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In recent years, the Yellow River Delta has been affected by invasive species Spartina
alterniflora (S. alterniflora), resulting in a fragile ecological environment. It is of great
significance to monitor the ground object types in the Yellow River Delta wetlands. The
classification accuracy based on Synthetic Aperture Radar (SAR) backscattering
coefficient is limited by the small difference between some ground objects. To solve this
problem, a decision tree classification method for extracting the ground object types in
wetland combined time series SAR backscattering and coherence characteristics was
proposed. The Yellow River Delta was taken as the study area and the 112 Sentinel-1A
GRD data with VV/VH dual-polarization and 64 Sentinel-1A SLC data with VH polarization
were used. The decision tree method was established, based on the annual mean VH and
VV backscattering characteristics, the new constructed radar backscattering indices, and
the annual mean VH coherence characteristics were suitable for extracting the wetlands in
the Yellow River Delta. Then the classification results in the Yellow River Delta wetlands
from 2018 to 2021 were obtained using the new method proposed in this paper. The
results show that the overall accuracy and Kappa coefficient of the proposed method
w5ere 89.504% and 0.860, which were 9.992% and 0.127 higher than multi-temporal
classification by Support Vector Machine classifier. Compared with the decision tree
without coherence, the overall accuracy and Kappa coefficient were improved by 8.854%
and 0.108. The spatial distributions of wetland types in the Yellow River Delta from 2018 to
2021 were obtained using the constructed decision tree. The spatio-temporal evolution
analysis was conducted. The results showed that the area of S. alterniflora decreased
significantly in 2020 but it increased to the area of 2018 in 2021. In addition, S. alterniflora
seriously affected the living space of Phragmites australis (P. australis) and in 4 years,
10.485 km2 living space of P. australis was occupied by S. alterniflora. The proposed
method can provide a theoretical basis for higher accuracy SAR wetland classification and
the monitoring results can provide an effective reference for local wetland protection.

Keywords: Yellow River Delta, wetland classification, backscattering characteristics, coherence characteristics,
decision tree, Spartina alterniflora
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INTRODUCTION

A wetland, known as “the kidney of the Earth”, is the ecosystem
with the highest biodiversity and productivity in nature as well as
one of the most important living environments for human beings
(Cadier et al., 2020). A wetland plays an important role in
biogeochemical cycles, flood mitigation, energy conversion,
degradation of pollutants, promoting silting, and providing
means of production and living resources for human beings
(Delgado and Marıń, 2013). At the same time, it can play a
positive role in ecosystem protection, including food supply,
carbon sequestration, flood control, and water quality
improvement (Liu et al., 2021). A wetland breeds a large
number of animal and plant resources with its unique eco-
hydrological environment, provides good breeding and habitat
for many wild animals, and forms a rich species community
(Adame et al., 2019). Therefore, it is also of great significance to
monitor the wetlands for the protection of biodiversity.

Spartina alterniflora (S. alterniflora) is a perennial halophyte
native to the Atlantic coast of the Americas from Canada to
Argentina (Meng et al., 2020). Presently, S. alterniflora has been
recognized as one of the most serious coastal invasive species in
the world, causing serious damage to coastal ecosystems. S.
alterniflora was introduced into China for the first time in
1979 (Zuo et al., 2012) and showed a strong aggressiveness,
gradually flooding coastal wetlands in China, and was listed as
one of the “Top 10 invasive alien species” in China (Wan et al.,
2009). Since 1990, S. alterniflora has spread to the Yellow River
Delta, causing serious harm to the local ecosystem and leading to
the decline of local biodiversity (Yue et al., 2021). At the same
time, the S. alterniflora occupied the waterway space, resulting in
waterway blockage and hindering the development of a variety of
local industries. Due to the lack of natural enemies in China, S.
alterniflora has gradually become the dominant species in coastal
wetlands (Wan et al., 2014; Zhang et al., 2020), seriously
squeezing the living space of other local species. Therefore, the
monitoring of the Yellow River Delta wetland types, especially
the accurate acquisition of the distribution range of S.
alterniflora, can observe the distribution location and the
changing trend of S. alterniflora in real time. This can better
reflect the management achievements and shortcomings of
S. alterniflora.

Wetland classification and the extraction of S. alterniflora can
mainly use optical images, unmanned aerial vehicle (UAV)
images, and other remote sensing methods (Zhu et al., 2019;
Tian et al., 2020; Zhang et al., 2020). However, optical images are
easily affected by clouds and fog, resulting in data unavailability.
The monitoring range of UAV is limited and the work is easily
affected by weather, which makes it impossible to better complete
the monitoring task of a long time series. Synthetic Aperture
Radar (SAR) images are not affected by clouds, rain, and snow, so
it is possible to classify the wetlands for a long time series (Chen
et al., 2017). In addition, it is particularly important to effectively
distinguish Phragmites australis (P. australis) and S. alterniflora
in wetland classification. S. alterniflora and P. australis are easily
confused when they are extracted directly based on pixel from
optical and UAV images due to their similarity in appearance.
Frontiers in Marine Science | www.frontiersin.org 2
However, the unique backscattering coefficient of SAR images
can be used to effectively distinguish these two species.

At present, the study on classification based on backscattering
coefficients is mainly focused on the extraction of single ground
object types, such as rice (Park et al., 2018) and forest (Khati
et al., 2018), and has achieved good results. In addition, some
scholars have achieved good classification results in
distinguishing between ground object types with obvious
differences, such as distinguishing between “wet” fields and
“dry” fields (Keisuke et al., 2018) and between flood and
vegetation (Tsyganskaya et al., 2018). However, the differences
between these ground objects are easy to distinguish. When
classifying complex areas such as wetlands, it is difficult to
achieve high classification accuracy. The main reason is that
the backscattering coefficients of some ground objects are too
close to be distinguished. In wetlands study, scholars are
constantly looking for new methods to achieve higher
classification accuracy. Optical remote sensing image has
become a popular classification method because it contains
multiple spectral information, which can provide more
characteristics to classification. Ottinger et al. (2013) and Liu
et al. (2016) have achieved a good classification result in the
Yellow River Delta by using optical image in the early years. The
classification accuracy of their method is 76% and 89%
respectively. Due to the advantages of optical image in
classification, the combination of optical image and SAR image
has also been widely applied to the classification of the Yellow
River Delta wetlands in recent years. For example, Zhang et al.
(2021) combined Sentinel-1A with Sentinel-2A and obtained an
overall accuracy of 92.4%. Tu et al. (2021) combined GF-3 with
hyperspectral satellite Zhuhai-1 and obtained an overall accuracy
of 97%. Wang et al. (2022) combined GF-3 with Sentinel-2A and
obtained an overall accuracy of 86.18%. All of the classification
accuracy obtained was higher than 85%. The combination of
optical image and SAR image has achieved a classification result
with higher accuracy than only using the backscattering
coefficient (Zhang et al., 2019), which has become a common
classification method in wetlands. However, under the condition
optical image data access being limited, knowing how to use SAR
data only to achieve higher accuracy of wetlands classification
has become important work.

InSAR technology is used to effectively detect ground changes
and generate interferograms and coherence coefficient maps. In
this process, coherence refers to the scattering information of
ground object scatterers obtained by the coherent processing of
two SAR images by InSAR technology. The coherence map is not
only used to reflect the quality of interferometry in InSAR
processing but also used to reflect the changes in ground
object types (Canisius et al., 2019). If there are obvious
changes in the covered ground object types between two SAR
images, the coherence will decline. The coherence of S.
alterniflora is quite different from that of other vegetation
because it lives at the edge of the ocean where it is often
submerged. Now, coherence has been applied to ground object
classification. In some cases, better classification results can be
obtained by using the time series coherence of different ground
objects than by using the time series backscattering coefficient.
June 2022 | Volume 9 | Article 940342
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This is mainly due to the growth environment of different plants,
such as annual crops, grasses for pasture, and sugarcane
plantations (Nikaein et al., 2021). However, it is still difficult to
classify complex areas using coherence only because many
ground objects are not sensitive to coherence. But coherence
can enhance the distinction between objects that are difficult to
distinguish using backscattering coefficients, which provides a
theoretical basis for higher precision SAR classification. In the
early years, coherence was mainly used for classification as part
of image characteristics. Nizalapur et al. (2011) used the
pseudocolor composite of coherence, backscatter difference,
and mean backscatter to classify land cover in the Bilaspur
forest area in Chattisgarh, India, with an overall accuracy of
82.5%. Fariba et al. (2018) used SAR backscattering and
coherence maps as input features to conduct object-based
Random Forest classification for marsh and shallow water in
Avalon Peninsula, Newfoundland and Labrador, Canada, with
an overall accuracy of 74.33%. In addition, the coherence of
different temporal baselines is also introduced into the
classification. Zhang et al. (2021) extracted rice in Guanghan
city by using coherence maps of different time baselines and
backscattering coefficients, and the extraction accuracy
improved by 3% compared with only using the backscattering
coefficients. These scholars have proved that coherence can
contribute to achieve higher accuracy of classification.
However, in some classification or ground object extraction
applications (Nizalapur et al., 2011; Fariba et al., 2018; Zhang
et al., 2021) that combine backscattering coefficient and
coherence the coherence map is taken as part of the
pseudocolor image synthesis and then samples are established
for supervised classification; the classification is still limited by
sample selection, resulting in reduced accuracy. The coherence
and backscattering coefficients are used as a threshold index to
construct a decision tree, which can effectively solve the problem.

The decision tree classifier (DTC) (Dattatreya and Kanal,
1986; Safavian and Landgrebe, 1991) is one of the methods for
multi-stage decision making. The basic principle involved in any
multistage approach is to break up a complex decision into a
union of several simpler decisions, hoping the final solution
obtained this way would resemble the intended desired solution.
In the field of remote sensing monitoring, compared with
traditional classification methods such as maximum likelihood
classification, the decision tree classifies each pixel in the image
by dividing the threshold values. This avoids misclassification
and omission caused by the contingency of samples and the color
of images in supervised or unsupervised classification, which has
substantial advantages in land classification (Friedl and Brodley,
1997). Recently, decision tree classification has been successfully
applied to land classification in cities, wetlands, forests, and sea
ice (Tooke et al., 2009; Heumann, 2011; Timothy and Bartolo,
2015; Wang et al., 2021a).

In order to achieve effective monitoring of the Yellow River
Delta wetland types, and especially to effectively distinguish
between the S. alterniflora and P. australis, a decision tree
classification method combined time series dual-polarization
SAR backscattering and coherence characteristics is proposed
Frontiers in Marine Science | www.frontiersin.org 3
in this paper. It can realize the Yellow River Delta wetland
classification and explore the spatio-temporal evolution of the
Yellow River Delta wetland types, especially the evolution of
S. alterniflora.

The structure of this paper is as follows: Section 2 introduces
the study area and experimental data in detail. Section 3 is the
constructed method of this paper and introduces the process of
establishing the decision tree by VH and VV backscattering
characteristics, radar backscattering indices, and VH coherence
characteristics. Section 4 is the result of this paper and the
classification results were compared with the multi-temporal
supervised classification. Section 5 discusses the classification
accuracy of the different polarization coherences. Then the
spatio-temporal evolution of wetland types in the Yellow River
Delta from 2018 to 2021 is discussed and analyzed. Finally, some
valuable conclusions of this study are drawn in Section 6.
DATA AND MATERIALS

Study Area
The Yellow River Delta is the most widely preserved, the most
complete, and the youngest wetland ecosystem in the world. It is
located in the warm temperate zone of the Shandong Province,
China. It is the second-largest wetland in China, covering an area
of more than 10,000 km2, bordering Bohai Bay in the north and
Laizhou Bay in the east. The terrain is flat and the altitude is
between 0m and 15m and it has a temperate continental
monsoon climate. The annual average precipitation is about
530-630 mm and the annual average temperature is about
11.7-12.6C. Due to the suitable climate conditions, the coastal
wetland vegetation in this region is rich in types and covers a
wide area (Zhang et al., 2019). Due to its unique ecological
environment and unique natural conditions, this area is very rich
in biological resources.

The study area is located in the Yellow River Estuary eco-
tourism area, which is the most severely affected area by S.
alterniflora in the Yellow River Delta. A large number of S.
alterniflora is distributed on both sides of the estuary all year
round. The study area is shown in the blue box in Figure 1A,
covering a total area of 505.35 km2. The red box is the coverage
area of Sentinel-1A image and the background is the shaded-
relief map generated from Shuttle Radar Topography Mission
(SRTM) DEM with 90 m resolution, which is used to represent
the altitude of the study area. Figures 1B, C show P. australis and
S. alterniflora, respectively, which were photographed in situ. It
can be seen that they are very similar in appearance and cannot
be directly distinguished from optical remote sensing images.

Data
To obtain the wetland types and evolution information of the
Yellow River Delta, Sentinel-1A radar data from European Space
Agency (ESA) were selected. The Sentinel-1A radar satellite was
launched from the ESA on April 3, 2014. It works in C-band and
orbits at an altitude of about 700 km. The revisit period of the
satellite is 12 days, mainly including StripMAP (SM) mode,
June 2022 | Volume 9 | Article 940342
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Interferometric Wide swath (IW) mode, Extra Wide swath (EW)
mode, andWave (WV) mode (Attema et al., 2010). This provides
data support for long-term and multi-dimensional earth
observation. Sentinel-1 radar satellite data is available for free
download at the website: https://scihub.copernicus.eu/.

28 Sentinel-1A dual-polarization Ground Range Detected
(GRD) images in IW mode with vertical transmit and vertical
receive (VV) and vertical transmit and horizontal receive (VH)
in 2018 were selected to obtain backscattering characteristics.
The time span was from January 10, 2018 to December 24, 2018,
and the imaging dates were evenly distributed to ensure at least
two scenes per month, which were used to reflect information
about the average backscattering coefficient over a year. In
addition, 16 Sentinel-1A dual-polarization Single Look
Complex (SLC) images in IW mode with VV and VH were
used to obtain coherence characteristics, and the time span was
basically the same as GRD data. Because the sensitivity of the
change in coherence is lower than the backscattering coefficient
(Mohammadimanesh et al., 2018), the time interval between
selected images is longer. We guarantee at least one image per
month to reflect the coherence change at different times.

In addition, to obtain wetland type information of the study
area from 2019 to 2021, 84 Sentinel-1A dual-polarization GRD
images (28 images per year) and 48 Sentinel-1A dual-
polarization SLC images (16 images per year) were obtained,
which were used to analyze the spatio-temporal evolution of
wetland types. The imaging time of selected images is similar to
Frontiers in Marine Science | www.frontiersin.org 4
2018. The image parameters of the data used in this study are
shown in Table 1. The imaging mode of all data is IW, VH/VV
dual-polarization, ascending orbit, and the incidence angle is
about 38.9°.

Sentinel-1A product contains GRD data and SLC data. GRD
data have the same azimuth resolution and range resolution,
which reduces speckle noise and geometric resolution. Therefore,
compared with SLC data, GRD data eliminates thermal noise to
improve image quality and can achieve better accuracy in ground
object classification. However, GRD data does not contain phase
information, so it cannot be used to obtain the coherence
between two images. To achieve better classification accuracy,
GRD data and SLC data are used together for classification in
this paper.
METHOD

In order to obtain the accurate ground object types and spatio-
temporal evolution of wetland in the Yellow River Delta, a decision
tree classification method combined time series dual-polarization
SAR backscattering and coherence characteristics was proposed.
Based on the annual mean VH and VV backscattering
characteristics, the constructed radar backscattering indices, and
the annual mean VH coherence of Sentinel-1A, a decision tree
suitable for extracting the ground object types was established to
obtain the classification results in the Yellow River Delta wetlands
A

B

C

FIGURE 1 | Study area. (A) is the geographical location map of the study area. The red box represents the coverage of Sentinel-1A image, and the blue box represents
the study area. The background is the shaded-relief map from SRTM DEM; (B) is P. australis photographed in situ; (C) is S. alterniflora photographed in situ.
TABLE 1 | The parameters of Sentinel-1A data used for monitoring the Yellow River Delta wetlands.

Sensor Product Level Orbit direction Polarization Incidence angle(°) Path Resolution(m)

Sentinel-1A GRD Ascending VH/VV 38.9 69 10×10
Sentinel-1A SLC Ascending VH/VV 38.9 69 2.3×13.9
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from 2018 to 2021. Finally, we analyzed the wetland types in the
Yellow River Delta from 2018 to 2021 and focused on the spatio-
temporal evolution of the invasive species S. alterniflora. The flow
chart of the method studied in this paper is shown in Figure 2,
which mainly includes the acquisition of annual mean
backscattering characteristics, acquisition of annual mean
coherence characteristics, decision tree construction, wetland
classification, accuracy verification, area statistics of wetland
ground object types, and analysis of spatio-temporal evolution
of S. alterniflora.

Annual Mean Backscattering and
Coherence Characteristics
(1) Annual Mean Backscattering Characteristics
The SAR backscattering coefficient is mainly related to the
ground object surface roughness, ground humidity, and terrain
(Schmugge, 1983; Hu et al., 2021). The backscattering coefficient
of Sentinel-1 satellite mainly depends on the ground and salt
marsh canopy backscatter intensities since the terrain of the
coastal zone is mainly flat and terrain correction was performed
during data pre-processing (Bouman and Hoekman, 1993). First,
28 dual-polarization Sentinel-1A GRD images were preprocessed
as fol lows Bouman and Hoekman, 1993 to obtain
backscattering characteristics:
Frontiers in Marine Science | www.frontiersin.org 5
① SAR image registration. The purpose is to make the image
size consistent, and remove geographical deviation. This is
to facilitate the subsequent mean processing of images.
Cross-correlation method is used for registration
(Jiang, 2013).

② SAR image filtering. The purpose is to remove the influence
of speckle noise on the backscattering coefficient in SAR
images as much as possible and the filtering method uses
refined Lee filtering (Lee, 1981).

③ SAR radiometric calibration. The pixel gray value (DN) of
the radar image is converted into the backscattering
coefficient (s0) and the conversion formula (1) is as
follows:

s i,jð Þ0dB=
DN2

ij

A2 (1)

The subscript ij refers to the position of pixel in the image, where
i is row and j is column. A is the radiometric calibration
parameter of Sentinel-1A.

④ Geocoding. Each pixel is converted from SAR image
coordinate system to World Geodetic System 84
(WGS84) geographic coordinate system.
FIGURE 2 | Overall technical flow chart used for monitoring the wetland in the Yellow River Delta.
June 2022 | Volume 9 | Article 940342
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After the above processing was completed, a total of 56
images of backscattering coefficient under VH and VV
polarization was obtained. In order to reflect the average
distribution of ground objects in the whole year of 2018 and
eliminate the influence of noise, the 28 VH backscattering
coefficient maps and 28 VV backscattering coefficient maps
were averaged respectively, to obtain the annual mean
backscattering coefficients maps under VH polarization and
VV polarization, as shown in Figures 3A, B. Since it cannot
effectively distinguish the ground objects completely, only
relying on a single annual mean backscattering coefficient sVH
and sVV , the two radar indices SARsub and SARdiv about the
Frontiers in Marine Science | www.frontiersin.org 6
backscattering coefficient of dual-polarization are established by
referring to the derived parameters SARdiff (Veloso et al., 2017)
and SARNDVI (Hu et al., 2021). Compared with the parameter
SARdiff, the parameter SARsub can make the value of most ground
objects greater than 0, which can be better distinguished from
sVH and sVV; Compared with the parameter SARNDVI, the
parameter SARdiv makes the calculated value of dual-
polarization backscattering coefficient of different ground
objects not between 0 and 1, which can expand the range of
value. This improves the distinction of different ground object
types in wetlands and facilitates the threshold division in
classification. The newly constructed formula SARsub and
A B

D

E F

C

FIGURE 3 | Annual mean backscattering and coherence maps of the study area. (A) is the annual mean backscattering coefficient map under VH polarization;
(B) is the annual mean backscattering coefficient map under VV polarization; (C) is the SARsub map according to the formula (2); (D) is the SARdiv map according to
the formula (3); (E) is the annual mean coherence coefficient map under VH polarization; and (F) is the annual mean coherence coefficient map under VV polarization.
All legends are marked in the lower right corner of the figures.
June 2022 | Volume 9 | Article 940342
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SARdiv are shown in (2) and (3):

SARsub=−SARdiff=sVV−sVH (2)

SARdiv=−
1

 SARNDVI
=
sVH+sVV

sVH−sVV
(3)

Where,sVH represents the annual mean backscattering
coefficient under VH polarization; sVV represents the annual
mean backscattering coefficient under VV polarization. The unit
of SARsub SARsub is dB. SARdiv is dimensionless value.

According to the established radar indices, the SARsub map
and SARdiv map were calculated based on the annual mean
backscattering coefficients maps of VH polarization and VV
polarization, as shown in Figures 3C, D.

(2) Annual Mean Coherence Characteristics
Coherence (ranging between 0-1) is used to reflect the quality of
interferogram. It is high if scatters remain unchanged and it is low
if there is significant change in the scattering medium (Dammann
et al., 2018; Wang et al., 2021b). For 16 dual-polarization Sentinel-
1A SLC images after registration, Differential Interferometric
Synthetic Aperture Radar (DInSAR) (Ou et al., 2018) was
performed on every two scenes with adjacent dates and a total
of 15 VH coherence maps and 15 VV coherence maps were
acquired. The image before the date was the master image and the
image after the date was the slave image. The temporal baseline of
interferometric pairs was 12-36 days. The coherence coefficient is
calculated according to the following formula (4) (Seymour and
Cumming, 1994; Liu et al., 2016):

g=
E S1S

∗
2f g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E S21j jf g

p
E S22j jf g (4)

Where S1and S2 represent, respectively, two SLC complex images
after registration; E{.} represents mathematical expectation; and *
represents complex conjugate operator.
Frontiers in Marine Science | www.frontiersin.org 7
The same average operation is performed for the coherence
coefficient maps to obtain the annual mean coherence map. The
annual mean coherence maps under VH and VV polarization are
shown in Figures 3E, F.

Analysis of Eigenvalues of Different
Ground Object Types
Several Region of Interest (ROI) samples were established for
statistical analysis of features of different ground object types. The
selection of ROI was based on Google Earth images, GF-2 optical
images, Sentinel-2 optical images, and study results of other
scholars (Feng et al., 2019; Wang et al., 2022). Five types of
ground object samples were selected in this study, including S.
alterniflora, P. australis, Chinese tamarisk (C. tamarisk), tidal flats
(T. flats), and water. A total of 340 ROI samples were selected. 70%
of these samples were used for statistics and 30% of these samples
were used for validation. The number of statistical samples was as
follows: 56 S. alterniflora, 42 P. australis, 35 C. tamarisk, 84 T. flats,
and 21 water. The number of validation samples was as follows: 24
S. alterniflora, 18 P. australis, 15 C. tamarisk, 36 T. flats, and 9
water. Figure 4 shows the sample distribution. The distribution of
238 statistical samples is shown in Figure 4A and the distribution of
102 verification samples is shown in Figure 4B. The background is
Sentinel-2 true color image and the imaging time is July 16, 2018.
Sentinel-2 is the basis for samples selection but it is not the only one.

The statistical method was the mean value method, that is, we
calculated themean value of backscattering coefficients or coherence
of all ROI in the same object samples. The mean value of sVH, sVV,
SARsub, SARdiv, gVH, and gVV of five ground objects types in 2018
were obtained, as shown in Figures 5A–D. Figure 5A represents the
mean and standard deviation of backscattering coefficients at VH
and VV polarization sVH and sVV . Figures 5B, C represent the
mean and standard daeviation of the constructed radar indices
SARsub and SARdiv , respectively. Figure 5D shows statistical
coherence gVH and gVV. The mean and standard deviation of all
statistical samples for every object are labeled in the figure.
A B

FIGURE 4 | The distribution of samples. The background is the Sentinel-2 true color image, and the imaging time is July 16, 2018. (A) is the distribution of the
statistical samples; (B) is the distribution of the verification samples.
June 2022 | Volume 9 | Article 940342
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Establishing the Decision Tree
Through the analysis of Figures 5A, B, it can be found that the
annual mean backscattering coefficients of water and other
ground objects differ greatly. Then they can be easily
distinguished from the annual mean backscattering coefficients
under VH and VV polarization. Under VH polarization, the
annual mean backscattering coefficients of S. alterniflora, P.
australis and C. tamarisk are similar. Through the analysis of
Figure 5C, the annual mean backscattering coefficients of all
objects under VV polarization are relatively similar except water.
This indicates that it cannot effectively distinguish ground
objects only using VH and VV backscattering coefficients.
Through the analysis of Figure 5D, the value of S. alterniflora
and P. australis under the radar index SARsub is the smallest, and
the relative difference with other ground objects is the greatest,
while the value of T. flats is obviously greater than other ground
objects. Although the value of C. tamarisk is close to water, the
water has already been extracted in the first step, so C. tamarisk
and T. flats can be extracted. The difference between S.
alterniflora and P. australis under the radar index SARdiv is
further magnified, and this can make them easy to distinguish.
According to the above principles, the median value of the
statistical mean of each two ground objects is taken as the
threshold value and the decision tree is established according
to the median value.

However, there are some limitations to the ground object
types extraction process. For a single index or parameter, there is
Frontiers in Marine Science | www.frontiersin.org 8
a certain contingency in the threshold division principle of
median value, which may cause the reduction of classification
accuracy when only relying on a single index to classify ground
objects. Coherence differences can provide help to solve this
problem. S. alterniflora grows in the humid coastal salt marsh
and its coherence is quite different from that of vegetation in
relatively dry areas (such as P. australis and C. tamarisk).
Although it is difficult to distinguish all ground objects only
based on coherence because some ground objects have similar
coherence values, it can be introduced into decision tree as
another index to distinguish S. alterniflora to supplement the
omission of S. alterniflora extraction. S. alterniflora was easily
confused with water when only relying on coherence to
distinguish but water could be well extracted by the annual
mean backscattering coefficient. Therefore, the distribution
range of S. alterniflora can be obtained after water is extracted.
We classified water and S. alterniflora into one category
in Figure 6 . Through analyzing Figure 6 , they are
distinguished from other ground objects only by the coherence
characteristics under VH and VV polarization and the threshold
is set as gVH < 0.32 and gVV < 0.36.

According to the characteristics of selected samples, a decision
treefor monitoring the ground object types in the Yellow River
Delta wetlands was established. Since water has been extracted in
the first step of the decision tree, when the backscattering
coefficient and coherence are used to extract S. alterniflora, there
is no need to set the lower limiting value of coherence threshold.
A B

DC

FIGURE 5 | Mean and standard deviation of characteristic parameters of five objects through statistical analysis. (A) is the mean and standard deviation of VH and
VV backscattering coefficients; (B) is the mean and standard deviation of radar index SARsub; (C) is the mean and standard deviation of radar index SARdiv; (D) is the
mean and standard deviation of VH and VV coherence.
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When gVH < 0.32 or SARdiv >7.4, the ground object is classified as
S. alterniflora. Similarly, the difference of coherence can also
provide help to solve the problem of misclassification and
omission between C. tamarisk and T. flats. The median
coherence between C. tamarisk and T. flats is selected as the
distinguishing index. When gVH <0.38, the ground object is
classified as T. flats. Figure 7 shows the constructed decision
tree, where the black box represents the annual mean
backscattering coefficient and the constructed radar index
threshold setting and the red box represents the annual mean
coherence threshold setting.

Multiple Temporal Classification
In order to show the advantages of the proposed method, the
accuracy of the classification results of the proposed decision tree
is compared with that of multi-temporal classification. It has
become one of the important methods of ground object
classification in the field of SAR remote sensing to make use of
multiple temporal SAR images for pseudocolor synthesis and
supervised classification by color difference of pseudocolor
images (Lin and Perissin, 2018; Wang et al., 2018; Zhang et al.,
2021). 16 Sentinel-1A GRD data and 16 Sentinel-1A SLC data
with VH polarization were selected and the imaging time of GRD
data and SLC data were consistent. The time series
Frontiers in Marine Science | www.frontiersin.org 9
backscattering coefficient and coherence curves of different
ground objects were drawn based on statistical samples, as
shown in Figures 8A, B. In the time series coherence curve,
the horizontal axis represents the date of the slave image of
interferometric pairs, that is, January 22 represents the
acquisition date of slave image of interferometric pairs between
January 10 and January 22.

In the statistics of coherence of different ground objects, we
found that there were great differences between the coherence of
objects from January to April and from November to December.
Especially in winter, the coherence of S. alterniflora was
obviously different from others. From May to October, the
coherence of all ground objects kept about 0.25, except for C.
tamarisk. Based on the backscattering coefficient analysis, S.
alterniflora was easily distinguished from other ground objects
from January to April, while it was easily confused with other
ground objects at other times. In June, in addition to S.
alterniflora, differences from each other were relatively easy to
distinguish. Based on the above analysis, three channels were
selected for pseudocolor synthesis to achieve better classification
effect. The channels were R (21/06/2018 VH backscattering),
G (18/11/2018 VH backscattering) and B (coherence generated
by interferometric pairs between 18/11/2018 to 30/11/2018). The
synthetic pseudocolor image is shown in Figure 8C.
FIGURE 7 | The decision tree constructed for monitoring the wetland ground types in the Yellow River Delta. Note that the black unfilled box represents the
threshold setting of the annual mean backscattering coefficient and the constructed radar index, while the gray-filled red box represents the threshold setting of the
annual mean coherence.
A B

FIGURE 6 | Coherence classification map. Water and S. alterniflora were classified into one category, and they were distinguished from other ground objects by
coherence. (A) is the coherence classification map under VH polarization, when the threshold is set as gVH < 0.32, the ground object is classified as water or
S. alterniflora; when the threshold is set as gVH > 0.32, the ground object is classified as others; (B) is the coherence classification map under VV polarization, when the
threshold is set as gVV < 0.36, the ground object is classified as water or S. alterniflora; when the threshold is set as gVV < 0.36, the ground object is classified as others.
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Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is
a kind of machine learning. The SVM firstly normalized the data
and then the data to be classified is mapped to the factor space of
high dimension to find the optimal decision boundary and divide
the data into different categories. SVM is widely used in wetland
vegetation monitoring because it can better deal with the
imbalance of wetland vegetation samples (Ahmed et al., 2021;
Zhang and Lin, 2022). In this paper, SVM method is used to
classify the synthetic pseudocolor images.
RESULTS

Classification Results
To achieve an analysis of ground object type changes in the
Yellow River Delta wetlands from 2018 to 2021, the wetland
classification results of the study area during that time were
obtained based on the decision tree constructed in this paper, as
shown in Figures 9A–D. Red, light green, dark green, brown,
and blue represent S. alterniflora, P. australis, C. tamarisk, T.
flats, and water, respectively. According to the classification
results, S. alterniflora was distributed in large numbers on both
sides of the estuary of the Yellow River and there were many
interlacing areas with P. australis. From 2018 to 2021, the
distribution range of ground objects in the Yellow River Delta
has changed greatly in different years, especially the S.
alterniflora and P. australis.
Frontiers in Marine Science | www.frontiersin.org 10
Accuracy Verification
The classification result of multiple temporal classification in
2018 is shown in Figure 10A. The classification result of the
constructed decision tree in 2018 is shown in Figure 10B.
Verification samples were used to establish confusion matrix
(Townsend, 1971) and the result of multi-temporal classification
was compared with the result from the decision tree constructed
in this paper, as shown in Table 2.

As shown in Table 2, the overall accuracy and Kappa
coefficient of multi-temporal classification were 79.512% and
0.734. The overall accuracy and Kappa coefficient of decision tree
classification were 89.504% and 0.861. Compared with the multi-
temporal classification result, the overall accuracy of the decision
tree classification result in this paper was improved by 9.992%
and the Kappa coefficient was improved by 0.127. The decision
tree constructed in this paper has advantages in all kinds of
ground objects except C. tamarisk. In the multi-temporal
classification result, the classification accuracy of P. australis
was very low and there was a lot of confusion between P. australis
and S. alterniflora, which caused a large error in the accurate
monitoring of the invasion of S. alterniflora in the Yellow River
Delta wetlands. In this paper, the monitoring accuracy of S.
alterniflora and P. australis improved by 8.95% and 30.14%,
respectively. In addition, there were many speckles in the multi-
temporal classification result, which were also classified into
different objects, resulting in accuracy loss. This was due to the
influence of noise, while the new method in this paper avoided
this phenomenon.
A B

C

FIGURE 8 | Multi-temporal classification preprocessing. (A) is statistical time series coherence curve in 2018; (B) is statistical time series backscattering coefficient
curve in 2018; (C) is multi-temporal composite pseudocolor image. Note that the horizontal axis represents the date of the slave image of interferometric pairs, that
is, January 22 represents the acquisition date of slave image of interferometric pairs between January 10 and January 22.
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To verify the advantages of the proposed method, we compared
the classification accuracy with the wetland classification results of
other scholars. (Zhang et al., 2019) used L-band ALOS PALSAR
satellite, combined with automatically selected samples and
manually selected samples, and adopted the method of random
forest classification to conduct wetland monitoring, achieving an
accuracy of 89.79%. However, L-band SAR data are relatively few
Frontiers in Marine Science | www.frontiersin.org 11
and the C-band SAR data in this paper can also achieve the same
accuracy level. Wang et al. (2022) used Sentinel-2 optical images
and full-polarimetric GF-3 SAR images tomonitor wetlands and the
overall accuracy was 86.18%. In this paper, higher accuracy was
obtained using only Sentinel-1A data. Canisius et al. (2019) used the
intensity and coherence of RADARSAT-2 to classify wetlands with
an overall accuracy of 86%. In this paper, the combination of the
A B

FIGURE 10 | Classification results of different methods in 2018. (A) is the multi-temporal classification results based on SVM method. (B) is the classification results
based on constructed decision tree.
A B

DC

FIGURE 9 | Classification results of the Yellow River Delta wetlands from 2018 to 2021 based on the decision tree constructed in this paper. (A) is classification
result in 2018; (B) is classification result in 2019; (C) is classification result in 2020; (D) is classification result in 2021.
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backscattering coefficient and coherence can achieve better
classification results. Therefore, the classification method
proposed in this paper has some advantages and shows better
accuracy compared with some relevant studies.

DISCUSSION

Optimal Coherence Characteristics for
Wetland Classification
To explore the difference in the contribution of coherences under
different polarization to the classification accuracy, the
Frontiers in Marine Science | www.frontiersin.org 12
classification results were obtained in four cases, including no
coherence, only introducing VH coherence, only introducing VV
coherence, and introducing both VH and VV coherence, as
shown in Figures 11A–D. Here, S. alterniflora is taken as an
example to illustrate the establishment of decision tree under
different polarization coherence is introduced. When gVH <0.32
or SARdiv > 7.4, the ground object is classified as S. alterniflora
under the condition when only introducing the VH coherence.
When gVV <0.36 or SARdiv >7.4, the ground object is classified as
S. alterniflora under the condition when only introducing the VV
coherence. When gVH <0.32, or gVV < 0.36, or SARdiv > 7.4, the
A B

DC

FIGURE 11 | Classification results of the Yellow River Delta wetlands in 2018. (A) is the classification results with no coherence; (B) is the classification results with only
introducing VH coherence; (C) is the classification results with only introducing VV coherence; (D) is the classification results with introducing both VH and VV coherence.
TABLE 2 | The confusion matrix of multi-temporal classification and decision tree classification.

Multi-temporal classification(%) Decision tree classification(%)

Types S. alterniflora P. australis C. tamarisk Water T. flats S. alterniflora P. australis C. tamarisk Water T. flats

S. alterniflora 81.47 33.37 8.39 0.01 3.88 90.42 16.75 1.58 0.01 0.02
P. australis 8.59 48.81 0.31 0.00 0.59 7.14 78.95 34.08 0.00 0.53
C. tamarisk 7.35 14.02 74.68 0.00 5.29 0.02 1.12 47.90 0.00 4.33
Water 0.00 0.00 0.00 98.49 9.44 0.47 0.00 0.11 99.97 0.68
T. flats 2.59 3.80 16.62 1.50 80.80 1.95 3.17 16.33 0.02 94.45
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Overall Accuracy 79.512 89.504
Kappa Coefficient* 0.734 0.861
June
 2022 | Volume
 9 | Article
*Kappa coefficients are not percentages.
The bold value is the evaluation of the overall classification. The higher the value, the better the effect.
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ground object is classified as S. alterniflora under the condition
when introducing the coherence of VH and VV polarization.
Figure 11 shows that whether only introducing VH coherence,
only introducing VV coherence, or introducing both VH and VV
coherence, these classification results all changed greatly and the
degree of distinction between different ground objects is greater.
The red area on both sides of the Yellow River estuary is denser
and more uniform than the classification results based only on
the backscattering coefficient, which is more consistent with the
real distribution of S. alterniflora. This shows that the
introduction of annual mean coherence can significantly
improve the extraction accuracy of wetland ground object
types. In addition, it is unrealistic for a large number of C.
tamarisk to be distributed on the T. flats in Figure 11A. In
Figures 11B–D, many T. flats which are misclassified as C.
tamarisk have also been corrected.

Based on the classification results and the verification
samples, the confusion matrix was established and the
classification accuracy of the decision tree was obtained by
only relying on the annual mean backscattering coefficient of
dual-polarization and the annual mean coherence coefficient of
different polarization, as shown in Table 3. According to Table 3,
the overall accuracy and Kappa coefficient of the classification
after introducing the coherence under any polarization were
higher than those based only on the backscattering coefficient.
When coherence was not introduced, the overall accuracy of
classification was 80.650%, and the Kappa coefficient was 0.752.
When only introducing VH coherence, the overall accuracy of
classification was 89.504%, and it improved by 8.854%. The
Kappa coefficient was 0.861 and it improved by 0.109. When
only introducing the coherence under VV polarization, the
overall accuracy of classification was 87.257% and it improved
Frontiers in Marine Science | www.frontiersin.org 13
by 6.607%. The Kappa coefficient was 0.831 and it improved by
0.079. When introducing both the coherence of VH and VV
polarization, the overall accuracy of classification was 88.944%
and it improved by 8.294%. The Kappa coefficient was 0.852 and
it improved by 0.100.

Since P. australis and S. alterniflora are prone to
misclassification in optical images or UAV images, we focused
on their accuracy changes. The results showed that the
classification accuracy of S. alterniflora was the highest when
introducing VH and VV coherence and the producer accuracy
improved by 29.04% while the user accuracy decreased by 2.91%.
The producer accuracy of P. australis decreased by 16.21% while
the user accuracy improved by 22.69%. In general, the use of
coherence played a positive role in the classification of
P. australis and S. alterniflora. Although the classification
accuracy of S. alterniflora was the highest when introducing
both VH and VV coherence, the overall classification accuracy
was the best when only introducing VH coherence. Therefore, in
the decision tree classification of the study area in this paper
when only introducing VH coherence. In the case of only
introducing VH coherence, the producer accuracy of S.
alterniflora improved by 25.72% and the user accuracy
decreased by 1.60%. The producer accuracy of P. australis
decreased by 9.77% and the user accuracy improved by 19.43%.

Although the coherence significantly improved the overall
accuracy and the classification accuracy of S. alterniflora, the
classification accuracy of C. tamarisk was still relatively low. This
is mainly because the coefficient of suaeda and C. tamarisk in the
statistical process of radar index is very close, and the
distribution of the suaeda area is small and scattered. Suaeda
was neglected in classification in this paper, which also resulted
in low classification accuracy of C. tamarisk.
TABLE 3 | The classification accuracies with combining different polarization coherence.

Land types Prod. Acc User. Acc Overall Accuracy(%) Kappa Coefficient

No coherence S. alterniflora 64.70 96.91 80.650 0.752
P. australis 88.72 33.06
C. tamarisk 56.46 52.24
T. flats 85.78 97.16
Water 99.97 98.72

Introduce
VH coherence

S. alterniflora 90.42 95.31 89.504 0.861
P. australis 78.95 52.49
C. tamarisk 47.90 76.57
T. flats 94.45 91.90
Water 99.97 98.72

Introduce
VV coherence

S. alterniflora 88.68 95.58 87.257 0.831
P. australis 80.19 50.37
C. tamarisk 33.07 62.37
T. flats 92.50 87.42
Water 99.97 98.72

Introduce VH and VV coherence S. alterniflora 93.74 94.00 88.944 0.852
P. australis 72.51 55.75
C. tamarisk 31.06 75.95
T. flats 95.68 87.25
Water 99.97 98.72
June 2022 | Volum
The bold value is the evaluation of the overall classification. The higher the value, the better the effect.
e 9 | Article 940342

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. Wetland Classification
Competitive Analysis of P. australis
and S. alterniflora
The area for this study was about 505.35 km2 and the water area is
approximately about 220 km2 to 230 km2. During 2018-2021, there
were no large-scale artificial activities like reclaiming the lake and
mining ponds therefore, the area of water remained stable. The
invasion of S. alterniflora caused damage to native species and P.
australis was the specie that was most seriously affected by the
invasion. Therefore, the distribution areas and their respective
proportions of S. alterniflora and P. australis during 2018-2021
were statistically analyzed in this paper. The statistical graph of area
changes and proportion changes are shown in Figures 12A, B.

According to Figure 12, the area of S. alterniflora in the study
area in 2018 was 34.53 km2, much larger than 27.86 km2 of P.
australis. In 2019, the area of S. alterniflora was 35.05 km2, which
basically remained stable. During this period, the P. australis
achieved its expansion to 35.29 km2 by mainly extending to T.
flats, and the proportion of S. alterniflora and P. australis had also
become almost the same. In 2020, as the invasion of S. alterniflora
received more attention, artificial removal methods such as mowing
and plowing had begun to appear in the Yellow River Delta and the
area of S. alterniflora had decreased significantly. However, because
S. alterniflora intersects with P. australis in many places, many P.
australis were also removed during the large-scale removal process,
which caused a simultaneous reduction in the area of P. australis
and S. alterniflora. In 2021, the area of S. alterniflora returned to the
level in 2018, reaching 34.81 km2. However, the area of P. australis
did not rise again and was still at 22.36 km2. The area proportion of
S. alterniflora had increased significantly, even exceeding that in
2018. S. alterniflora gradually occupied the absolute advantage in
the competition for coastal wetlands.

In order to verify the reliability of the classification results in
this paper, the results were compared to that of other scholars. In
this study, S. alterniflora almost occupied the entire coastline on
both sides of the Yellow River estuary in 2018, covering a large
area. This is consistent with the classification results of Fu et al.
(2021) and Wang et al. (2022). According to the classification
results in 2019, the distribution of S. alterniflora changed and the
Frontiers in Marine Science | www.frontiersin.org 14
area of S. alterniflora decreased. It was replaced by P. australis
along both coasts of the Yellow River estuary, which was
consistent with the classification results of Hu et al. (2021) and
Li et al. (2022). In 2020, the number of S. alterniflora obviously
decreased, especially on the west side of the Yellow River estuary.
P. australis expanded to the central area of S. alterniflora, which
was similar to the classification results of Tu et al. (2021).

The growth cycle of S. alterniflora is different from that of
other native vegetation. It starts to germinate in March and
mature from August to December. P. australis begin to
germinate from March to April, bloom from July to August,
and mature from September to October. The different growth
cycles make it difficult to control local S. alterniflora. When the
P. australis has withered, S. alterniflora is still in the mature
stage, occupying the area of P. australis and continuing to
expand. However, the germination period of P. australis was
similar to S. alterniflora, and slightly later than S. alterniflora. As
time goes on, more P. australis invade the S. alterniflora (Lin
et al., 2015; Zeng et al., 2020). Therefore, artificial management
methods are urgently needed to prevent the occurrence of
this phenomenon.

At present, the removal of S. alterniflora—an invasive species in
the Yellow River Delta—is mainly carried out by mowing and
plowing. Although this can quickly reduce the S. alterniflora on the
surface in a short period of time (such as in 2020) to make it
disappear from the image, due to the long rhizomes, strong survival,
and reproduction ability, it is difficult to completely eliminate it. In
addition, there are always numerous previously propagated S.
alterniflora seeds in the T. flats and the process of mowing and
plowing has little effect on the destruction of the seeds, which also
led to the regrowth of S. alterniflora in the second year. Due to the
lack of a natural enemy, its area is back to higher levels. According
to the statistical graph, the area of S. alterniflora in 2021 is even
higher than that in 2018, indicating that the effect of removal work is
not sustainable. Due to its strong invasive ability, S. alterniflora
occupied the original living space of P. australis on the T. flats after
the P. australiswere removed. Therefore, it is still necessary to adopt
more effective methods to manage S. alterniflora in the study area to
BA

FIGURE 12 | Statistical graph of S. alterniflora and P. australis from 2018 to 2021. (A) is the area statistical graph; (B) is the proportion change graph.
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maintain the healthy development of the Yellow River Delta
wetlands system.

Spatio-Temporal Evolution of
S. alterniflora
Although the area difference between 2018 and 2021 was not
significant, the annual distribution of S. alterniflora remained
significantly different over the four years of evolution. To better
study the growth trend of S. alterniflora and its influence on
other ground objects in the Yellow River Delta, we obtained the
land use type conversion map between S. alterniflora and other
ground objects in the three periods of 2018-2019, 2019-2020, and
2020-2021, as shown in Figure 13.

According to Figure 13, between 2018-2019, much of the area
formerly occupied by S. alterniflora on the north shore of the
estuary coast of the Yellow River became occupied by P. australis
(marked in red). But in the middle of the Yellow River on both
sides, S. alterniflora began to appear and the distribution area is
large, indicating that S. alterniflora began to occupy other areas;
From 2019 to 2020, due to the gradual artificial removal of S.
alterniflora, the area occupied by S. alterniflora began to reduce,
especially east of the Yellow River estuary, where a large number
of S. alterniflora were converted to P. australis, indicating that
the governance effect was relatively successful in a short period.
Between 2020-2021, S. alterniflora reappeared in several areas,
and Figure 13 shows the blue area as very densely distributed on
the east and west sides of the Yellow River estuary and the
northwest side of the study area. More seriously, S. alterniflora
also began to appear on isolated islands along the southern coast
of the study area. As time goes by, S. alterniflora can easily spread
to the southern coast, causing a greater risk of invasion.
Frontiers in Marine Science | www.frontiersin.org 15
The reliability of the evolutionary analysis in this paper is
verified by combining the results of other scholars. According to
the monitoring results in this paper, the area of S. alterniflora
increased in 2018-2019, which was basically consistent with the
monitoring results of Wang et al. (2021). In addition, the
evolution process of S. alterniflora in this paper is basically
consistent with the extraction results of S. alterniflora in
different years by other scholars (Wang et al., 2022; Fu et al.,
2021; Tu et al., 2021; Li et al. 2022), so the reliability of
monitoring results in this paper can be confirmed.

The total area of S. alterniflora remained stable but the
distribution changed significantly. The distribution of S.
alterniflora from concentrated distribution along both sides of
the Yellow River estuary in 2018 to multiple distributions in 2021
posed a challenge to the local ecological protection. To explore
the invasion status of S. alterniflora to other ground objects, the
transfer matrix between S. alterniflora and other ground objects
from 2018 to 2021 was calculated, as shown in Table 4.

According to Table 4, from 2018 to 2021, P. australis was the
most seriously invaded of all ground objects, with 10.485 km2 of
P. australis being invaded by S. alterniflora. Meanwhile, 5.627
km2 of T. flats was occupied by S. alterniflora. In conclusion,
although the total area of S. alterniflora remained stable, it still
caused great damage to other native species due to its super
reproductive ability and lack of natural enemy in China.

CONCLUSIONS

Inorder to solve theproblemof lowaccuracyofwetland classification
by only relying on radar backscattering coefficient, this paper
constructed a decision tree classification method combined time
June 2022 | Volume 9 | Article 940342
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FIGURE 13 | Land use type conversion map. The time corresponding to each map is marked at the bottom of the figure and the legend of ground object
conversion type is marked at the bottom center of the figure.
TABLE 4 | The land use type transfer matrix from 2018 to 2021.

Type P. australis (km2) C. tamarisk (km2) T. Flats (km2) Water (km2

From S. alterniflora to others 3.872 0.272 2.194 0.291
From others to S. alterniflora 10.485 0.901 5.627 0.385

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. Wetland Classification
series SARbackscattering andcoherence characteristics. Basedon the
annual mean VH and VV backscattering characteristics, the
constructed radar backscattering indices SARsub and SARdiv and the
annual mean VH coherence characteristics, a decision tree suitable
for extracting the wetland types was established to monitor the
ground object types in the Yellow River Delta wetlands from 2018
to 2021. In addition, the wetland types were analyzed and the spatio-
temporal evolution of S. alterniflora was emphatically discussed.
Through this study, the following valuable conclusions can
be obtained:

(1) The overall accuracy and Kappa coefficient of the proposed
method are 89.504% and 0.860. Compared with the multi-
temporal classification by SVM classifier, the overall accuracy
and Kappa coefficient are improved by 9.992% and 0.127.
Except for C. tamarisk, it can obtain a higher precision for
other ground object types. The monitoring accuracy of S.
alterniflora and P. australis improved by 8.95% and 30.14%,
respectively. In addition, the proposed method avoids the
influence of noise during multi-temporal classification and
the result is closer to reality.

(2) The contribution of coherence under different polarization to
wetland classification accuracy is discussed. Compared with
only using the annual mean backscattering coefficient, the
overall accuracy of decision tree classification of the Yellow
River Delta wetlands, with introducing the annual mean VH
coherence, improved by 8.854% and the Kappa coefficient
improved by 0.109. The producer accuracy of S. alterniflora
improved by 25.72% and user accuracy decreased by 1.60%.
The producer accuracy of P. australis decreased by 9.77% and
user accuracy improved by 19.43%. Although it can achieve
better classification results of S. alterniflora when introducing
the annual mean VH and VV coherence, the overall accuracy
is lower than only introducing the VH coherence. Therefore,
it is more suitable for wetland classification in the Yellow
River Delta when only introducing VH coherence.

(3) The wetland classification results of the Yellow River Delta from
2018 to 2021 were obtained by using the constructed decision
tree, and the spatio-temporal evolution analysis of wetland types
was carried out. It was concluded that the area of S. alterniflora
remained stable in 2018-2019, about 35 km2, and decreased
significantly to 28.68 km2 in 2020. But in 2021, it increased again
to the area of 2018. This suggested that the removal work of S.
alterniflora was not sustainable. In addition, according to the
land use type conversion map and transfer matrix of S.
alterniflora, the invasion of S. alterniflora has seriously affected
the living space of P. australis. From 2018 to 2021, 10.485 km2 of
P. australis was converted to S. alterniflora, and 5.627 km2 of
Frontiers in Marine Science | www.frontiersin.org 16
T.flats was occupied by S. alterniflora. More effective methods
are needed to eliminate S. alterniflora.

In this paper, the time series backscattering coefficients and
coherence are combined to obtain a classification result in Yellow
River Delta wetlands with higher accuracy than using only
backscattering coefficients. It provides a theoretical basis for
achieving a higher accuracy of wetland classification using SAR
data (Sentinel-1A of different product levels). At the same time,
through the detailed evolution analysis of the Yellow River Delta
wetland, the relevant results can provide a reference for local
wetland protection. However, this paper only divided five kinds
of ground objects and ignored the ground objects such as suaeda
and buildings, so the results are not detailed enough. In addition,
the classification accuracy of C. tamarisk in this paper is low and
more effective methods should be explored to solve this problem
in the future.
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