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Population level variation in
reproductive development and
output in the golden kelp
Laminaria ochroleuca under
marine heat wave scenarios

Fiona-Elaine Strasser1†, Luis Matos Barreto1*†, Soukaina Kaidi2,
Brahim Sabour2, Ester A. Serrão1, Gareth A. Pearson1*

and Neusa Martins1
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Thermal tolerance is often interpreted as a species-wide thermal niche in the

absence of studies focusing on the adaptive potential of populations to exhibit

differential thermal tolerance. Thus, considering intraspecific thermal plasticity,

local adaptation or both between populations along distributional

gradients when interpreting and predicting species responses to warming is

imperative. Removing the effect of environmental histories by raising kelp

gametophyte generations in vitro under common garden conditions allows

unbiased comparison between population-specific adaptive variation under

different environmental conditions. Following this approach, this study aims to

detect (potentially) adaptive differentiation in microscopic life-stages

(gametophytes) between populations of a temperate forest forming kelp,

Laminaria ochroleuca from locations with distinct thermal conditions.

Gametophytes from four geographically distinct populations were subjected

to different temperature treatments (17, marine heat waves of 23, 25 and 27°C)

and gametophyte survival during thermal stress as well as reproductive success

and photosynthetic responses during recovery were investigated. Intraspecific

variation in resilience and reproductive output to thermal stress was found in L.

ochroleuca; gametophytes from the most northern population (Brittany,

France) were the most thermally sensitive, with mortality onset at 23°C,

whereas mortality in the remaining populations was only apparent at 27°C.

Gametophytes from northern Spain and Morocco exhibited very low

reproductive success during recovery from 23 and 25°C. However, when

recovering from the highest thermal treatment (27°C) the reproductive

development and sporophyte output was higher than in the gametophytes

from France and Italy (Mediterranean). The population-specific responses of
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gametophyte resilience and reproductive success to temperature stress

suggest genetic differentiation in response to variation in local thermal regimes.
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Introduction

Species with extensive geographical ranges are not

homogeneous units, but rather a collection of conspecific

populations inhabiting distinct environmental regimes

(Linhart and Grant, 1996). Over evolutionary periods,

populations may exhibit intraspecific variation driven by local

thermal conditions (Valladares et al., 2014; King et al., 2018)

resulting in locally adapted populations, with specific fitness

advantages (e.g. thermal resilience, growth rate, etc.) that may

surpass the species average response (Denny, 2017). Among the

consequences of climate change, sudden and anomalous warm

thermal events such as marine heat waves (MHWs) have

drastically affected entire ecosystems (Garrabou et al., 2009;

Wernberg et al., 2012; Duarte et al., 2020) particularly in

warming hotspots, which may lead to population-specific

responses. Nonetheless, most studies investigating responses of

marine species to environmental stressors or models aiming to

predict geographical distributions under future climate

conditions, need to assume that tolerances are reflected solely

on a species-level in the absence of localized adaptation studies,

which can ultimately lead to the over- or under-estimated

impacts of climate changing conditions on biodiversity and

ecosystems (Bellard et al., 2012; Applebaum et al., 2014).

Kelp forests are predominantly composed of brown algae of

the order Laminariales (Dayton, 1985), dominating rocky shores

of the world’s temperate and cold-water marine ecosystems

(Steneck et al., 2002; Smale et al., 2019). These forests provide

a variety of ecosystem goods and services, either directly as a

source of food or medicinal products, or indirectly as biogenic

habitats for a variety of economically and ecologically important

marine species (Steneck et al., 2002; Teagle et al., 2017). As the

distribution and survival of habitat-forming algae is generally

determined by species thermal limits and seawater temperatures

(King et al., 2019), many kelp populations are severely

threatened by global warming and large-scale declines in their

abundance and range shifts have been reported worldwide

(Wernberg, 2021; McPherson et al., 2021; Anderson et al.,

2021). Habitat-forming algae such as kelps are good models to

study intraspecific variability due to their high dependence on

ocean temperatures, limited dispersal, strong spatial structuring

(King et al., 2018; Miller et al., 2019) as well as relatively reduced
02
connectivity which is facilitated by ocean currents and upwelling

regions acting as thermal refugia for local genetic diversity (e.g.

Coleman, 2013; Pereyra et al., 2013; Buonomo et al., 2016;

Lourenço et al., 2016; Lourenço et al., 2017). Additionally,

historical depth range shifts in Laminariales were found to

preserve and isolate ancient gene pools during warming

periods enabling long-term persistence and facilitating local

adaption (Graham et al., 2007; Santelices, 2007; Assis

et al., 2016).

Laminariales have a heteromorphic life cycle, alternating

between a microscopic haploid gametophyte and a macroscopic

diploid sporophyte life stage (Colin et al., 2003; Lane et al., 2006).

Although microscopic gametophytes show higher thermal

tolerance for growth and survival than the macroscopic

sporophytes, a lower and narrower temperature window is

required for successful reproduction between sexually mature

gametophytes (tom Dieck, 1992; Bartsch et al., 2013; Martins

et al., 2017). Therefore, temperature increases may delay

reproductive development (Martins et al., 2020), with negative

effects on kelp recruitment (Martins et al., 2017; Silva et al.,

2022). Microscopic gametophytes may remain vegetative under

unfavorable environmental conditions, acting as a “seed bank”

(tom Dieck, 1993; Carney and Edwards, 2010; Martins et al.,

2017; Silva et al., 2022) allowing the persistence of kelp

populations following significant sporophyte mortality, e.g.,

due to extreme climatic events (Ladah and Zertuche-Gonzalez,

2007; Barradas et al., 2011).

The genus Laminaria presents one of the most diverse

distribution ranges among kelp (Bolton, 2010; Rothman et al.,

2017) which is assumed to have led to higher speciation rates

compared to other genera and includes species that exhibit some

of the highest temperature tolerances among kelp (tom Dieck,

1992). Laminaria ochroleuca, the golden kelp, is a warm

temperate kelp species that can be found in the north-eastern

Atlantic. Its distribution ranges from the southern UK to

Morocco but also forms deeper populations in the Azores and

Mediterranean Sea (Birkett et al., 1998; Assis et al., 2009; Flores-

Moya, 2012; Ramos et al., 2016). Locally isolated biodiversity

hotspots of L. ochroleuca were discovered at lower latitudes,

exhibiting reduced connectivity as well as higher and unique

genetic diversity (Assis et al., 2018). However, the level of

population variability in thermal tolerance remains poorly
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understood for L. ochroleuca (but see Pereira et al., 2015). Thus,

this species with a distributional range covering different thermal

gradients provides an excellent model to investigate intraspecific

adaptive variation. Investigating intraspecific adaptive variation

to warming events is crucial in predicting the persistence of

foundation species along their distributional ranges (Pearman

et al., 2010) and therefore the fate of coastal communities and

ecosystems. However, distinguishing genetic variation among

populations from phenotypic short-term acclimation in species

is difficult. By removing the influence of environmental history,

common garden conditions allow us to investigate whether a

generation of individuals from distinct populations raised in the

same conditions exhibits different ecophysiological responses to

environmental stress, and therefore the existence of adaptive

differentiation rather than phenotypic plasticity.

This study aims to detect potential intraspecific adaptive

differentiation to extreme thermal conditions in the habitat-

forming kelp species L. ochroleuca. Using four populations

spanning distinct thermal regimes and broadly representing

the species distributional range in the NE Atlantic (NW

France, NW Spain, Morocco) and Mediterranean (Italy), we

compared the resilience and recovery capacity of gametophytes

to simulated MHWs. Gametophyte survival during thermal

stress as well as reproductive success and photosynthetic

responses during recovery were invest igated . The

gametophytes were raised in vitro under common garden

conditions from spores to remove the effect of environmental

histories (although epigenetic inheritance cannot be discounted

entirely, e.g., see Gauci et al., 2022), allowing comparison

between population-specific adaptive variation under different

environmental conditions. Inter-population variation in

response to simulated MHW focused on detecting adaptive

variation delivers fundamental insights into local marine

coastal ecology and evolution, which can potentially be

incorporated into models anticipating future vulnerability and

geographic range shifts of this foundation species under climate

change scenarios.
Materials and methods

Algal material

Mature specimens of Laminaria ochroleuca were collected in

Roscoff, France (FR, November 2018), the Strait of Messina, Italy

(IT, November 2019), Galicia, NW Spain (SP, May 2019) and El

Jadida, Morocco (MO, August 2019) by SCUBA diving or

snorkeling (see Table 1 for detailed sampling information,

Figure 1). These four populations of L. ochroleuca originate

from different latitudes and local habitat type (variable shallow

coastal [FR, SP, MO] versus deeper stable [IT] habitat) with

distinct local in situ temperatures (Table 1). The northernmost

population (FR) is locally exposed to maximum sea surface
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temperature (SST) of 16.35°C while the southernmost (MO) is

exposed to maximum SST of 23.19°C (Table 1, temperatures

were obtained from Bio-Oracle (http://www.bio-oracle; Assis

et al., 2017; supplementary material 1).

Two disks (2 cm Ø) were excised from reproductive tissue

(sorus) of each mature adult sporophyte and cleaned with dry

paper towel. The disks were placed into a Falcon tube with sterile

seawater and two glass slides and left overnight in darkness to

induce meiospore release. The seawater and the slides were then

transferred to Petri dishes and left to germinate. The male and

female gametophytes obtained from multiple L. ochroleuca

sporophytes per population (IT: 6 individuals; FR, SP, MO: 5

individuals) were maintained together in a vegetative state in

sterile half-strength Provasoli enriched seawater (PES; Provasoli,

1968, modifications: HEPES buffer instead of TRIS, double

concentration of Na2-glycerophosphate). The cultures were

maintained in climate-controlled chambers (Fitoclima, S600,

Aralab, Lisboa, Portugal) at 13°C under 3-6 µmol photons m-2

s-1 of fluorescent red light to prevent gametogenesis under a 16:8

h light:dark photoperiod (controlled via Fitolog400R software).

The culture medium was changed monthly, until the start of the

experiment (ca. 1-2 y). Sterile artificial seawater (Tropic Marin

Sea Salt, Dr. Biener, GmbH, Wartenberg, Germany) with 30-32

ppm salinity (hand refractometer ATAGO Co., Ltd) was used for

culture maintenance and all experiments.
Experimental setup

The gametophyte cultures were acclimated for two days at

15°C before the start of the experiment for a gradual temperature

increase. The same amount of gametophyte vegetative tissue

derived from multiple L. ochroleuca individuals were combined

per population, gently fragmented with a pestle and mortar,

sieved (stainless stell sieve with 100 µm mesh), and diluted in

sterile 10% PES to produce four stock solutions of gametophytes

with lengths of ≤ 100 µm. The density of each stock solution was

determined using an inverted microscope (100× magnification,

Zeiss Axio Observer D1, Carl Zeiss MicroImaging GmbH,

Göttingen, Germany) and the respective volume needed to

obtain ~500-600 gametophytes cm-2 was added to glass

beakers (5.5 cm diameter, 5.5 cm height) filled with 80 ml of

10% PES. Four replicate beakers were used per population and

thermal treatment (4 populations × 4 temperatures × 4

replicates = 64 beakers in total). The gametophytes were

allowed to settle and recover from the mechanical stress

induced by fragmentation at 17°C under 3-6 µmol

photons m-2 s-1 of red light for 5 days.

After this period, the gametophytes were transferred to each

heat wave (HW) treatment (with a maximum temperature of 23°C,

25°C and 27°C) for 11 experimental days or left under control

conditions at 17°C. To avoid gametophyte thermal shock and to

mimic natural temperature changes the temperature was gradually
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increased in the HW treatments from 17°C to each maximum

temperature at a warming rate of 2-3°C day-1. The maximum

temperatures of 25°C and 27°C were kept for 5 days (following

Hobday et al., 2016), while 23°C was kept over a period of 7 days.

After this HW peak, the temperatures were gradually decreased

back to 17°C again at a cooling rate of 2-3°C day-1, initiating a

recovery phase for the subsequent 29 days (see Figure 2 for detailed

experimental design). Experiments were conducted in temperature-

controlled waterbaths (one waterbath per thermal treatment; Huber

Variostat with Pilot ONE, Offenburg, Germany), provided with 20

mmol photons m-2 s-1 white LED light in a 16:8 h light:dark

photoperiod. Culture medium (10% PES, 30-32 ppm) was 50%

changed per beaker after 12 and 29 days. The irradiance of 20 mmol

photons m-2 s-1 and the control temperature of 17°C chosen were

reported as optimal conditions for L. ochroleuca gametogenesis

(Izquierdo et al., 2002). Whereas the sub-lethal and lethal

temperatures of 23°C, 25°C and 27°C for L. ochroleuca

gametophytes (tom Dieck, 1992) were used to test for

physiological and ontogenetic differences between populations.
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Gametophyte density

To assess the survival capacity of gametophytes after

simulated MHW, the density of combined male and female

gametophytes (gametophytes cm-2) was determined at day 0 and

38 (11 days of heat treatment + 27 days of recovery). The

number of gametophytes was quantified in a minimum of 70

fields of view per replicate using an inverted microscope

(100× magnification).
Photosynthetic performance

To assess the physiological status of gametophytes during

simulated MHW and subsequent recovery, maximum quantum

yield of PSII (Fv/Fm) was estimated (AquaPen-P AP 110-P

fluorometer; Photon Systems Instruments, Drásov, Czech

Republic). Gametophytes were dark-acclimated for five

minutes before the measurements. Measurements were taken
TABLE 1 Locations of Laminaria ochroleuca sampling sites (country, sampling date, geographical coordinates of each site, depth).

Population Sampling date Site Coordinates Depth (m) Sea water temperature (°C)

Min. Mean Max

France (FR), Roscoff 14/11/2018 An Nehou 48°41’35.90”N 03°56’28.53”W 4 8.84 12.97 16.35

Italy (IT), Messina 16/11/2019 Messina Strait 38°15’27.97”N 15°37’40.04”E 50 13.79 14.15 14.65

Spain (SP), Muxia 03/05/2019 Playa Lago 43°06’17.01”N 09°10’10.04”W 4 12.36 15.81 18.59

Morocco (MO), El Jadida 03/08/2019 El Jadida 33°14’48.46”N 08°32’38.87”W 1 15.48 19.44 23.19
fron
Minimum, mean and maximum sea surface temperature (SST), except for the deep (-50m) population from Italy in which sea bottom temperature is presented, were obtained from Bio-
Oracle (http://www.bio-oracle; Supplementary Material 1).
FIGURE 1

Sampling locations of Laminaria ochroleuca populations (red circles): France (FR), Italy (IT), Spain (SP) and Morocco (MO).
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throughout the course of the experiment (day 0, 4, 11 and 38) to

allow continuous assessment of gametophyte performance.
Female reproductive success

During the recovery phase, gametogenesis development was

quantified every seven days (day 11, 18, 25, 32 and 39) by

assessing the relative occurrence of three ontogenetic stages of

female gametophytes (vegetative state, egg released state and

gametophytes with sporophytes attached). A minimum of 100

fields of view were examined per replicate using an inverted

microscope (100× magnification). For each female gametophyte,

the most advanced reproductive state was recorded. Female

gametophytes were identified as being in the sporophyte stage

as soon as the first cell division was visible in the zygote. The

percentages of gametophytes with eggs and sporophytes were

summed to obtain the proportion of reproductive

female gametophytes.

Reproductive success was also evaluated as the absolute

numbers of sexually-derived and putatively asexual sporophytes

(i.e., possible partheno-sporophytes with irregular morphology

sensu tom Dieck, 1992) per female gametophyte (sporophyte

density) at the end of the recovery phase (day 40). Sporophytes

with normal morphology (clear polar differentiation into the basal

rhizoid and proximal elongated blade) and attached to the

respective female oogonium are considered fertilized diploid

sporophytes, whereas sporophytes with malformed shapes,

normally missing rhizoids and unattached to the female

gametophyte were considered to derive from parthenogenesis

(tom Dieck, 1992). Most partheno-sporophytes in Laminaria

are generally unable to complete development and thus

represent unsuccessful recruits (tom Dieck, 1992). The absolute

number of normal and parthenogenetic sporophytes was counted
Frontiers in Marine Science 05
in a minimum of 100 fields of view (Zeiss Observer D1 inverted

microscope; 100× magnification) per replicate. Final female

gametophyte density was determined on day 39.
Statistics

Gametophyte density was analysed by 2-way ANOVA with

population and temperature as fixed factors using SPSS (version

27.0, IBM Corp, 2017). The proportion of reproductive females

and sporophyte density of each population were expressed relative

to the respective controls at 17°C to account for significant

variation between populations, allowing comparisons amongst

them. Normality of the data (Shapiro-Wilk test) and homogeneity

of variances (Levene’s test) were tested before the statistical

analyses. Estimated marginal means pairwise comparisons

(Bonferroni-corrected) were performed to determine differences

between treatments when a significant interaction was found.

Differences were considered significant at p < 0.05. Three-way

repeated measures ANOVA was performed using SPSS to test for

differences in the percentage of female reproductive gametophytes

and Fv/Fm over time between populations and temperatures. Data

were tested with the Mauchly test for sphericity and Greenhouse

Geisser or Huynh-Feldt corrections were used if sphericity could

not be assumed.

The sporophyte density data did not fulfil Levene’s assumption

of homogeneity of variance even after transformation. Therefore,

data were analysed with the PERMANOVA module within

PRIMER 7 software (Anderson, 2001; McArdle and Anderson,

2001) under a two-factor design with population and temperature

as fixed factors. PERMDISP tests were performed for homogeneity

of multivariate dispersion (around the centroid), which was verified

without variable transformation for grouped factors population and

temperature (P (perm) = 0.063). Pair-wise t-test comparisons were
FIGURE 2

Design of the simulated MHW and recovery experiment. Laminaria ochroleuca gametophytes from four populations were exposed to different
thermal treatments (17°C, 23°C, 25°C, 27°C) for 11 days and subsequently transferred to 17°C (recovery phase) for 29 days. Gametophyte density,
photosynthetic performance, female reproductive success and sporophyte density were evaluated in different time periods.
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performed to identify differences between treatments when

significant interactions were found. Data analysis was performed

with Euclidian distances and 9999 permutations.
Results

Gametophyte survival

The final gametophyte density differed significantly due to

the interaction of population × temperature (Table 2, Figure 3;

F = 14.539, p < 0.001). The most striking effect in all populations

was the significant decline in gametophyte density at the highest

temperature (27°C) compared to the control temperature.

Gametophytes from the FR population showed the greatest

thermal sensitivity, with density reduction apparent at all

temperatures between 23°C and 27°C compared to controls at

17°C. In contrast, gametophyte densities of the other Atlantic

populations from SP and MO were only affected following the

highest MHW temperature (27°C). The Mediterranean

population (IT) showed a slightly different trend of increasing

density following MHW at intermediate temperatures

(significantly so at 25°C), before declining at 27°C to a level

not significantly different from the control, which also showed

reduced density over time (Figure 3).
Photosynthetic efficiency during heat
stress and recovery

The maximum quantum yield of photosystem II (Fv/Fm)

showed significant time × population × temperature interactions

(Table 3; F = 5.984, p < 0.001). Overall, during the 11 day

simulated MHW Fv/Fm progressively decreased over time and

with increasing MHW temperature (Figure 4), clearly indicating

reduced maximum PSII e ffic iency resu l t ing f rom

photoinhibition and/or photodamage. At the end of recovery

period (day 38), we observed some surprising effects with respect

to the thermal history of the gametophytes: Fv/Fm in controls

declined relative to initial values in all populations, suggesting

the cumulative experimental irradiance (20 µmol m-2 s-1 PAR)

induced progressive photoinhibition and/or photodamage, since
Frontiers in Marine Science 06
temperature was a constant 17°C over this period (Figure 4A).

Across all populations, Fv/Fm decreased (mean value of 0.298) in

the gametophytes exposed to 17°C at the end of recovery

compared to the initial 11 days (mean value of 0.561).

Following intermediate MHW of 23 and 25°C, a trend for

recovery of Fv/Fm after 38 d was observed, particularly in FR

and IT populations, and less evident in MO (Figure 4B, C), while

after the most severe MHW (27°C) all populations recovered to

values not significantly different from initial Fv/Fm prior to the

thermal stress (Figure 4D). Overall, although the mechanisms

remain unclear, our results suggest that MHW of increasing

intensity have positive effects on the resilience of PSII

functioning at the population level, either through a positive

interaction between irradiance and high temperature, selective

effects of thermal stress favouring survival of the most resilient

cells, or a shifting balance between mortality and production of

new cells with increased resilience.
Gametophyte reproductive success
during recovery from heat stress

The normalized female gametophyte reproductive

success during the recovery phase showed significant time ×

population × temperature interactions (Table 4; F = 4.886, p <

0.001). On the first day of recovery (day 11), no reproduction

was observed in the female gametophytes pre-exposed to all the

HW treatments (23°C, 25°C and 27°C), indicating that the heat

treatments delayed the onset of gametogenesis (Figure 5). From

day 18 onwards, reproductive success significantly increased in

the female gametophytes from FR and IT recovering from 23°C

and 25°C, and from day 25 for those recovering from 27°C. In

contrast, the SP (MHW of 23 and 25°C) and MO (MHW of

23°C) gametophytes remained mostly vegetative during the

recovery phase (Figure 5A, B). In all four populations, the

gametophytes pre-exposed to 27°C remained vegetative during

the first two time periods (day 11 and 18), however the female

reproduction significantly increased from day 25 onwards

(Figure 5C). Notably, the SP and MO gametophytes pre-

exposed to the MHW of 27°C exhibited the highest

reproductive success from day 25 onwards (normalised

reproduction ≥ 1), but with high variability compared to the
TABLE 2 Two-way ANOVA for the effects of population and temperature on the gametophyte density of Laminaria ochroleuca after 38 days.

Factors SS df MS F p

Population 0.216 3 0.072 5.528 0.002

Temperature 2.957 3 0.986 75.681 <0.001

Population × Temperature 1.704 9 0.189 14.539 <0.001

Error 0.625 48 0.013
frontier
The post-hoc results are presented in Figure 3.
Significant (p < 0.05) interactions or main effects are highlighted in bold. SS, sum of squares; df, degrees of freedom; MS, mean sum of squares; F, F-statistic.
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other temperatures and populations and exceeded levels of

reproductive success observed in their respective controls and

in both FR and IT gametophyte populations (Figure 5C).

The normalized sporophyte density after 40 days showed

significant population × temperature interactions (Table 5;

pseudo-F = 2.2834; p = 0.011) and exhibits an overall similar

pattern as the proportion of reproductive females (Figures 5, 6).

Overall, extremely low normalised sporophyte densities (close to

zero) were observed in the SP and MO gametophytes recovering

from 23°C and 25°C compared to the FR and IT gametophytes

(Figure 6), suggesting that intermediate heat stress negatively

affects the subsequent reproductive success in these two

populations. On the other hand, when pre-exposed to 27°C a

high number of sporophytes developed (normalised density ≥ 1)

in the gametophytes from the FR, SP and MO populations,
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indicating that a short pre-exposure to a critical high

temperature enhanced subsequent sporophyte formation. In

contrast to the Atlantic populations, sporophyte production in

the Mediterranean IT population was temperature independent

following simulated MHW exposure, and always lower than

controls at 17°C. In the FR, SP and MO populations the

gametophytes pre-exposed to 27°C had the highest sporophyte

densities compared to 23°C.

Interestingly, a considerable number of sporophytes with

irregular morphology (i.e. likely partheno-sporophytes)

developed after 40 days only in the FR gametophytes pre-

exposed to 17°C (324 sporophytes cm-2), 23°C (1271

sporophytes cm-2), and 25°C (628 sporophytes cm-2)

compared to sexually formed sporophytes (Supplementary

Figure S2).
TABLE 3 Three-way repeated measures ANOVA for the effects of population, temperature, and time on the maximum quantum yield of
photosystem II (Fv/Fm) of Laminaria ochroleuca gametophytes.

Factors SS df MS F p

Time 1.602 3 0.534 522.686 <0.001

Population 0.042 3 0.014 9.640 <0.001

Temperature 0.606 3 0.202 138.440 <0.001

Time × Population 0.195 9 0.022 21.248 <0.001

Time × Temperature 2.180 9 0.242 237.115 <0.001

Population × Temperature 0.058 9 0.006 4.436 <0.001

Time × Population × Temperature 0.165 27 0.006 5.984 <0.001

Error 0.147 144 0.001
frontier
Significant (p < 0.05) interactions or main effects are highlighted in bold. SS, sum of squares; df, degrees of freedom; MS, mean sum of squares; F, F-statistic.
The post-hoc results are presented in Figure 4.
FIGURE 3

Gametophyte density from different populations (FR, IT, SP, MO) of Laminaria ochroleuca after recovery (day 38) at 17°C from different thermal
treatments (17°C, 23°C, 25°C and 27°C). Note that density values were normalized to the respective initial value for each population (dotted line).
Box plots with median, boxes for 25th and 75th percentiles and whiskers indicating min and max values (n = 4). For each temperature, different
lowercase letters above boxplot bars indicate significant differences between populations. For each population, different uppercase letters
indicate differences between temperatures (p < 0.05). See Table 2 for statistical analysis.
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Discussion

This study revealed inter-population variability in the

resilience, recovery, and subsequent reproductive success of

microscopic gametophytes to thermal stress along the

distribution range of L. ochroleuca, which potentially reflect

evolutionary adaptations in response to local thermal regimes.

The gametophytes from France (the most northern and cool-
Frontiers in Marine Science 08
water population) were the most sensitive to thermal stress with

mortality onset at 23°C compared to 27°C in the remaining

populations. During recovery gametophytes from Spain and

Morocco exhibited very low reproductive success after exposure

to 23 and 25°C. However, when recovering from the highest

thermal treatment (MHW of 27°C) the reproductive development

and sporophyte output exceeded the levels obtained under control

conditions (17°C). In contrast, the gametophytes from France and
TABLE 4 Three-way repeated measures ANOVA for the effects of population, temperature, and time on the relative reproductive potential of
female gametophytes of Laminaria ochroleuca.

Factors SS df MS F p

Time 27.183 1.262GG 21.538 47.382 <0.001

Population 1.307 3 0.436 1.072 0.373

Temperature 9.881 2 4.940 12.154 <0.001

Time × Population 4.015 3.786GG 1.060 2.333 0.073

Time × Temperature 22.204 2.524GG 8.797 19.352 <0.001

Population × Temperature 24.399 6 4.066 10.004 <0.001

Time × Population × Temperature 16.818 7.572GG 2.221 4.886 <0.001

Error 20.653 45.435GG 0.455
frontier
Significant (p < 0.05) interactions or main effects are highlighted in bold. SS, sum of squares; df, degrees of freedom (dfGG denotes adjustment following Greenhouse-Geisser F-test as
sphericity was not met); MS, mean sum of squares; F, F-statistic.
The post-hoc results are presented in Figure 5.
A B

DC

FIGURE 4

Maximum quantum yield of photosystem II (Fv/Fm) of Laminaria ochroleuca gametophytes from different populations (FR, IT, SP, MO) exposed
to thermal treatments of 17°C (A), 23°C (B), 25°C (C) and 27°C (D) over time (heat wave: days 0, 4, 11 and recovery: day 38). Box plots with
median, boxes for 25th and 75th percentiles and whiskers indicating min and max values (n = 4). For each temperature and time period, different
lowercase letters above boxplot bars indicate significant differences between populations. For each population and temperature, different
uppercase letters indicate differences between time periods. For each population and time period, different numbers indicate differences
between temperatures (p < 0.05). See Table 3 for statistical analysis.
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Italy (Mediterranean) pre-exposed to MHWs of 23°C, 25°C and

27°C were able to resume reproduction at levels similar to those of

controls by the end of the recovery period. This highlights the

need for fine scale regional data to accurately predict species

response to future climate changes.
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Gametophytes are the most thermally tolerant life cycle stage

in kelps, withstanding higher temperatures than sporophytes

(tom Dieck, 1992; tom Dieck, 1993; tom Dieck and Oliveira,

1993). The upper survival temperature of L. ochroleuca

gametophytes was previously reported to be 25°C (tom Dieck,
A

B

C

FIGURE 5

Female gametophyte reproductive success (proportion of female gametophytes with eggs and sporophytes) of different populations of
Laminaria ochroleuca over recovery (day 39) at 17°C from MHW treatments of 23°C (A), 25°C (B) and 27°C (C). Note that the female
reproductive values were normalized to the control treatment (17°C) value for each population (dotted line). Box plots with median, boxes for
25th and 75th percentiles and whiskers indicating min and max values (n = 4). For each temperature and time period, different lowercase letters
above boxplot bars indicate significant differences between populations. For each population and temperature, different uppercase letters
indicate differences between time periods. For each population and time period, different numbers indicate differences between temperatures
(p < 0.05). See Table 4 for statistical analysis.
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1993). In our study, exposure to a simulated heat wave of 27°C

negatively affected L. ochroleuca gametophyte density (more

than 50% of mortality) in all four populations. However, the

gametophytes from the most northern population, France,

exhibited greater thermal sensitivity, with loss of gametophyte

density (i.e., balance between growth and mortality) already

apparent at 23°C. This intraspecific variation in gametophyte

thermal tolerance suggests (potentially) adaptive divergence

between populations of L. ochroleuca as all gametophytes were

developed from meiospores under common garden conditions

to remove the influence of previous thermal histories (although

carry over effects cannot be discounted entirely, e.g., see Gauci

et al., 2022). Inter-population variability (both adaptive and mal-

adaptive) in the resistance to heat stress has been reported for

other laminarian and fucoid macrophytes (Pearson et al., 2009;

Saada et al., 2016; King et al., 2018). Locally adapted ecotypes
Frontiers in Marine Science 10
were demonstrated for L. digitata, where trailing edge

populations had a stronger heat shock response to thermal

stress than range centre populations (King et al., 2019). In

addition, gametophytes of L. digitata from the Arctic exhibited

lower growth rates and reduced sporophyte recruitment after

heat stress compared to Atlantic gametophytes (Martins et al.,

2020). Evidence for adaptive variation was recently shown for

the intertidal seaweed Hormosira banksii, as high temperatures

(21°C) led to increased mortality in individuals from cooler

locations, while individuals from warmer niches were relatively

unaffected (Miller et al., 2019). Intraspecific variation in thermal

tolerance was also found for Fucus vesiculosus, with southern

individuals showing higher resilience to heat stress than

northern ones (Saada et al., 2016).

It was recently shown that the northern populations (English

Channel) of L. ochroleuca exhibit much lower genetic diversity
FIGURE 6

Absolute number of sporophytes per female gametophytes of different populations of Laminaria ochroleuca after recovery (day 40) from
different MHW treatments. Note that the sporophyte density values were normalized to the mean control treatment value (17°C) for the
respective population (dotted line). Box plots with median, boxes for 25th and 75th percentiles and whiskers indicating min and max values (n =
4). For each temperature, different lowercase letters above boxplot bars indicate significant differences between populations. For each
population, different uppercase letters indicate differences between temperatures (p<0.05). See Table 5 for statistical analysis.
TABLE 5 PERMANOVA for the effects of population and temperature on the number of sporophytes per female gametophytes after 40 days in
Laminaria ochroleuca.

Factors SS df MS Pseudo-F p (perm)

Population 1.7562 3 0.5854 0.3733 0.866

Temperature 20.294 2 10.147 6.4707 <0.001

Population × Temperature 21.484 6 3.5807 2.2834 0.011

Error (time) 56.453 36 1.5681
fron
Significant interactions or main effects are highlighted in bold. *PERMDISP, p > 0.05. SS, sum of squares; df, degrees of freedom; MS, mean sum of squares; Pseudo-F, F value by
permutation.
The post-hoc results are presented in Figure 6.
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and endemism compared to southern populations such as

western Morocco (Assis et al., 2018). This skewed pattern of

genetic diversity was found to be driven by past climate changes

and oceanographic barriers (Lourenço et al., 2017; Assis et al.,

2018). Genetic diversity can have substantial effects on the

adaptive capacity of kelp populations to respond to

environmental changes (Reed and Frankham, 2003; Coleman

and Wernberg, 2020; Coleman and Wernberg, 2021; Vranken

et al., 2021) as higher genetic diversity provides a greater range of

functional responses (i.e., adaptive potential) and may increase

the capacity to endure a stressor (Reusch et al., 2005; Wernberg

et al., 2018). We may hypothesise that the lower resilience to heat

stress of the gametophytes from the most northern population

(France) might be associated with reduced genetic diversity. In

the intertidal fucoid Fucus serratus, trailing edge populations

showing reduced genetic diversity were also less resilient to

desiccation and showed lower photosynthetic performance

when exposed to heat shock compared to central populations

(Pearson et al., 2009). In the seagrass Zostera marina, increased

genetic diversity had a positive effect on shoot density after heat

stress (Ehlers et al., 2008). Thus, the conservation of genetic

diversity may be crucial for evolutionary adaptation of

macrophytes to global climate change, but additional tests of

this hypothesis are required.

Thermal stress causes photoinhibition in kelps (Bruhn and

Gerard, 1996) and Fv/Fm is frequently used as an indicator of

stress affecting photosystem II (PSII, Beer et al., 2014). The

progressive decrease in Fv/Fm we observed in gametophytes with

increasing temperature and exposure time during simulated

MHWs in all populations of L. ochroleuca indicates dynamic

downregulation (e.g., Pereira et al., 2015), or impaired function

of PSII reaction centres in response to thermal stress

(particularly at 27°C), potentially imposing individual fitness

costs. Overall, gametophytes failed to fully recover Fv/Fm
following simulated MHWs by the end of recovery period.

Counterintuitively however, we observed an increasing trend

for recovery of Fv/Fm with greater MHW temperature, notably

including controls at 17°C, which were quite severely affected

after 38 d. Indeed, full recovery to initial Fv/Fm values were only

observed after moderate to severe MHW in gametophytes from

Italy (25 and 27°C) and Spain (27°C).

Several factors may have contributed to these patterns. First,

optimal thermal conditions for gametogenesis in the controls

(tomDieck, 1992; Izquierdo et al., 2002) and the earlier diversion

of resources to reproduction may result in a trade-off between

physiological performance and ontogeny, and/or competition

for nutrients, space or light between gametophytes and

microscopic sporophytes (Edwards and Connell, 2012). The

inhibition of reproduction imposed by simulated MHWs may

serve to delay this process, and partially explain higher Fv/Fm
after the recovery period. In addition, the 27°C MHW reduced

mean gametophyte density between > 50% (FR, SP, IT) to ca.

80% (MO), potentially alleviating sources of limitation.
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Furthermore, a positive interaction between irradiance and

high temperature, selective effects of thermal stress favouring

survival of the most resilient cells, or a shifting balance between

mortality and production of new cells with increased resilience

might also explain the positive effects of MHW of increasing

intensity on the resilience of PSII functioning. Microscopic

sporophytes are an actively growing early life stage, requiring

nutrient levels that can exceed those of mature thalli (Thomas

et al., 1985). Therefore, despite the medium being renewed twice

through the experiment, the nutrient consumption by both life

cycle stages (particularly by the actively growing sporophytes)

might have created a nutrient deficit affecting physiological

status. Negative effects of nutrient limitation on sporophyte

photosynthesis have been described in several kelp species

(Saccharina japonica: Gao et al., 2017; Liu et al., 2021;

Macrocystis pyrifera: Fernández et al., 2020). Furthermore,

potentially suboptimal or limiting irradiance for gametophytes

developing beneath the growing sporophytes might have also

contributed to the observed decrease in maximum

photosynthetic efficiency of PSII.

The optimal reproductive development of L. ochroleuca

gametophytes occurs between 11–18°C (tom Dieck, 1992;

Izquierdo et al., 2002). However, studies investigating the

influence of warming on the reproductive success of L.

ochroleuca gametophytes are scarce (but see Pereira et al.,

2011). In our study, simulated MHWs (23°C, 25°C and 27°C)

prevented the onset of gametogenesis in all populations of L.

ochroleuca, with gametophytes remaining in the vegetative state.

Gametophytes can delay the formation of sexual cells and thus

sporophyte production when exposed to unfavourable

environmental conditions (tom Dieck, 1993; Carney and

Edwards, 2010; Silva et al., 2022) such as extreme climatic

events (Martins et al., 2020), but are able to resume their

reproductive capacity as soon as conditions improve (Carney

and Edwards, 2010; Martins et al., 2020). This may provide an

advantage for populations living in habitats subjected to severe

climatic events, which usually lead to drastic sporophyte

mortality (Ladah et al., 1999; Barradas et al., 2011). However,

the capacity of gametophytes to recover and reproduce after

limiting conditions seems to be species-specific (Silva

et al., 2022).

We found that the gametophyte potential to reproduce when

recovering from heat stress varies among populations of L.

ochroleuca. Overall, female gametophytes from Spain and

Morocco showed very low ability to successfully reproduce

and form sporophytes after exposure to 23°C and 25°C. In

contrast, the gametophytes from France and Italy pre-exposed

to 23°C, 25°C and 27°C were able to resume reproduction at

levels similar to their respective controls by the end of the

recovery period. Although, the gametophyte generation from

each population were raised under common garden conditions

from meiospores, intrinsic differences in reproductive

investment after a heat stress were seen, which might suggest
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genetically based thermal responses (or strong carry-over effects)

linked to their regional origin. Similarly, L. digitata

gametophytes from the Atlantic produced a greater number of

sporophytes during recovery from heat stress than those from

the Arctic, suggesting differential thermal adaptation (Martins

et al., 2020). Variations across populations in the reproductive

response to temperature have previously been observed in the

giant kelp (Macrocystis pyrifera) along its distributional range,

indicating local adaption to thermal gradients (Hollarsmith

et al., 2020).

Surprisingly, the gametophytes from Spain and Morocco

exhibited the highest levels of reproductive success after the

simulated MHW of 27°C, exceeding the reproductive levels

obtained under control conditions (17°C). This extreme thermal

treatment might have promoted the subsequent gametogenesis via

an ultimate stress-induced survival mechanism, similar to heat-

stimulated bolting and flowering observed in plants (Arabidopsis

thaliana, Balasubramanian et al., 2006; Tonsor et al., 2008) and

seagrasses (Blok et al., 2018; Ruiz et al., 2018; Marıń-Guirao et al.,

2019). Alternatively, thermal stress may have resulted in selective

survival of extreme thermotolerant genotypes, a particularly

interesting hypothesis for the core, high genetic diversity

population from MO (Assis et al., 2018). The high variability in

the MO and SP gametophyte reproductive success after the 27°C

MHW compared to the other thermal treatments and populations

might be a consequence of individual phenotypic plasticity. While it

is tempting to search for population-specific reproductive responses

that might be associated with regional thermal regimes, such

conclusions are difficult to draw. For example, although

reproductive success in the relatively cool and stenothermal IT

population was poor after exposure toMHW> 23°C, the cool-water

Atlantic population from FR was relatively successful after

moderate to high MHW exposure. Similarly, gametophytes from

the warmest thermal niches (SP and MO) successfully reproduced

after a 27°C MHW, but were very unsuccessful at 23 and 25°C.

Moreover, reproduction at 27°C may be a non-adaptive stress-

induced response, since local seawater temperatures in Spain and

Morocco do not naturally reach 27°C. There remains the

potential for inbreeding depression to affect the thermal

performance of the gametophytes that derived from a reduced

number of fertile sporophytes (IT: 6 individuals; FR, SP and MO: 5

individuals). While negative effects on fecundity and reproduction

due to inbreeding have been observed at least one other kelp

(Macrocystis pyrifera; Raimondi et al., 2004), we are unaware of

any analysis of inbreeding depression affecting temperature

tolerance in L. ochroleuca. Similar thermal tolerance limits were

detected in the kelp Alaria esculenta when using 4 donor

sporophytes (Martins et al., 2022) or a wider gene pool (14

sporophytes; Fredersdorf et al., 2009), suggesting absence of

inbreeding depression in this kelp species. Similarly, in the sea

palm Postelsia palmaeformis there were low costs of self-fertilization

in individuals size and reproduction (Barner et al., 2011).
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Species of the order Laminariales can develop sporophytes

via parthenogenesis from unfertilized eggs (tom Dieck, 1992;

Oppliger et al., 2007; Martins et al., 2019). Most parthenogenetic

sporophytes have an irregular morphology and show high

mortality rates (Ar Gall et al., 1996), however in some species

adult fertile partheno-sporophytes with normal morphology

develop (Shan et al., 2013). In the most northern population

of L. ochroleuca (France) that displays less genetic diversity,

partheno-sporophytes sensu tom Dieck (1992) developed in

controls at 17°C. Subsequent exposure to MHWs of 23°C and

25°C further increased the number of partheno-sporophytes.

Species adaptation to marginal habitats has often been associated

with parthenogenetic reproduction (Kawecki, 2008). It would be

interesting to understand whether the geographical

parthenogenesis found in L. ochroleuca (i.e., partheno-

sporophytes developing near the northern distributional edge)

plays an adaptive role in a marginal ecological niche,

contributing to the geographic distribution of the species over

evolutionary time. Similarly, a southern-limit population of L.

digitata showed a high propensity for producing unreduced

spores, a consequence of the life in a marginal habitat

(Oppliger et al., 2014).

The in-vitro experimental setup using gametophytes raised

under common garden conditions has shown to be efficient in

revealing L. ochroleuca population differences in thermal traits

while excluding the influence of environmental histories (but not

potential transgenerational epigenetic effects). The study

highlights the need for species distribution and climate niche

models to incorporate intraspecific variation to generate more

reliable predictions of species responses to future climates.

Deciphering intraspecific variation may also provide valuable

insight for future management of wild and farmed kelp

populations, incorporating evolutionary potential for “climate-

proofing” marine ecosystems.
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