size,
position and orientation (Figure 2). Thereafter, residuals from
the superimposition were analyzed with the thin-plate spline (TPS)
interpolation function. To reduce the dimensionality of the data for
each individual prior to comparative analyses, a principal
component analysis (PCA) was run based on the covariance
matrix (Zelditch et al., 2004) using the MorphoJ software
(Klingenberg, 2011). In addition, sixty fish from each group
(hatchery-reared and wild-origin) were randomly selected and
Frontiers in Marine Science | www.frontiersin.org 4
weighted with an electronic balance (accurate to 0.01g; KFS-A,
KaiFeng, Yongkang City, China) to calculate the condition factor
(K = 100 × body mass × body length-3).

Pectoral-, pelvic-, anal-, caudal-, and ventral fin size were
approximated by measures of the distance from the fin base to
the tip of the longest fin ray, using ImageJ (Schneider et al., 2012)
(Figure 1). Since all individuals were photographed with left side
up, only the left pectoral fins were measured from the
photographs. Fin size measurements were divided by fish total
body length × 100 to obtain relative measures for comparison
between the hatchery-and wild-origin experimental fish
(Kindschi, 1987; Bosakowski and Wagner, 1994).
A

B

FIGURE 1 | Positions of the 20 landmarks used for measurement of morphology in wild (A) and hatchery-reared (B) marbled rockfish. 1: anterior tip of premaxilla;
2: most posterior point of maxilla; 3: insertion of the operculum on the ventral profile; 4: most posterior point of the operculum; 5: spine in front of orbit; 6: spine
behind the orbit; 7: spine closest to the anterior base of the dorsal fin; 8: anterior base of the first dorsal fin; 9: vertex of the back; 10: anterior base of the second
dorsal fin rays; 11: posterior base of dorsal fin; 12: deepest point of caudal peduncle at dorsal outline; 13: anterior attachment of dorsal membrane from caudal fin;
14: base of middle caudal rays; 15: anterior attachment of ventral membrane from caudal fin; 16: uppermost point of caudal peduncle at ventral outline; 17: posterior
base of anal fin; 18: anterior base of anal fin; 19: anus; 20: semi-landmark collected along the ventral profile.
June 2022 | Volume 9 | Article 912129
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2.3 Swimming Performance Tests
After 12 days of recovery from transportation and handling stress,
thirty fish from each group (hatchery-reared and wild-origin) were
randomly selected for the measurement of critical swimming speed
Ucrit and burst swimming speed Uburst. The experimental fish were
fasted for 24 hours before the tests. All swimming performance
measurements were conducted using a flow-controlled recirculating
swimming tunnel (Loligo Systems SW10150, Denmark, https://
www.loligosystems.com; Figure 3). The volume of the testing
chamber in the tunnel was 30 L (55 cm × 14 cm × 14 cm). The
water flow in the tunnel was driven by a propeller powered by an
electric motor, and the velocity of the water flow could be adjusted
by turning the frequency converter. A honeycomb flow stabilizer
was fixed in the left end of the testing chamber to induce laminar
flow before entry into the testing chamber. The right end of the
testing chamber was covered with 1 cm mesh.

2.3.1 Measurement of the Burst Swimming
Speed (Uburst)
Burst swimming speed Uburst was measured following the
method described by Zhou et al. (2019). In brief, the
experimental fish were allowed post-transfer recovery in
the testing chamber for 30 min at a water velocity of 4 cm s−1

(i.e. 0.5 body lengths · s−1). Then, the water flow velocity in the
testing chamber was gradually increased by 1 body length · s−1 at
20-second intervals until the experimental fish showed signs of
Frontiers in Marine Science | www.frontiersin.org 5
fatigue (i.e. when fish could no longer maintain position against
the current and failed to hold itself away from the mesh at the
end of the testing chamber for more than 20 s) (Lu et al., 2020).
The final flow velocity value was recorded as the burst swimming
speed (body lengths · s−1; abbreviated for BL · s-1). The relative
burst swimming speed (Ur-burst) was also calculated by dividing
Uburst with the fish body length (cm).

2.3.2 Measurement of the Critical Swimming
Speed (Ucrit)
Critical swimming speed Ucrit was measured according to the
method described by Zhou et al. (2019). In brief, the experimental
fish were allowed 1 h recovery in the testing chamber at a water
velocity of 4 cm s−1 (i.e. 0.5 total body lengths · s−1) prior to the start
of the measurements. Then, the water flow velocity in the testing
chamber was gradually increased at an increment of 5 cm · s-1 every
20minuntil the experimentalfish showedsignsoffatigue (as per the
criteria described above for Uburst). The critical swimming speed
(Ucrit) was calculated for each experimental fish by the formula
described by (Brett, 1964):

Ucrit = V + T=DTð Þ ˙DV
where T is the time duration that the fish swam at the final flow
velocity (min); DT is the time interval of each test flow velocity
(i.e. 20 min); V is the maximum flow velocity (cm · s−1) against
which the fish could swim for the entire 20min;DV is the velocity
A

B

FIGURE 2 | Superimposition of vectorized landmarks for all samples of (A) wild (n = 244), and (B) hatchery-reared (n = 276) marbled rockfish.
June 2022 | Volume 9 | Article 912129

https://www.loligosystems.com
https://www.loligosystems.com
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Guo et al. Hatchery-Reared and Wild Marbled Rockfish
increments (5 cm · s−1). In order to remove the size effect, we also
calculated the relative critical swimming speed (Ur-crit) by
dividing Ucrit with the fish body length (cm).
2.4 Body Composition Analyses
Directly after being transported to the laboratory facilities, thirty
fish from each group (hatchery-reared and wild-origin) were
randomly selected for the biochemical body composition
analyses. All these experimental fish were fasted for 24 hours
to ensure that no gut contents affected analyses and thereafter
euthanized using an overdose of MS-222, followed by weighing
using an electronic balance (accurate to 0.01g; KFS-A, KaiFeng,
Yongkang City, China). Analyses were conducted according to
the methods of the Association of Official Analytical Chemists
(AOAC, 1995) and the procedures have described in detail in our
previous work (Guo et al., 2020). In brief, the moisture content
was measured by oven-dried at 105°C for 48 h until constant
mass. Then the samples were ground to a powder. Ash content
was determined by combusting samples in a muffle furnace set at
550°C for 24 h. Crude protein content was determined using the
Kjeldahl method (FOSS Tecator KjelFlex TM 8400; FOSS,
Hilleroed, Denmark) by measuring nitrogen (N×6.25). Crude
lipid content was analyzed by ether extraction using Soxhlet
method (B-801, BUCHI, Flawil, Switzerland).
Frontiers in Marine Science | www.frontiersin.org 6
2.5 Statistical Analysis
Statistical analyses were performed using SPSS 17.0 (IBM Corp.,
Armonk, NY, USA). The data of condition factor, relative fin
sizes, swimming performance and body biochemical
composition were analyzed by independent sample t-tests. In
all cases, differences were considered to be significant at P ≤ 0.05.
3 RESULTS

3.1 Differences in Morphology
The direct graphical comparisons of the mean shapes show the
body shape variation between the two groups (Figure 4), with an
overall shape difference related to body profile. A general
increase of the body depth is evident in the hatchery-reared
group. The head region is thicker in the ventrolateral direction,
with the jaws being angled more upwards (i.e. more horizontal
along the anterio-caudal axis) than in the wild-origin fish. The
trunk profile of hatchery-reared fish is also substantially thicker
on average, as compared to wild conspecifics. The caudal
peduncle of hatchery fish is slightly shorter and thinner at the
base of the caudal fin, relative to the rest of the body. It is also
evident that the jaws (when closed) were more angled in a
downwards direction and that the caudal peduncle is slimmer
in wild individuals. Comparing to the wild individuals, the
A

B

FIGURE 3 | (A) Design of the swim tunnel (Loligo Systems SW10150). Copyright: Loligo Systems, Viborg, Denmark, https://www.loligosystems.com/, published
with permission. (B) Top view. a: dissolved oxygen probe; b: temperature probe; c: honeycomb flow stabilizer; d: testing chamber; e: water exchanging hole;
f: propeller; g: electric motor; h: frequency converter; i: data collector module (DAQ-BT); j: experimental fish; k: acrylic plastic board; l: water flow deflectors.
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hatchery-reared marbled rockfish had a generally more robust
body, with a more rounded figure outline and a less
streamlined body.

Shape variation along the discriminant axis is shown in
Figure 5, with both splines and vectors. When looking at the
direction and magnitude of the vectors, landmarks 1 (anterior tip
of premaxilla), 3 (insertion of the operculum on the ventral
profile), 4 (most posterior point of the operculum), 9 (vertex of
the back), 10 (anterior base of the second dorsal fin rays), 17
(posterior base of anal fin), 19 (anus) and 20 (semi-landmark
collected along the ventral profile) are responsible for the main
overall body profile differences.

The PCA biplot which summarizes overall body shape
variation shows a very distinct and almost complete
separation between the hatchery-reared and wild-origin
groups (Figure 6). The first principal component (PC1)
accounted for 24.0% of the variation and the second principal
component (PC2) accounted for 17.74%, for a total of 41.74%
Frontiers in Marine Science | www.frontiersin.org 7
of the variance being explained by these two components.
Virtually all of the separation between the groups occurred
along the PC1 axis (Figure 6).

Although the overall body length was similar among the two
groups, the condition factor (K) of the cultured marbled rockfish
(K = 3.86 ± 0.47, mean ± SD) was significantly higher
(independent sample t-test, P = 0.042) compared with the wild
marbled rockfish (K = 3.61 ± 0.79, mean ± SD).

Intraspecific comparison of relative fin length (fin length/total
body length) for hatchery and wild fish showed that all fins in
hatchery-reared marbled rockfish were generally shorter
compared to the wild conspecific (P < 0.001; Table 1).
3.2 Differences in Swimming Ability
The hatchery-reared marbled rockfish had significantly reduced
swimming performance in all of the assessed variables (all P <
0.05; Table 2).
FIGURE 4 | Comparisons of mean shape between hatchery-reared and wild marbled rockfish. Points relate to landmarks in Figure 1.
FIGURE 5 | Deformation grid plots and visualization of body shape variation between hatchery-reared and wild marbled rockfish. The vectors showing shape variation
along the discriminant axis. Points relate to landmarks in Figure 1.
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3.3 Differences in Biochemical
Body Composition
Comparison of biochemical body composition showed marked
differences in whole body moisture-, ash-, and crude protein
contents between wild and hatchery-reared marbled rockfish (all
P < 0.05; Table 3). Moisture-, ash- and protein content were
Frontiers in Marine Science | www.frontiersin.org 8
higher in the wild fish and fat content was higher in the hatchery-
reared fish (Table 3).
4 DISCUSSION

Results from this study show that the morphology of hatchery-
reared marbled rockfish differs substantially from that of wild
conspecifics captured in the same area as where the parents of the
hatchery fish originated. Hatchery-reared marbled rockfish have
a generally higher body profile (except for the caudal peduncle),
jaws that are angled more upwards, and shorter fins than the
wild-origin conspecifics. In concordance with the higher body
profile for a given length, the condition factor of the hatchery-
reared fish was also higher than that of the wild-origin fish.
Swimming ability was lower for hatchery-reared fish, in terms of
both critical- and burst swimming speed. Finally, the
biochemical body composition differed among the groups, with
FIGURE 6 | Principal component biplot illustrating overall body shape variation for groups of wild (black dots) and hatchery-reared (grey dots) marbled rockfish.
TABLE 1 | Comparison of relative fin length between wild and hatchery-reared
marbled rockfish (mean ± SD) (nwild = 244; nhatchery = 276).

Wild Hatchery t-value p-value

TL (cm) 8.93 ± 1.03 8.83 ± 1.53 -0.912 0.362
Dorsal fin (% TL) 12.55 ± 3.02 10.30± 3.32 -8.040 <0.001
Pectoral fin (% TL) 19.89 ± 4.94 18.37 ± 3.52 -3.986 <0.001
Pelvic fin (% TL) 18.17 ± 3.60 15.20 ± 2.77 -10.412 <0.001
Anal fin (% TL) 19.66 ± 3.35 13.73 ± 3.04 -21.163 <0.001
Caudal fin (% TL) 21.60 ± 2.99 16.74 ± 3.10 -18.126 <0.001
TL, total body length.
TABLE 2 | Comparison of the swimming ability between the wild and hatchery-
reared marbled rockfish.

Wild Hatchery t-value p-value

BL (cm) 8.05 ± 0.86 8.17 ± 0.81 -0.527 0.600
Uburst/(cm · s-1) 50.78 ± 12.32 37.57 ± 7.24 5.064 <0.001
Ur-burst/(BL · s-1) 6.28 ± 1.28 4.61 ± 0.76 6.184 <0.001
Ucrit/(cm · s-1) 25.50 ± 5.28 21.00 ± 5.13 3.351 0.001
Ur-crit/(BL · s-1) 5.57± 0.59 3.15 ± 0.42 4.341 <0.001
<0.001 Data are presented as mean ± SD (nwild = nhatchery = 30). BL, body length.
TABLE 3 | Comparison of the whole-body biochemical composition between
the wild and hatchery-reared marbled rockfish.

Content (% body mass) Wild Hatchery t-value p-value

Moisture 71.75 ± 1.41 64.35 ± 1.77 17.963 <0.001
Ash 17.55 ± 1.82 16.12 ± 1.05 2.552 0.016
Crude Protein 58.22 ± 2.27 50.66 ± 1.72 -10.282 <0.001
Crude Lipid 18.33 ± 2.23 27.86 ± 1.74 -13.013 <0.001
June
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moisture-, ash- and protein content being higher in the wild fish
and fat content being higher in the hatchery fish.

4.1 Body Morphology and Condition
The difference in overall body morphology is dramatic in the
marbled rockfish, as evidenced by the near complete separation
between hatchery-reared and wild-origin fish along the first
principal component axis. Similar strong morphological
divergences have been observed in several other species. For
instance, in Atlantic salmon juveniles the hatchery-reared
individuals have been shown to have smaller fins and narrower
caudal peduncles in comparison to wild-origin fish, with 100%
accuracy when determining origin of the fish based on
morphology (Fleming et al., 1994). Wringe et al. (2015)
reported that farmed Atlantic cod were characterized by
relatively smaller heads and fin measurements, while also
having a higher body profile and higher condition index
compared to wild conspecifics. Largely similar morphological
differences have also been found in cultured Chinook salmon
(Tiffan and Connor, 2011), gilthead seabream Sparus aurata
(Fragkoulis et al., 2016) and rainbow trout (Pulcini et al., 2013).
Thus, it can be concluded that the effects seen in hatchery-reared
marbled rockfish in this study are in line with previous findings
in other species.

Wringe et al. (2016) hypothesized that the homogenized
rearing environment and procedures in modern aquaculture
elicit generally similar plastic responses in the phenotypes in
fishes, explaining why patterns in differences between cultured
and wild fish tend to go in similar directions in many different
species. These similar and readily identifiable morphological
divergences from typical wild-type phenotypes found in
cultured fish can thus be characterized as a “cultured fish
phenotype”. This cultured fish phenotype is generally described
by shorter but deeper heads, greater body depth and condition
factor, and smaller fins, as compared to their wild conspecifics
(Wringe et al., 2016). Our results provide further support for this
hypothesis since many morphological characteristics in the
hatchery-reared marbled rockfish are consistent with the
synthesis of Wringe et al. (2016).

For hatchery-reared fish, the genotype and the rearing
environment are two of the most fundamental factors
underlying the morphological phenotypic expression (Araki
et al., 2007; Chittenden et al., 2010; Wringe et al., 2016).
However, although some studies have observed genetic
influences on phenotypic differences between wild and
hatchery populations (Riddell and Swain, 1991; Araki et al.,
2007; Chittenden et al., 2010), the hatchery rearing environment
seems to be the major cause of the phenotypic divergence (Swain
et al., 1991; Fraser et al., 2019). In the present study, all the
cultured marbled rockfish were the progeny of wild-caught
parents, indicating that the genetics of the cultured
experimental fish are likely unchanged relative to the wild
caught experimental fish. Given the high survival rate of fish in
hatcheries, the morphological phenotypic differences developed
in the hatchery should be mainly attributed to the rearing
environment, in contrast to the situation in the natural
environment where selection also play a significant role, as
Frontiers in Marine Science | www.frontiersin.org 9
argued by Stringwell et al. (2014). Several possible explanations
have been raised for this divergence of overall body morphology
for fish under artificial hatchery conditions (Fleming et al., 1994).
In general, the restricted and protected rearing environment
reduces the need for extensive activity and thereby allows for
allocation of more energy to protein growth and lipid deposition,
and several morphological changes may occur in association
with this (Thorpe, 2004). In aquaculture, where the environment
is barren and uniform with respect to structures and water flow,
and where food pellets are plentiful and non-elusive, the reared
marbled rockfish showed an inactive behavior where they spent
most of the time motionless on the tank floor (pers. obs.). Thus,
the increase in body depth is possibly induced as a response to
the food-rich, low-exercise environment in the hatchery relative
to variable natural marine environments. Under aquaculture
conditions, fish generally tend toward a higher body fat
content than wild fish (Bergström, 1989; Arechavala-Lopez
et al., 2013; Powell et al., 2017), and the trunk is a site of fat
deposition in many fishes e.g. salmonids (Robinson and Mead,
1973; Fleming et al., 1994). This was confirmed by the
biochemical body composition analysis in this study, which
shows a significant higher fat deposition in cultured marbled
rockfish. Additionally, the food-pellet diet may result in changes
in gut and intestinal morphology that influence girth positively
(Weatherley and Gill, 1981; Fleming et al., 1994). In line with a
generally higher body depth and fat content, the condition factor
was higher in the cultured rockfish, which is characteristic for
artificially reared fishes (Wringe et al., 2016).

4.2 Mouth Position
Another characteristic feature found in hatchery-reared marbled
rockfish in this study is the upward angling of the mouth, as
indicated by the landmarks related to the upper jaw. This
morphological difference between hatchery-reared and wild
could be due to enforced differences in feeding habits in
captivity related to provision of pellet-feed. In the wild, the
marbled rockfish is a benthic carnivorous species, feeding on e.g.
amphipods, decapods, cephalopods and fishes in littoral rocky
areas (Yokogawa and Iguchi, 1992; Lee et al., 2012; Wang et al.,
2017). Juveniles in particular feed mainly on crustaceans
associated to benthic structures, and fish inclusion in the diet
increasing with body size (Yokogawa and Iguchi, 1992; Lee et al.,
2012). However, in artificial culture conditions, the pellet diet is
supplied at the water surface and thereby appears above the fish
head all the time. Continued exposure to a non-benthic food
source during development may possibly lead to the abnormal
development of the fish mouth structure, as a plastic response to
these artificial feeding conditions (i.e. searching and swallowing
pellet-feed from the surface rather than bottom). Few previous
reports have described this particular effect on mouth
morphology from cultured fish (but see Pulcini et al., 2013).
However, general effects on head morphology are common
(Wringe et al., 2016). Plastic changes in head morphology can
even be seen in wild fish associated to aquaculture cages in
natural waters, suggesting that food substitution from natural
prey to pellets may underlie these plastic responses (Abaad et al.,
2016). In general, environment dependent head and jaw
June 2022 | Volume 9 | Article 912129
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apparatus plasticity is commonly observed in fishes outside of
aquaculture conditions, and appear to often be related to food
types (e.g. Mittelbach et al., 1999; Závorka et al., 2019; Lofeu
et al., 2021).

Since the mouth morphology can be important for feeding
efficiency, the observed divergence in hatchery-reared fish may
have negative impacts on the post-release performance of
hatchery-reared fish in the natural marine environment
(Fleming et al., 1994; Belk et al., 2008; Pulcini et al., 2013;
Johnsson et al., 2014). As far as we are aware, this is the first
report of the abnormal development of the mouth structure in
hatchery-reared marbled rockfish. The present findings
demonstrate the need for continued research into differences in
feeding behavior and foraging efficiency between the hatchery-
reared and wild-origin marbled rockfish, to better assess the
effects of artificial rearing on post-release performance in the
context of stock enhancement strategies.

4.3 Swimming Capacity and Biochemical
Body Composition
Hatchery-reared marbled rockfish were found to be poorer
swimmers than their wild conspecifics, with lower sprint
swimming speeds and endurance than wild conspecifics in
terms of all investigated swimming parameters (Ucrit, Uburst,
Ur-crit, and Ur-burst). Similar effects of artificial rearing on
swimming performance have been found in other fish species.
For example, Bellinger et al. (2014) reported that domesticated
rainbow trout have larger body sizes but slower burst swimming
speeds than wild rainbow trout. Cultured juvenile European
seabass also showed slower burst swimming speeds compared
to similar-sized wild fish in laboratory conditions (Handelsman
et al., 2010). In Atlantic salmon, the burst swimming speed of
hatchery-reared fish was found to be slower than that of wild
conspecifics, at least within the first year of life (at the parr stage)
(Hammenstig et al., 2014).

It has been widely recognized that performance is intimately
linked to morphology (Ojanguren and Braña, 2003; Belk et al.,
2008) and the swimming efficiency can be highly influenced by fish
body morphology (Ohlberger et al., 2006; Belk et al., 2008; Zhao
et al., 2020). Under cultured conditions, the lower and less variable
water velocity has been shown to lead to the abnormal development
of morphological phenotypes in salmonids, with stockier bodies
and shorter fins as a result (Pakkasmaa and Piironen, 2000;Wringe
et al., 2016).Also inwild salmonids, bothfin-andbodymorphology
respond plastically to water current velocity (Paéz et al., 2008). By
using relative fin length, we show that all rayed fins of hatchery-
reared marbled rockfish were significantly shorter than in wild
conspecifics. The hatchery-reared individuals also had a less
streamlined body profile. Hence, the poor swimming
performance in the hatchery fish could probably be due to this
morphological divergence from the wild phenotype.

Studies have also reported that swimming performance can be
lowered in cultured fish with high level of muscle lipid content, due
to the muscle glycolysis inhibition (Dyck et al., 1993; McDonald
et al., 1998), and fish with high level of muscle protein content can
have an increase in eithermusclepowerorbuffering capacity,which
Frontiers in Marine Science | www.frontiersin.org 10
could improve swimming capacity (McDonald et al., 1998). Our
results do not contrast these hypotheses, since wild marbled
rockfish with higher muscle protein and lower lipid levels had
better swimperformance compared to hatchery-reared conspecific.
However, more detailed studies, where lipid- and protein contents
are investigated in the actual individuals going through the swim
tests, wouldbenecessary to showmoredirect evidence in support of
the hypotheses. Together with the previous studies (Martinez et al.,
2003; Anttila et al., 2010), it can be inferred that deficiency at
muscular level is a candidate mechanism behind the observed poor
swimming capacity in the hatchery-reared rockfish.

4.4 Conclusions
In conclusion, the results of this study indicate a discernible effect of
captive rearing on the morphological phenotype of marbled
rockfish. A general pattern emerged with the hatchery-reared fish
developing a typical “culturedfish phenotype” (higher body profile,
smaller fins and higher body condition with a higher lipid: protein
ratio in the body), as compared to the wild conspecifics. These
observed deviations from the wild phenotype are potentially
causing the poor swimming performance of hatchery-reared fish
relative to their wild counterparts. A difference in the positioning of
the jaw apparatus was also observed. Both jaw morphology and
swimming performance can likely affect the foraging- and
antipredation abilities in natural environments, which would then
possibly contribute to a greater mortality risk in hatchery-reared
marbled rockfish released into the wild (Näslund, 2021). Thus,
further investigations of these differences, as well as behavioral
differences (e.g. predator avoidance, acquisition and processing of
food, sheltering, etc.) are essential to better understand the fitness
consequences of captive rearing in fish destined for release within
stock enhancement programs. Such studies will also provide
valuable information for making hatchery environment
modifications in order to produce more wild-like marbled
rockfish aimed for release.
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