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Genome editing using clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 is enabling genetics improvement of productive traits in aquaculture.
Previous studies have proven CRISPR/Cas9 to be feasible in oyster, one of the most
cultured shellfish species. Here, we applied electroporation-based CRISPR/Cas9
knockout of b-tubulin and built a highly efficient genome editing system in Crassostrea
gigas angulate. We identified the b-tubulin gene in the oyster genome and showed its
spatiotemporal expression patterns by analyzing RNA-seq data and larval in situ
hybridization. We further designed multiple highly specific guide RNAs (sgRNAs) for its
coding sequences. Long fragment deletions were detected in the mutants by agarose gel
electrophoresis screening and further verified by Sanger sequencing. In addition, the
expression patterns of Cgb-tubulin in the trochophore peritroch and intestinal cilia cells
were altered in the mutants. Scanning electron microscopy represented shortened and
almost complete depleted cilia at the positions of peritroch and the posterior cilium ring in
Cgb-tubulin mosaic knockout trochophores. Moreover, the larval swimming behavior in
the mutants was detected to be significantly decreased by motility assay. These results
demonstrate that b-tubulin is sufficient to mediate cilia development and swimming
behavior in oyster larvae. By applying Cgb-tubulin as a marker gene, our study
established CRISPR/Cas9-mediated mosaic mutagenesis technology based on
electroporation, providing an efficient tool for gene function validation in the oyster.
Moreover, our research also set up an example that can be used in genetic engineering
breeding and productive traits improvement in oysters and other aquaculture species.

Keywords: mosaic mutagenesis, CRISPR/Cas9, long deletion, gene editing, gene knockout, aquaculture breeding
INTRODUCTION

Aquaculture has gradually become the main source of seafood for human diets because of the high-
quality animal protein (FAO, 2020). However, compared to many terrestrial livestock and crop
systems, most aquaculture species’ breeding is still in the early stages (Ahmed and Thompson,
2019). Previous breeding programs such as selective, cross, and marker-assisted breeding systems
in.org May 2022 | Volume 9 | Article 9124091
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have been advancing genetic improvement of economic traits,
including disease resistance, nutritional values, growth quality,
and reproduction (Langdon, 2006; Dove and O'Connor, 2010;
Rawson et al., 2010; Wang et al., 2012; Frank-Lawale et al., 2014;
Melo et al., 2016); however, the breeding processes is
significantly limited by a number of constraints, such as the
low heritability of the economic traits and the long generation
time of the aquaculture organisms. The oyster, Crassostrea gigas
angulata (Li et al., 2013), is a representative bivalve mollusk,
which is one of the main aquaculture shellfish worldwide. It has
the complex developmental stages consisting of free-swimming
trochophore, veliger larva, permanently fixated juvenile, and
adult after metamorphosis, and has been widely studied in
developmental biology, conservation biology, and ecology
(Riviere et al., 2017; Song et al., 2017; Yue et al., 2018; Chan
et al., 2021). In industry, oyster breeding is still thought to be at
an early stage of domestication (Houston et al., 2020). One
promising approach to solving the aquaculture challenges is to
use CRISPR (clustered regularly interspaced short palindromic
repeats)/Cas9 system-mediated genomic editing technology
(Hollenbeck and Johnston, 2018; Abe and Kuroda, 2019).

CRISPR/Cas9 system has been developed into a revolutionary
technology, which allows researchers to perform a variety of
genetic experiments by inducing loss-of-function and gain-of-
function mutations at a precise position (Eid and Mahfouz, 2016;
Momose and Concordet, 2016; Chen et al., 2017). Due to its high
efficiency, this technology has been successfully applied to at least
13 aquaculture species, including the Atlantic salmon (Salmo
salar) (Straume et al., 2020), tilapia (Oreochromis niloticus) (Li
et al., 2014), sea bream (Sparus aurata) (Ohama et al., 2020),
channel catfish (Ictalurus punctatus) (Simora et al., 2020),
southern catfish (Silurus meridionalis) (Li et al., 2016),
common carp (Cyprinus carpio) (Chen et al., 2019), rohu carp
(Labeo rohita) (Chakrapani et al. , 2016), grass carp
(Ctenopharyngodon idella) (Ma et al., 2018), northern Chinese
lamprey (Lethenteron morii) (Zu et al., 2016), rainbow trout
(Oncorhynchus mykiss) (Cleveland et al., 2018), Olive flounder
(Paralichthys olivaceus) (Kim et al., 2019), ridgetail white prawn
(Exopalaemon carinicauda) (Gui et al., 2016), and oysters (C.
gigas and C. gigas angulata) (Yu et al., 2019; Li et al., 2021; Jin
et al., 2021), which suggests that the CRISPR system has
becoming a practical gene editing tool in molluscan studies. In
the studies of two cultured molluscan species, Yu et al. knockout
of the target genes myostatin and Twist by microinjection of
CRISPR/Cas9 complexes and one single sgRNA, which leads to
1–24 bp small indel mutation during genotyping (Yu et al.,
2019). The same group recently reported microinjection-based
mutation phenotypes including defective musculature and
reduced mortality in the myosin essential light chain genes
knockout mutants (Li et al., 2021). With small size egg and
embryo at a size <50 mm in diameter, electroporation provides a
more effective method for CRISPR complex delivery in the
oysters. Jin et al. reported in 2021 that a pYSY-Cas9-gRNA-
GFP vector plasmid was successfully delivered into the embryos
of C. gigas angulate by electroporation (Jin et al., 2021),
suggesting that electroporation-based CRISPR genome editing
Frontiers in Marine Science | www.frontiersin.org 2
is a practical, time- and labor-efficient way in molluscan. Still, the
sustainable development of the oyster genome editing breeding
technics calls for establishing electroporation-based CRISPR/
Cas9 mutagenesis tool that generates defective phenotypes.

As one of the marine benthonic organisms, oyster has a free-
swimming larval stage that facilitates dispersal and locates a
suitable habitat. A large number of arranged cilia is thought to be
the swimming organ driving dispersal and settlement (Nielsen,
2004; Nielsen, 2005). Besides, cilia are also considered to play
important roles in predator avoidance, feeding, and intestinal
motility (Davenport and Yoder, 2005; Berbari et al., 2009; Pernet,
2018). b-Tubulin protein has been found to be expressed in cells
located in the ciliary band of the trochophore of Patella vulgata
and polychaete Hydroides elegans (Damen and Dictus, 1994;
Arenas-Mena et al., 2007) where they contribute to cilia
microtubules. However, the cilia-related functions of this gene
were not known in oysters, although our recent study based on
transcriptome has demonstrated that b-tubulin genes were
highly expressed during the trochophore stage of C. gigas
(Zhang et al., 2012).

In this study, we used b-tubulin as a marker gene and
performed CRISPR-mediated knockout by electroporation in
C. gigas angulate. Through direct genotyping, long fragments
deletions were detected in the target gene. By in situ
hybridization, scanning electron microscopy, and behavioral
analysis, we observed mosaic mutations including defective
cilia and decreased motility in the G0 larva. These results
demonstrate that Cgb-tubulin is sufficient to mediate cilia
development and swimming in larval oyster. Based on
convincing genotypes and phenotypes in the mutants, our
study established electroporation-based CRISPR/Cas9
knockout as a practical, time- and labor-efficient method for
studies of gene function in the oyster. In addition, our research
also provides a robust tool for genetically engineered breeding to
enhance beneficial traits in oysters and other marine bivalves
for aquaculture.
MATERIALS AND METHODS

Animals
The experimental adult C. gigas angulate from a local oyster farm
in Fujian, China, were brought back to the lab under fresh
condition (~10°C). Then, the oysters were acclimated for 7 days
in 1 mm of filtered seawater (FSW) at 23°C (Figure 1). Gamete
collection and in vitro fertilization were performed according to
the method reported in a previous study (Zhang et al., 2012).
After fertilization, the fertilized eggs were transferred to a 4-mm
gap cuvette for electroporation. The electroporated eggs were
then cultured in 1 mm FSW at 26°C (Figure 1). Embryos and
larvae at various developmental stages (trochophore and D-
shaped larvae) were collected and fixed overnight in 4%
paraformaldehyde (PFA) and 2.5% glutaraldehyde at 4°C,
respectively, for the subsequent characterization of knockout
phenotypes based on whole mount in situ hybridization
(WMISH) and scanning electron microscopy (SEM) (Figure 1).
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Preparation of Single-Guide RNAs and
Cas9 Protein
We designed a strategy to generate two and more cut sites using
multiple single-guide RNAs (sgRNAs), which induces non-
homologous end joining (NHEJ) to repair the resulting gap,
and finally producing long deletions flanking the target loci. We
designed five sgRNAs by manually screening genome regions for
GGN18NGG or N20NGG protospacer adjacent motif (PAM)
sequences in the Cgb-tubulin gene (Table 1). The DNA
templates were generated by PCR with the Phusion High-
Frontiers in Marine Science | www.frontiersin.org 3
Fidelity DNA Polymerase (Thermo Fisher Scientific, Waltham,
USA) to synthesize Cgb-tubulin-sgRNAs, using the sgRNA
synthesis primers as shown in Table 1. Amplification was
performed in a thermal cycler using a 30-s denaturation step at
95°C followed by 34 cycles of 13 s at 95°C, 15 s at 60°C, 15 s at
72°C, and a final extension at 72°C for 5 min. Then, PCR
products were purified by E.Z.N.A.®Gel Extraction Kit
(OMEGA). All sgRNAs were synthesized by in vitro
transcription using the MEGAscript T7 Transcription Kit
(Thermo Fisher Scientific), followed by purification using the
FIGURE 1 | Procedure and timeline of G0 CRISPR/Cas9 mosaic knockout experiments in C. gigas angulate.
TABLE 1 | sgRNAs and the primers used in this study.

Primer name Sequence (5′–3′)

sgRNA synthesis sgRNA1 GAAATTAATACGACTCACTATAGGGTGGTAAGTTTGAGTGTAGTTTTAGAGCTAGAAATAGC
sgRNA2 GAAATTAATACGACTCACTATAGGCATGAAGAAGTGGAGACGGTTTTAGAGCTAGAAATAGC
sgRNA3 GAAATTAATACGACTCACTATAGGCAGTTGTGTTTCCGACGAGTTTTAGAGCTAGAAATAGC
sgRNA4 GAAATTAATACGACTCACTATAGGAGTAGCTGCTGTTCTTGTTCGTTTTAGAGCTAGAAATAGC
sgRNA5 GAAATTAATACGACTCACTATAGGGTGGGATGTCACAGACGGGTTTTAGAGCTAGAAATAGC
Rev_universal AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC

Genotyping GT_F0 GGAACCTATCATGGAGACTCAGACT
GT_R0 TTCTCCCTCTTCCTCCTCAAACTC
GT_F1 ACCCCGACAGAATCATGAACACTT
GT_R1 CAAATCGTTCATGTTGGACTCG

Gene-specific primers in situs_F CCAGTGCGGAAACCAGATTG
in situs_R AAGAAAGCCTTACGACGGAACA
May 2022 | Volume 9 | Article 912409
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RNA clean and concentrator ™-5 Kit (ZYMO Research,
California, USA; PNAbio, California, USA). Cas9 protein was
purchased from PNAbio (CP01-50).

Next, the gene editing efficiencies of the five sgRNAs that we
synthesized were tested by in vitro digestion of Cgb-tubulin
cDNA fragment with Cas9 protein. In brief, 250 ng of purified
DNA template (Cgb-tubulin PCR product) was thoroughly
mixed with 250 ng each sgRNA, 500 ng Cas9 protein, 2 ml
bovine serum albumin (BSA), and 2 ml restriction enzyme buffer
(NEB, Ipswich, USA; TAKARA, Kusatsu, Japan) in a 20-ml
reaction volume. After incubation at 37°C for 1 h, 1 ml
RNaseH enzyme (TAKARA) was added to the mixture to
digest the DNA template, followed by denaturation at 98°C for
5 min to terminate the reaction. Finally, the gene editing
efficiency of each sgRNA was analyzed by electrophoresis on a
2% agarose gel.

Electroporation
For electroporation, one-cell stage C. gigas angulate embryos
were collected and diluted to an appropriate concentration of
about 5×104 cells/ml. Then, the five sgRNAmixtures (with a final
concentration of 30 ng/ml), the tracing dye Lucifer Yellow
(Invitrogen, cat. no. D7156) and Cas9 protein (with a final
concentration of 30 ng/ml) were added to the CRISPR/Cas9
system; then, the mixture was incubated for 10 min at room
temperature (20–24°C). The mixture and the fertilized eggs were
then transferred into an electroporation cuvette (1 mm, BTX,
Cat. No. 45-0140). Electroporation was conducted in an ECM
830 Square Wave Electroporation system (BTX) using a square
wave pulse (40 V, 50 ms, 1 pulse). After electroporation, the
fertilized eggs were washed in 1 mm FSW and further developed
at 26°C.

Mutation Genotyping
Genomic DNA of the trochophores were extracted by proteinase
K digestion method. Briefly, 20 ml of DNA extraction buffer [50
mM KCl, 10 mM Tris–HCl pH 8, 10 mM ethylene diamine
tetraacetic acid (EDTA), 0.03% Nonidet P 40 (NP-40), 0.3%
Tween-20, 0.5 mg/ml proteinase K] was added for digestion.
Then, each individual specimen was incubated for 2 h at 55°C,
followed by denaturation at 98°C for 5 min and cooling to 4°C.
The DNA fragments covering the target sites and their flanking
sequences were generated by PCR using the Premix ExTaq Mix
(TAKARA) according to the Cgb-tubulin gene-specific primers
(Table 1). To define the genetic mutations, the amplified DNA
were then cloned into pMD18-T vector (TAKARA) and
sequenced on an ABI 3730 sequencer.

Evaluation of Larval Survival
Rate and Motility
To calculate the survival rate, 4% PFA was used to fix the living
embryos that were collected 24 h post-fertilization (hpf). We
calculated the survival rate by dividing the number of normal D-
shaped larvae by the total number of embryos (including normal
D-shaped larvae and undeveloped and malformed larvae). To
evaluate the larval motility, the trochophore of C. gigas angulate
at 8 hpf were collected to record their swimming status under a
Frontiers in Marine Science | www.frontiersin.org 4
microscope (Olympus BX53). Larval motility was then assessed
by analyzing the microscopically recorded trajectory of the larvae
described above. Briefly, the position of each larva was recorded
in 1-s intervals during a time window of 10–11 s. Then, Adobe
Illustrator software (Wood, 2016) was used to track the position
of the larva, and the trajectory of the larva was simulated.

Scanning Electron Microscopy
For SEM, the trochophore individuals were collected at 8 hpf and
fixed overnight in 2.5% glutaraldehyde at 4°C and then
dehydrated in 100% ethanol. After drying and coating, the
observations of specimens were performed under a scanning
electron microscope.

Whole Mount In Situ Hybridization
The cDNA fragment of the Cgb-tubulin gene was generated by
using the gene-specific primers (Table 1) and used to clone into
the pMD18-T vector that contains the T7 promoter. The
recombinant plasmid was linearized and used as templates when
in vitro transcription was subsequently used to synthesize the
digoxigenin-labeled probes. WMISH was performed as previously
described (Wang et al., 2015) with minor modifications. Briefly,
the rehydrated specimens were perforated at room temperature
for 5 min with 10 mg/ml of proteinase K, followed by post-fixation
with 4% PFA. The specimens were then incubated for 2 h at 65°C
in the hybridization solution containing 50% formamide, 5×
Denhart’s, 5× SSC, 100 mg/ml yeast tRNA, 50 mg/ml heparin,
0.1% Tween-20, followed by 16 h at 65°C in the above
hybridization solution containing 1 mg/ml of denatured RNA
probe. Then, the specimens were incubated at room temperature
in 1× blocking buffer (Roche, Basel, Switzerland) for 2 h, followed
by overnight incubation in an alkaline-phosphate-conjugated
rabbit anti-digoxigenin antibody (Roche) at 4°C. The specimens
were then extensively washed with PBST and incubated in Nitro
blue tetrazolium/5-Bromo-4-chloro-3-indolyl phosphate (NBT/
BCIP) solution (Roche). Finally, the hybridization signals were
visualized by using an Olympus BX53 microscope. In the negative
control, the anti-sense probe with a final concentration of 1 mg/ml
was replaced with sense probe of the Cgb-tubulin gene.

Statistical Analyses
All results were obtained from at least three independent
experiments and expressed as the mean ± standard deviation
(SD). The main statistical test was the unpaired Student’s t-test.
For experiments involving multiple comparisons, we used one-
way analysis of variance (ANOVA) tests or post-hoc comparisons
(Tukey’s) tests. All the statistical analyses were performed using
PRISM software (version 8.0.2.263). p values <0.05 were
considered to be statistically significant.
RESULTS

Expression of b-tubulin in
Oyster-Ciliated Cells
To test the approach of CRISPR/Cas9 in G0 deletion mosaic
mutants, we targeted the cilia-relevant gene Cgb-tubulin, given
May 2022 | Volume 9 | Article 912409

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Chan et al. Electroporation-Based CRISPR in Cultured Oyster
that the potential ciliated defect phenotypes should allow for easy
visualization. Genomic DNA covering the complete coding
region of Cgb-tubulin was amplified and revealed to consist of
seven exons and six introns. Cgb-tubulin was characterized with
conserved domain architecture with b-tubulin from other
species, composed of Tubulin and Tubulin_C domains
(Figure 2A). We next analyzed the expression patterns of Cgb-
tubulin during larval development and found that Cgb-tubulin
was significantly upregulated at gastrula and later larval stages
(Figure 2B). In situ hybridization indicated that the b-tubulin
gene was specifically expressed in cells localized to the prototroch
of C. gigas angulate trochophore (Figures 2C, D). In summary,
developmental and tissue expression patterns of Cgb-tubulin are
closely associated with the ciliated cells (Figures 2C–F).

Testing Electroporation Efficiency
We used a standard laboratory electroporation setup to knock out
Cgb-tubulin with Lucifer yellow dye as report carrier to test the
electroporation efficiency. Oyster embryos observed with green
fluorescence indicated that exogenous dye had been successfully
electroporated into the fertilized embryos (Figures 3A, B). We
calculated the electroporation efficiency by dividing the number of
embryos with fluorescence by the number of embryos.
Considering that the setting of electroporation parameter has a
significant impact on the survival rate and efficiency for gene
delivery in the manipulated embryos, we generated multivariate
experiments to determine electroporation parameters by
evaluating penetrance efficiency and embryo survival rate. By
comparing the results of multivariate experiments, the most
balanced electroporation parameter with low voltage (40 V),
long pulse duration (50 ms), and single pulse time was obtained,
which not only ensured the gene delivery efficiency but also
Frontiers in Marine Science | www.frontiersin.org 5
improved the survival rate of the larval. As shown in Figure 3C,
compared with 98.0% in the control group without
electroporation, the larval survival rates after electroporation
with and without Cas9-sgRNA complex were close to 77.2% and
76.3%, respectively, which were far higher than that (0.6% and 1%)
in a previous study (Jin et al., 2021). Finally, we achieved an
electroporation efficiency of approximately 10% in the present
study based on counting the number of embryos with green
fluorescence. In brief, 100–110 embryos with green fluorescence
were detected out of 1,000 embryos included in the statistics after
electroporation with Lucifer yellow dye (Figure 3D and Table 2).
These results suggest that the optimized parameters in this study
can effectively avoid the serious impact of electroporation on larval
development, and significantly improve the survival rates of
oyster larvae.

CRISPR/Cas9-Mediated Genome Editing
of Cgb-Tubulin
Our loss-of-function experiment aimed to produce long deletion
genotypes and mosaic phenotypes in G0 generation. We designed
five sgRNAs directed against Cgb-tubulin, one targets the fourth
exon, one targets the fifth exon, and the other three target the
sixth exon (Figure 4B). We further assessed the efficiency of
different sgRNAs by in vitro digestion of isolated Cgb-tubulin
DNA with Cas9. We found that all the five sgRNAs were effective
in guiding Cas9-induced mutagenesis (Supplementary Figure
S1). Among them, sgRNA1 and sgRNA2 showed high efficiency
of introducing mutation, resulting in almost complete digestion
of wild-type PCR bands.

We further generated Cgb-tubulin mutants by mixing five
sgRNAs with Cas9 protein and electroporating them into one-
cell embryos. We aimed to identify long deletions produced by
A

B D

E F

C

FIGURE 2 | Expression and gene structure of Cgb-tubulin. (A) Structures of the genomic DNA and cDNA of Cgb-tubulin. Seven exons and six introns in total. cDNA
was predicted to encode two tubulin domains, one coiled-coil domain. (B) Expression profile of b-tubulin gene in C. gigas angulate at different developmental stages,
TC, two cells; FC, four cells; B, blastula; G, gastrula; T, trochophore; D, D-shape larvae; EU, early umbo larva. Error bars represent means ± SD of three
independent repeats. One-way ANOVA were used for significance analysis (three asterisks represent p < 0.001). (C, D) In situ hybridizations shows C. gigas
angulate larvae at 8 hpf, which high-level expression of Cgb-tubulin is detected in ciliated cells. (E, F) SEM shows a comparable developmental stage of C.gigas
angulate larvae. pt, peritroch.
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NHEJ following double-strand breaks (DSBs) because it
facilitates rapid screening. Genome editing events analysis was
performed in individual C. gigas angulate larvae by PCR
screening of genomic DNA, analyzing fragment sizes by
agarose gel electrophoresis, and cloned sequencing (Figure 4).
We observed ~360 bp long deletion in the gel with the
genotyping primers (Figure 4A). Sanger sequencing of TA
clones (red arrow in Figure 4A) showed that mutations were
frameshift mutations or in-frame mutations with long deletion,
suggesting altered protein translation and disrupted gene
function of Cgb-tubulin. Further analysis demonstrated that no
mutation was detected in the unelectroporated group, while the
16 truncated sequences (10%, from 160 sequences of the
electroporated larvae) were all composed of long deletion
Frontiers in Marine Science | www.frontiersin.org 6
mutations (100%, 363 bp deletion) (Figure 4B). These results
suggested that electroporation mediated high-throughput
delivery of the Cas9/sgRNA complex indeed caused mutations
in the target gene Cgb-tubulin.

Knockout of Cgb-Tubulin Induced
Defective Cilia Phenotypes
To test whether Cgb-tubulin knockout could affect the cilia
phenotypes of C. gigas angulate larvae, we performed in situ
hybridization in the Cgb-tubulin mosaic knockout larva.
Multiple distinct expression patterns for Cgb-tubulin were
affected resulting from Cas9/sgRNA mosaic knockout in the
trochophore and D-shaped stages of oyster larva (Figure 5). We
observed that the multiple mosaic ciliary defects in the Cgb-
FIGURE 3 | Electroporation efficiency and survival rate of C. gigas angulate larvae after electroporation. (A, B) Early embryos electroporated with Cas9-sgRNA complex
(A) or not (B). Green fluorescence was only seen in the fertilized eggs after by electroporation (caused by the fluorescent dye in the electroporation solution). (C) Survival
rate of C. gigas angulate larvae after electroporation. Wild type, wild-type control; NC, wild type by electroporation without sgRNA/Cas9 complex; E, electroporation
group with sgRNA/Cas9 complex. One-way ANOVA were used for significance analysis (p < 0.01, two asterisks; ns, non-significant). (D) Electroporation efficiency
statistics based on fluorescent dyes. Control, electroporation without dye Lucifer Yellow; electroporation, electroporation with dye Lucifer Yellow. t-Test confirmed the
significantly increased number of embryos with green fluorescence in the electroporation group (p < 0.001, three asterisks). Error bars represent means ± SD of three
independent repeats.
TABLE 2 | Summary of electroporation efficiency and survival rate.

Cas9 protein
concentration (ng/ml)

sgRNAs
concentration (ng/ml)

Lucifer yellow
concentration (1:1000)

Voltage/pulse
duration (V/ms)

Electroporation
efficiency

Survival

– – √ – – 490/500
(98.0%)

– – √ 40/50 55/500 (11%) 386/500
(77.2%)

30 30 √ 40/50 50/500 (10%) 363/500
(72.6%)
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tubulin mosaic knockout larva (Figure 5). In details, b-tubulin
knockout caused the mosaic expression patterns of Cgb-tubulin
at the positions of peritroch (Figures 5A, B, white dotted boxes
and black arrows), intestinal cilia cluster (Figures 5A, B, blue
dotted boxes) in the trochophore (Figure 5A) and D-shaped
larvae (Figure 5B), including bilateral mosaics, which ranged in
severity. Moreover, scanning electron microscopy revealed
mosaic ciliary defects in the manipulated larvae including
shortened (white arrows) and almost complete depleted cilia
(white dotted boxes) at the positions of peritroch and the
posterior cilium ring of C. gigas angulate trochophore
(Figures 6B–D’). In addition, no abnormal development in
Frontiers in Marine Science | www.frontiersin.org 7
other tissues of the manipulated C. gigas angulate individual
was observed except for cilia shortening/depletion under
ordinary light microscopy (Figure 6A).

Knockout of Cgb-Tubulin Induced
Defective Swimming Behavior
To determine whether swimming behavior was also affected in
the b-tubulin knockout larvae, the trochophore of C. gigas
angulate at 8 hpf were collected to perform the motility assay.
The results showed that Cgb-tubulin knockout resulted in a
significant decrease in motility of C. gigas angulate larvae,
especially in swimming direction and speed, compared with
A B

FIGURE 4 | Characterization of deleted mutations in the electroporated embryos. Embryos electroporated with Cas9-sgRNA complex were sacrificed for PCR and
sequencing. (A) Fragment sizes analysis by agarose gel electrophoresis. Mutant PCR bands were detected (red arrow). (B) DNA sequence analysis showed the
presence of 363 bp deletion around the Cgb-tubulin-sgRNA-1 and Cgb-tubulin-sgRNA-2 (yellow dotted box); sgRNA sequences are shown in the black underline,
PAM sequences are shown in red underline, and the deleted nucleotides are shown in short straight lines.
A

B

FIGURE 5 | Effects of b-tubulin somatic mutagenesis in C. gigas angulate larvae based on WMISH. The mosaic expression patterns of b-tubulin at the positions of
peritroch (white dotted boxes) and intestinal cilia (blue dotted boxes) in C. gigas angulate trochophore (A) and D-shaped larvae (B) after Cgb-tubulin knock out. pt,
peritroch; icc, intestinal cilia cluster; pcr, posterior cilium ring; A, anterior; P, posterior; D, dorsal; V, ventral.
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the wild-type larvae (Figures 7A–C, and Supplementary Videos
1 and 2). These results demonstrated that the b-tubulin gene was
vital to cilia motility in C. gigas angulate larvae.

In conclusion, with the use of ciliated marker gene, we
demonstrate that electroporation-based CRISPR/Cas9 system can
Frontiers in Marine Science | www.frontiersin.org 8
be used to generate mosaic oyster larvae with targeted deletions.
This ability to generate long fragments deletion and somatic
mosaics is a powerful tool in the mollusks experimental system,
as it allows the rapid evaluation of candidate gene function in vivo
that would be embryonically lethal in pure mutant lines.
FIGURE 6 | Mosaic ciliary defects in the b-tubulin knockout larvae based on SEM. (A) Wild-type control, normally developing larvae under ordinary light microscopy.
pt, peritroch. (B–D’) Mosaic ciliary defects in the manipulated larvae based on the SEM data, including shortened (white arrows) and almost complete depleted cilia
(white dotted boxes) at the positions of peritroch (B, C, C’, D, D’) and the posterior cilium ring (B–D) of C. gigas angulate trochophore.
A

B

C

FIGURE 7 | Motility assay in C. gigas angulate G0 larvae. Swimming trajectories of larvae (8 hpf) by electroporation with sgRNA/Cas9 complex (B) or not (A).
Original microscopy videos are provided in Supplementary Video 2 (electroporation with sgRNA/Cas9 complex) and Supplementary Video 1 (electroporation
without sgRNA/Cas9 complex). (C) t-test shows the significantly reduced larvae swimming velocity in the electroporation group with sgRNAs/Cas9 complex (p <
0.001, three asterisks).
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DISCUSSION

Since the first reported application of CRISPR/Cas9 in mollusks
(Perry and Henry, 2015), the applications of this technology in
mollusks (including gastropods and bivalves) have been
described in an increasing number of studies in recent years
(Yu et al., 2019; Huan et al., 2021; Jin et al., 2021; Li et al., 2021).
With small size egg and embryo at a size <50 mm in diameter,
electroporation was considered to be a practical, time- and labor-
efficient way in molluscan CRISPR genome editing, providing a
more effective method for CRISPR complex delivery in the
oysters than microinjection (Yu et al., 2019; Jin et al., 2021; Li
et al., 2021). Still, the sustainable development of the oyster
genome editing breeding system calls for establishing efficient
CRISPR/Cas9 mutagenesis tool that generates significant
defective phenotypes. In this report, we performed the
CRISPR-mediated b-tubulin gene knockout by electroporation
and described the long fragments deletions and mosaic
mutations including defective cilia and decreased motility in
the G0 larva of C. gigas angulate.

CRISPR/Cas9 Mediated b-Tubulin
Knockout in Oyster C. gigas angulate
by Electroporation
Cilium is a tubulin-based cytoplasmic extension and is thought
to have functions of interrogating the extracellular environment
in many biological contexts (Davenport and Yoder, 2005; Berbari
et al., 2009). A large number of arranged cilia is thought to be the
swimming organ of many zooplankton and larvae of aquatic
protostomes, including mollusks (Nielsen, 2004; Nielsen, 2005).
The tubulin subunits (b-tubulin) was considered to be required
for the formation of the tubulin heterodimers, the main
compounds that polymerized into microtubules and constitute
the major compound of cilia in the mollusks P. vulgata (Damen
and Dictus, 1994), Crepidula fornicata (Hejnol et al., 2007), and
Ilyanassa obsoleta (Gharbiah et al., 2013), and in the annelid
Polygordius lacteus (Woltereck, 1904) and polychaete H. elegans
(Arenas-Mena et al., 2007). In our present study, a b-tubulin
gene was identified in C. gigas angulate and found to be highly
expressed in ciliated cells based on in situ hybridization. In
present study, we used b-tubulin as a marker gene and performed
CRISPR-mediated knockout by electroporation in C. gigas
angulate. Through direct genotyping, long fragments deletions
(363 bp) were detected in the target gene. By in situ
hybridization, scanning electron microscopy, and behavioral
analysis, we observed mosaic mutations including defective
cilia and decreased motility in the G0 larva. This result
demonstrates that Cgb-tubulin is sufficient to mediate cilia
development and swimming in larval oyster. In conclusion,
with the use of ciliated marker gene, we demonstrate that
electroporation-based CRISPR/Cas9 mutagenesis can be used
to generate mosaic oyster larvae with targeted deletions and for
studies of gene function in the oyster.

We optimized the parameters to improve the survival rate of
oyster larvae under the premise of ensuring good perforation
efficiency. Compared with the electroporation parameters (100
Frontiers in Marine Science | www.frontiersin.org 9
V, with 15 ms pulse duration and four pulses separated by 100-
ms pulse interval) set by Jin et al. (2021), we reduced the voltage
of electroporation to 40 V, the pulse times to 1, while the pulse
time was increased to 50 ms. After optimization, the larval
survival rate after electroporation with and without Cas9-
sgRNA complex was close to 77.2% and 76.3% in the present
study, respectively, which was far higher than that (0.6% and
1%) of Jin et al. (2021). Moreover, based on our previous
experience, the higher final concentrations of Cas9-sgRNA
complex tend to give larger effects and is suitable for less
potentially lethal loci. In the present study, by adjusting the
concentrations of Cas9-sgRNA complex, we have been able to
induce mosaic mutants using as low as 30 ng/ml Cas9 and 30
ng/ml of each sgRNA in oyster larvae. Although the efficiency of
successful gene editing is still low (10%, 16/160), we can still
obtain a certain number of successfully edited larvae because of
the large number of oyster eggs. In addition, it is worth noting
that only the long fragment deletions were used to evaluate the
gene editing efficiency, while the small indels mutations were
ignored, which may result in a serious underestimate of editing
efficiency in the present study.
CRISPR/Cas9-Mediated Long Deletion
Knockout in the Oyster Larvae
Loss-of-function deletion mutations can be produced by NHEJ
following DSBs. In previous studies, long deletion knockout
strategies generated by two and more cut sites using multiple
single-guide RNAs (co-injection of more than two sgRNAs)
have been applied in a variety of species including Danio rerio
(Höijer et al., 2022), Bombyx mori (Wang et al., 2013),
Helicoverpa armigera (Khan et al., 2017), Vanessa cardui
(Zhang and Reed, 2016), and Bicyclus anynana (Zhang et al.,
2017), but not in mollusks, such as L. goshimai (Huan et al.,
2021), C. gigas (Yu et al., 2019; Li et al., 2021), and C.
gigas angulate (Jin et al., 2021). In the present study, five
sgRNAs were simultaneously used to generate long fragment
deletions, as it allowed us to perform rapid screening and
genotyping of mutants using PCR and conventional agarose
gel electrophoresis. According to genotyping, we detected a
long fragment deletion of 363 bp in the target gene, which was
the longest known deletion in mollusks, and much longer than
the studies in L. goshimai (<25 bp deletion), C. gigas (<30 bp
deletion), and C. gigas angulate (single base substitution). This
strategy of co-injecting more than two sgRNAs is a significant
improvement over the difficult detection of small indels
generated by single cleavage using normal agarose gels, which
significantly simplifies the genome editing workflow. Moreover,
the small indels often inevitably produce truncated proteins
function more similar to the original protein (theoretically, in-
frame mutations occurred in 33.3% of cases). The long
fragment deletion at the first functional Tubulin domain of
Cgb-tubulin gene in our study could significantly increase the
probability of generating truncated proteins with deletion of the
remaining functional domains and cause convincing
knockout phenotypes.
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Mosaic Ciliary Defects in the
Oyster Larvae
Genetic mosaicism is the presence of more than one genotype in
one individual. Mosaicism can be produced by a variety of
natural mechanisms including chromosome non-disjunction,
anaphase hysteresis, endoreplication, and mutations arising
during development (Taylor et al., 2014), and by manipulative
mechanisms such as genome editing. In essence, target genes at
different stages of embryonic development can be continuously
targeted and cleaved by the CRISPR/Cas9 system, resulting in
mosaic mutant individuals (Mizuno et al., 2014; Oliver et al.,
2015; Xin et al., 2016). Typically, mosaicism generated by the
CRISPR/Cas9 system in animal models is considered an
undesirable outcome. In some cases, however, this
phenomenon can be valuable. Due to the embryonic lethality
of many target genes and the difficulties of maintenance and
genotyping, most of our attention has been focused on analysis of
mosaic G0 phenotypes. The advantages of focusing on somatic
mosaicism are that data can be collected over a generation, and
the phenotypic effects of lesions are limited to the subset of cell
lineages with deletions, thereby reducing the harmful effects of
many deletions (Zhong et al., 2015; Mehravar et al., 2019). b-
Tubulin knockout mediated the mosaic expression patterns of
Cgb-tubulin, and mosaic ciliary defects were commonly found at
the positions of peritroch, intestinal cilia, and the posterior
cilium ring in C. gigas angulate trochophore and D-shaped
larvae. Overall, we suggest that CRISPR/Cas9 can be applied to
generate oyster larvae with phenotypic mosaic defects for
targeted deletions. In the future, this ability to produce somatic
deletion mosaics could be a powerful tool for studying oyster
gene function in the mollusks experimental systems.

CONCLUSION

The application of CRISPR-mediated gene editing in marine
mollusks is still facing great challenges, both in functional
studies after gene knockout and in genetic engineering breeding.
Here, we found that b-tubulin knockout could induce mosaic
phenotypes in G0 larvae of C. gigas angulate by using
electroporation, characterized by shortened/depleted cilia and
decreased larval motility. Since the b-tubulin knockout
phenotypes are easy to detect at very early developmental stages,
it may serve as the optimal preliminary candidate gene for
establishing CRISPR-based gene editing technology. In addition,
our study reveals the strategy of generating long fragments
deletion, and somatic mosaics are a powerful tool in the
mollusks experimental system. Together, our report can provide
useful reference for a widespread application of CRISPR/Cas9-
based gene editing technology in mollusks in the future.
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