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All-inclusive coral reef
restoration: How the tourism
sector can boost restoration
efforts in the caribbean
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Daniel J. Barshis2, Victor Galván4, Erika Harms4

and Megan K. Morikawa4
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Following a strong decline in the health of Caribbean coral reefs in the 1970s,

disease outbreaks, overfishing, and warming events have continued to push

these reefs towards a point of no return. As such, researchers and stakeholders

have turned their attention to restoration practices to overcome coral recovery

bottlenecks on Caribbean reefs. However, successful restoration faces many

challenges, including economical and logistical feasibility, long-term stability,

and biological and ecological factors yet to fully understand. The tourism

sector has the potential to enhance and scale restoration efforts in the

Caribbean, beyond simple financial contributions. Its strengths include long-

term presence in several locations, logistical and human resources, and a

business case focused on preserving the ecosystem services on which it

depends. Here, we present the restoration program of Iberostar Hotels and

Resorts which includes a scientific team that incorporates science-based

solutions into resort operations to promote reef resilience in the face of

climate change. We exemplify the potential of our program to scale up

science-based reef restoration in collaboration with academia, local

community, and government by presenting the first utilization of the Coral

Bleaching Automated Stress System (CBASS) in Latin America and the Latin

American Caribbean, with the aim of applying findings on coral

thermotolerance directly to Iberostar’s reef restoration program across the

Caribbean. This program presents a new model for tourism involvement in

coral restoration and illustrates its capacity to scale up existing restoration

practices by utilizing the strengths of the sector while maintaining science-

based decision making.

KEYWORDS

reef restoration, Caribbean, private sector, sustainable tourism, coral bleaching,
thermal stress, coral bleaching automated stress system (CBASS)
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Introduction

Reef degradation at global and
regional scales

Global warming is impacting ecosystems at an increasingly

alarming rate, with few ecosystems affected as heavily as coral

reefs. Ocean warming and acidification are the primary drivers

of reef decline on a global scale (Albright and Langdon, 2011;

Arias-González et al., 2016; Hughes et al., 2018), while

overfishing, destructive fishing practices, hurricane damage,

nutrient and sediment pollution, and poor management of

coastal development, among others, synergistically affect reefs

at local scales (Hughes and Connell 1999; Gardner et al., 2005;

Anthony et al., 2014; Hughes et al., 2017; Hughes et al., 2018). As

a result, reefs are facing a rapid global decline with a bleak future

that will compromise their services to marine ecosystems and

society (Pratchett et al., 2014). Due to differences in local

pressures, as well as contrasting evolutionary histories and

environmental conditions, there is heterogeneity in the state of

the reefs across geographic regions, with Caribbean reefs

experiencing arguably the strongest negative shift in ecosystem

state in recent decades (Cinner et al., 2016; Beyer et al., 2018;

Cortés-Useche et al., 2019; Roff, 2021). The deterioration of

Caribbean reefs has been documented since the 1970s, with a

50% decline in reef-building coral cover in recent decades and an

increasing dominance by macroalgae, sponges, and the

hydrozoan Millepora spp. (Mumby et al., 2007; Maliao et al.,

2008; Cramer et al., 2021). This catastrophic decline in coral

cover and diversity has largely been attributed to a loss of key

herbivores shifting the competitive balance on the benthos in

favor of macroalgae (Lessios et al., 1984; Hughes, 1994) and an

increasing prevalence of coral diseases (Gladfelter, 1982; Precht

et al., 2016). While these issues persist, a lower coral diversity

and difference in evolutionary histories compared to their Indo-

Pacific counterparts compromises sexual recruitment, which

limits the recover potential of Caribbean coral communities

(Roff, 2021). Furthermore, the frequency and intensity of mass

bleaching events has increased in the region, since the first

region-wide event in 1987 (McWilliams et al., 2005; Manzello,

2015), hampering recovery and resilience further. Coral

bleaching is now one of the major threats to the region (Eakin

et al., 2010). Yet, bleaching events can affect corals

heterogeneously at different scales even at the level of species

and colonies, promoting the adaptation to future conditions

(Baker et al., 2008; Thomas et al., 2019; McClanahan et al., 2020).

Nonetheless, since the current rate of environmental change is

greater than that required for natural adaptation, active

intervention through restoration efforts, in combination with

efforts to reduce carbon emissions and localized pollution, are

increasingly being developed as necessary approaches to aid the
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recovery of reef-building corals in this region (Rinkevich, 2015;

Cortés-Useche et al., 2021; Suggett and van Oppen, 2022).
Reef restoration bottlenecks in
the Caribbean

Global climate action, the establishment of marine protected

areas, sustainable fishing practices, and effective management of

water systems all are critical tools for reef recovery. Alongside

these efforts, coral restoration has the potential to further help

recovery of damaged or depleted reefs (Wilkinson and Souter,

2008; Young et al., 2012) and there is increasing recognition that

it should play a strategic role in protecting critical ecosystem

services (Abelson, 2006; Edwards, 2010; Chamberland et al.,

2015; Schopmeyer et al., 2017; Calle-Triviño et al., 2018; Calle-

Triviño et al., 2021). Numerous reef restoration projects have

been developed in recent years to alleviate bottlenecks of

recovery for Caribbean coral communities (Bayraktarov et al.,

2020), leading to numerous advancements in techniques to

growing and reproducing corals in aquarium settings. Still,

there remain major challenges to successful reef restoration

due to the slow growth rates of most foundational coral

species, limiting the rate at which coral cover and abundance

can be increased through outplanting, as well as the feasibility of

restoring corals across large spatial scales. This is further

constrained by the logistic (diving operations, permits) and

economic (materials, equipment, labor) obstacles of

underwater work (Boström-Einarsson et al., 2020), as well as a

lack of long-term stakeholder engagement (Hein et al., 2020).

Most restoration programs in the Caribbean are limited to the

species Acropora cervicornis and A. palmata due to their fast

growth rates compared to those of other mounding species, ease

of fragmentation, historical and functional importance in the

Caribbean, and endangered status (Aronson et al., 2008; Lirman

et al., 2014; Calle-Triviño et al., 2020; Cramer et al., 2020). Low

species diversity as well as often disregarded genetic diversity in

these programs can limit functional diversity, sexual

recruitment, and genetic exchange, which compromises the

adaptive capacity and resiliency of these ecosystems for the

future (Baums et al., 2019).
Scaling up the efforts strategically

In order to boost the efficiency and success of reef

restoration, as well as build scalable solutions, major barriers

to restoration need to be tackled by utilizing the strengths of the

different sectors and stakeholders that benefit from coral reef

ecosystem services. The tourism sector, especially in coastal

tropical areas such as the Latin American Caribbean,
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constitutes a great benefactor of coral reefs (Spalding et al.,

2017). Its potential role as a major contributor to reef

restoration, beyond simple financial contributions, could help

address many of the above-mentioned challenges (Hein et al.,

2018). Here, we present the example of a private sector driven

reef restoration program across the Caribbean as a solution to

overcome some of the bottlenecks of scalability, economic

feasibility, and long-term stability in coral restoration

(Waltham et al., 2020; Cortés-Useche et al., 2021; Quigley

et al., 2022). This program incorporates scientific research

aimed at solving biological and ecological knowledge gaps that

sets the base for restoration operation decisions. The research

program is aligned with the current recommendations of the

scientific community for reef restoration, such as the selection of

resilient species and individuals to accelerate natural selection in

the face of climate change, while maintaining the biodiversity

and genetic diversity that will support long-term ecosystem

resilience (Baums et al., 2019; Caruso et al., 2021; Vardi et al.,

2021; Cunning et al., 2021). Moreover, it includes close

collaboration with the local community, government, and

academia to streamline legal and operational processes for

restoration, as well as aligning with the needs and findings of

the scientific community, increasing the scope of restoration

benefits. By working together, we can utilize the strengths of

each sector towards the common goal of restoring reefs to a

healthy and productive state.
Tourism sector in reef restoration

Until recent years, the tourism sector has had a purely

financial role in restoration projects, and while this is a major
Frontiers in Marine Science 03
strength since the sector has longer-term economic stability than

sectors and projects depending on grant cycles and external

funding, its involvement can provide a boost to resolve other

constraints. Here, we present a novel involvement of the coastal

tourism industry in reef restoration (Figure 1) and exemplify it

with the case of Iberostar Hotels and Resorts. Iberostar, as with

other large networks of hotels and resorts, has an established

foundation and resources in different destinations, as well as a

network of existing suppliers and multidisciplinary teams that

can help solve logistical and geographical bottlenecks. This is a

key advantage in terms of scalability, and not only facilitates

operating in different destinations, but also standardized and

replicable approaches across locations, which can provide

valuable information for restoration science. While research

permit acquisition is a constraint for many projects to scale

up, the tourism sector can advance it through already existing

relations and collaboration with governments at each

destination. The tourism sector has the capacity to form

multidisciplinary teams that support their own restoration

programs, such as scientists, operation coordinators, and

restoration technicians. These can be strengthened through

alliances with actors within the local community (i.e., NGOs,

interns, volunteers, employees) and academia.

Approximately half of Iberostar Hotels and Resorts’ global

operations are based on coastlines facing the Caribbean basin,

and its presence in the region dates to 1993. As of 2020, Iberostar

complexes create a combined total of 10.2 km of beachfront in

this region. According to the World Resources Institute 500 m

resolution map of tropical coral reefs of the world, 80% of

Iberostar’s beachfront in this region has reefs within 5 km of

their properties totaling almost 6 km2 of reefs that provide direct

ecosystem services to Iberostar’s hotels, operations, and
FIGURE 1

Reef restoration approach that utilizes the strengths of the tourism sector to overcome common restoration barriers, brings science into the
core of restoration decisions and involves government, local community, and NGOs to ensure the resilience of restored reefs. Dashed lines
indicate possible areas of collaboration, whereas thick lines indicate direct involvement of the tourism sector.
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community. Thus, ensuring coral reef protection, resilience, and

restoration are a major part of Iberostar’s strategy to improve

ecosystem health and profitable tourism by 2030. This strategy is

aligned with the objectives of the United Nations Decade of

Ecological Restoration (2021-2030) and Sustainable

Development Goals (Claudet et al., 2019; Schmidt-Roach et al.,

2020), and is implemented globally through the Iberostar’s Wave

of Change initiative that emerged in 2018, which intends to use

the strengths of the tourism sector to tackle the ocean’s biggest

challenges while leading sustainable tourism. The Wave of

Change reef restoration strategy aims at restoring reefs that

value coastal protection first through coral outplanting and

propagation, then focusing on increasing fish biomass

(important for local food security), and lastly on restoring

biodiversity on reefs adjacent to Iberostar hotels.

In order to maximize the success of the conservation and

restoration program, Iberostar’s internal team of scientists and

coastal health managers collaborate closely with local NGOs to

involve the community in their initiatives and support other

marine conservation efforts, as well as with the government

through collaboration agreements and the constant

communication of results and projects, and its participation in

sustainability events and activities. Additionally, success of the

program relies on employees who are trained to follow the

sustainability practices at the heart of the operations and are

motivated to participate in environmental activities. Lastly, the

program relies on a strong collaboration with academia to

reinforce the legitimacy and scope of the scientific program

and provide local students with internship opportunities and

scholarships. The scientific program addresses lines of research

that can inform and make restoration practices more efficient.

These lines include asexual reproduction techniques such as

reskinning and microfragmentation to address the limitation of
Frontiers in Marine Science 04
slow coral growth rates (Page, 2013; Page and Vaughan, 2014);

the creation of baselines through photomosaics (Lirman et al.,

2007) and reef health assessments (Lang et al., 2011) to enable

measuring the impact of the efforts, growing multiple species

and genotyping coral individuals in nurseries to ensure species

and genetic diversity (Baums et al., 2019), and the selection of

thermotolerant coral species and colonies to accelerate natural

selection (Morikawa and Palumbi, 2019; Caruso et al., 2021;

Cunning et al., 2021), among other projects. Over four years,

Iberostar’s restoration program has already been established in

three countries (Dominican Republic, Mexico, and Jamaica),

demonstrating the capacity for scalability (Figure 2), with

concurrent scientific research also being conducted at these

locations. As a demonstration of scalable and applicable reef

restoration research with the involvement of the tourism sector,

and its alignment with the current need of experimental

standardization (Grottoli et al., 2021), we present a

collaboration between the science team of Iberostar and

academia. The collaboration focuses on identifying heat

tolerant corals across Iberostar’s nurseries for inclusion in reef

restoration efforts using standardized thermotolerance

experiments across Iberostar’s restoration sites. Iberostar

established an agreement with Old Dominion University

(Virginia, USA) to acquire a portable lab system developed by

Dr. Daniel Barshis and colleagues to conduct short-term heat

stress experiments (Voolstra et al., 2020; Evensen et al., 2021). As

part of the collaboration, Iberostar researchers were trained by

Dr. Barshis and his team during an experiment conducted

together at an Iberostar location. The collaboration also

included participation by local partners, employees, internship

students, and international clients, promoting knowledge

exchange and education between multiple actors (Schmidt-

Roach et al., 2020).
FIGURE 2

Iberostar coral nurseries’ locations across the Caribbean: Mexico (Paraiso Beach in yellow and Cozumel in black), Jamaica (Montego Bay in
green) and Dominican Republic (Bavaro Coral Lab in red and Bayahibe in blue).
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The use of a portable lab system
and acute heat stress experiments
for coral restoration

Background and experimental objectives

Experiments were conducted using the recently developed

Coral Bleaching Automated Stress System (CBASS; Voolstra

et al., 2020; Evensen et al., 2021). This highly portable

experimental system is designed to conduct standardized

thermal stress experiments in a variety of field settings,

allowing for the direct comparison of thermal tolerance across

coral species and populations. The comparability of heat stress

assays is a priority that has recently been highlighted by the

scientific community as a need for informing and facilitating reef

conservation strategies (Grottoli et al., 2021). While Iberostar

already has a coral laboratory in the Dominican Republic where

similar thermal stress experiments are being conducted

(Bayraktarov et al., 2020), this portable experimental system

allows for highly reproducible and standardized experiments to

be conducted across the Caribbean, at Iberostar locations where

coral restoration programs are being implemented, with the aim

of identifying heat tolerant coral individuals for their inclusion

in restoration efforts at each location (Figure 1). To date, the

CBASS has successfully been used to assay corals across a

number of reefs, including American Samoa (Klepac and

Barshis, 2020), numerous locations across the Red Sea and

Gulf of Aden (Voolstra et al., 2020; Evensen et al., 2021;

Voolstra et al., 2021; Evensen et al., 2022), the Great Barrier

Reef, and the Galapagos (unpublished data). Notably, the CBASS

has recently been used to compare heat tolerances of Acropora

cervicornis colonies from six coral nurseries spanning the Florida

Reef Tract (Cunning et al., 2021). The experiments presented

herein, carried out in Playa Paraıśo, Mexico, represent the first

utilization of the CBASS in the Latin American Caribbean: a

breakthrough for coral science and coral restoration in this

region, which is often underrepresented in both fields globally

due to language and resource barriers (Bayraktarov et al., 2020).

The aim of the experiments was to evaluate the thermal

tolerances of four common (yet underrepresented in

restoration programs) species on Caribbean reefs: Montastraea

cavernosa, Orbicella annularis, O. faveolata and Porites

astreoides. For each species, 10 colonies were randomly

sampled from Manchoncitos reef (20.759444°N, 86.95°W),

located directly offshore from Iberostar’s Playa Paraıśo resort,

where one of the Iberostar coral nurseries is located. Acute heat

stress assays, each lasting 18 h (detailed in Evensen et al., 2021),

took place over 4 days, assaying one species per day. Response of

the corals to thermal stress was assessed through pulse-

amplitude modulated (PAM) fluorescence. Thermal thresholds

of each species were calculated from PAM measurements

(calculating the Fv/Fm ED50, sensu Evensen et al., 2021) and
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thresholds were compared to those from the Dominican

Republic, previously obtained in the coral laboratory of

Iberostar. Moving forward, we intend to continue assaying

common coral species across Iberostar’s locations in the

Caribbean to provide a region-wide sensus of coral

thermotolerance, as well as conducting longer-term heat stress

experiments at Iberostar’s nurseries to compare short- and long-

term responses of corals to heat stress (Figure 2).
Field application

Despite consistency in heat stress susceptibility across coral

taxa (Marshall and Baird, 2000; Loya et al., 2001; Grottoli et al.,

2006; Guest et al., 2016; Singh et al., 2019), thermotolerance

traits can also be influenced by the environment. Phenotypic

plasticity itself can vary depending on the genotype, so the top

performing genotype can change depending on the

environment, which challenges the selection of heat tolerant

individuals for reef restoration. As such, selecting individuals for

reef restoration requires testing of locally adapted corals for

thermotolerance. Additionally, re-evaluating thermal

performance at regular intervals following outplanting could

considerably improve our understanding of the mechanisms

underpinning thermotolerance and how these are influenced by

environmental changes (Kenkel et al., 2013; Palumbi et al., 2014;

Kenkel et al., 2015; Drury et al., 2017; Kenkel and Matz, 2017;

Morikawa and Palumbi, 2019; Caruso et al., 2021; Cunning et al.,

2021; Drury and Lirman, 2021). The long-term presence of

Iberostar at these sites will allow for an unrivaled opportunity to

continually assess thermotolerance and bleaching recovery rates

for previously assayed and outplanted individuals in the field, as

well as their response to natural heat stress events. Bearing in

mind the urgency of action to help reefs recover, and the time

and resource constraints of conducting multiple experiments,

short-term heat stress assays are an advantage for rapid

thermotolerance tests with direct application to reef

restoration (Ferse et al., 2021). With restoration efforts in the

Caribbean to date focusing primarily on Acropora cervicornis or

A. palmata, the capacity to rapidly test and select for a variety of

species using these stress assays and include them in nurseries

and restoration operations is key to securing biologically diverse

and functional reefs (Baums et al., 2019). Moreover,

thermotolerance research is often limited to specific areas with

established laboratories and experimental systems, making it

difficult to draw general, region-wide conclusions about thermal

resilience, especially when methodologies differ between studies

(Grottoli et al., 2021). Conducting these standardized studies

across multiple locations where restoration programs are already

in place will help to identify consistent tolerance mechanisms

across species and populations, including those influenced by

site-specific conditions. The established network of coral

nurseries and restoration sites of Iberostar across the
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Caribbean, together with the internal team of scientists,

restoration practitioners and operation managers, constitutes

an ideal framework for restoration-applied thermotolerance

research. Applying thermal stress assays information into a

multinational restoration program in a cost-effective and

logistically efficient manner is particularly promising for the

advancement of restoration science and its application (Ferse

et al., 2021), and could help accelerate and expand the scale of

restoration efforts that are currently limited in scope considering

the vast area of reefs requiring restoration across the Caribbean.
Conclusion

Caribbean reefs have a long history of environmental threats

and degradation that are rapidly intensifying. Addressing the

main causes of this degradation through the reduction of

greenhouse gas emissions and the sustainable use of fisheries,

among other solutions, is crucial to bring hope to these

extremely important ecosystems. Corals have some ability to

adapt to change, however, due to the severity and rate of climate

change, intervention through science-based restoration may be

necessary to accelerate this process and keep up with our rapidly

changing environment. Ecosystem restoration at scale is still a

great challenge due to the many economic, logistical, and

scientific barriers that this practice presents. The tourism

sector has the potential to scale up reef restoration with a new

role that goes beyond being a financial investor, but rather takes

advantage of other strengths of this sector, such as the long-term

presence and logistics resources in different destinations. The

tourism sector can also directly participate in the scientific and

operational processes of restoration and include the

conservation of these natural assets as part of the business case

in the face of climate change. Iberostar Hotels and Resorts’

restoration program across the Caribbean is presented as an

example of this novel role. It includes a scientific program that is

aligned with research priorities to solve the primary knowledge

and implementation bottlenecks for efficient and scalable reef

restoration practices. Among these priorities is the selection of

thermotolerant corals for restoration, which can help to

optimize and accelerate ecosystem resilience in the face of

increasingly rapid climate change. We present a cost-effective

approach to identify and select heat tolerant corals for

restoration through the first use of the Coral Bleaching

Automated Stress System (CBASS; Voolstra et al., 2020;

Evensen et al., 2021) in Latin America and the Latin American

Caribbean. Novel solutions, collaborations, and the participation

of diverse sectors and actors, such as the tourism sector

presented herein, are crucial to push the boundaries of science

and accelerate reef restoration efforts before Caribbean reefs are

pushed past the point of no return.
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R., Galván, V., and Arias-González, J. E. (2021). Conservation actions and
ecological context: Optimizing coral reef local management in the Dominican
Republic. PeerJ 9, e10925. doi: 10.7717/peerj.10925

Cortés-Useche, C., Muñiz-Castillo, A. I., Calle-Triviño, J., Yathiraj, R., and
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