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Seagrass, systems export significant amounts of their primary production as

large detritus (i.e. macrophytodetritus). Accumulations of exported

macrophytodetritus (AEM) are found in many areas in coastal environment.

Dead seagrass leaves are often a dominant component of these

accumulations, offering shelter and/or food to numerous organisms. AEM are

particular habitats, different from donor habitats (i.e. seagrass meadow, kelp or

macroalgae habitats) and with their own characteristics and dynamics. They

have received less attention than donor habitats despite the fact they often

connect different coastal habitats, are the place of intense remineralization

processes and shelter associated detritus food web. As for seagrass meadows

themselves, AEM are potentially affected by global change and by

tropicalization processes. Here, we review briefly general characteristic of

AEM with a focus on Mediterranean Sea and Western Australia and we

provide some hypotheses concerning their tropicalization in a near future.

We conclude that AEM functioning could change either through: (1) declines in

biomass or loss of seagrass directly due to increased ocean temperatures or

increased herbivory from tropicalized herbivores; (2) increased degradation

and processing of seagrass detritus within seagrass meadows leading to

reduced export; (3) replacement of large temperate seagrass species with

smaller tropical seagrass species; and/or (4) loss or changes to macroalgae

species in neighboring habitats that export detritus. These processes will alter

the amount, composition, quality, timing and frequency of inputs of detritus

into ecosystems that rely on AEM as trophic subsidies, which will alter the

suitability of AEM as habitat and food for invertebrates.
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Introduction

Seagrasses form highly productive ecosystems that provide a

range of important ecosystem functions in coastal environments,

including carbon sequestration, habitat provision, and a direct

and indirect food source for a range of consumers (e.g. Orth

et al., 2006). They are net autotrophic ecosystems (e.g.

Champenois and Borges, 2012; Champenois and Borges,

2021), capable of exporting massive detrital primary

production to other coastal and offshore habitats (Mann, 1988;

Cebrian, 2002; Heck et al., 2008). While herbivory can remove

high proportions of primary production, forming the green food

web, the extent of this process depends on seagrass system type,

latitude or local variability (Valentine and Heck, 2021; Heck

et al., 2021). Nevertheless, whatever the importance of herbivory,

a significant part of the primary production is not consumed and

forms detritus, fueling the brown food web (Cebrian, 2002;

Mateo et al., 2006). However, both the green and brown food

webs linked to seagrass ecosystems are almost certainly being

impacted by the loss of seagrass in many parts of the world

(Waycott et al., 2009), while the relative importance of each will

likely be affected by ocean warming, shifting distributions of

seagrass species, and functional change in seagrass meadows

(Hyndes et al., 2016).

Production of detritus in seagrass meadows is enhanced by

the fact that seagrass leaves senesce, die and are released from the

plant. This is a process controlled by the plant physiology,

allowing nutrient reclamation by seagrass shoots (Stapel and

Hemminga, 1997; Lepoint et al., 2002) and elimination of

epiphytic biomass (Orth and Van Montfrans, 1984;

Borowitzka et al., 2006). Leaf fall can be a continuous

phenomenon, particularly in tropical and subtropical areas, or

a more seasonal one, particularly in temperate areas. This

detritus material (or necromass) can form seagrass litter that

lays and decomposes among seagrass shoots (Walker et al.,

2001), and in which fauna contribute to decomposition via

mechanical fragmentation, production of feces and

assimilation of seagrass carbon (Harrison, 1989). Residence

time of seagrass litter in the meadow itself is highly variable

(i.e. from hours to months), depending on meadow depth,

microbial and mechanical degradation rates, fauna processing

and local hydrodynamics (i.e. swell, current, wind gust or storm)

or local seascape morphology (Hyndes et al., 2014; Ricart et al.,

2015; Ricart et al., 2017; Costa et al., 2019). In many cases, a

significant part of this detritus can be exported outside the

meadow as large fragments (i.e. macrophytodetritus) (e.g.

Boudouresque et al., 2016). It is estimated that, as a global

average, between 15 and 25% of carbon fixed by seagrass is

exported to adjacent system (Cebrian, 2002; Mateo et al., 2006)

but this can vary between few percent and 100% depending of

the seagrass system and local environmental condition

(seascape, hydrodynamics for example) (reviewed in Heck

et al., 2008 and Mateo et al., 2006). Long term study by
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Champenois and Borges (2021) in Calvi (i.e. 12 year mooring

survey) estimate to 80% the total NPP produced in Posidonia

oceanica bed exported to adjacent systems, matching the

calculation of Pergent et al., 1997 for this system (40 – 70% of

leaf production). Thus, seagrass detritus can fuel the brown food

web both within the seagrass meadow and in connected

ecosystems, depending on seagrass and seascape characteristics

and hydrodynamics (Hyndes et al., 2014). For examples, massive

release of Posidonia oceanica (L.) Delile leaves starts in the

Mediterranean Sea in late summer, but export is often delayed to

mid to late autumn, depending of autumnal storms (Pergent

et al., 1997; Gobert et al., 2006). This means that exported

material is already modified by decomposition (i.e. impoverished

in N and P) and colonized by microbial decomposers (Mateo

and Romero, 1997). In temperate Western Australia, detritus

production in meadows of Posidonia spp. occurs throughout the

year, but peaks in late summer while export occurs in autumn

(Cambridge and Hocking, 1997). Compared to temperate

systems, decomposition rates in the tropics are generally faster

than for temperate seagrass systems. For example, in Indonesia,

Vonk and Stapel (2008) measured decomposition rates (k) for

leaf biomass of Thalassia hemprichii; Cymodocea rotundata or

Halodule uninervis ranging from 0.023 to 0.070 d–1. In

comparison, in similar litter bag experiences, measured

decomposition rate of P. oceanica dead leaves ranged from

0.003 (Costa et al., 2019) to a maximum of 0.022 d-1 (Mateo

and Romero, 1997). Faster decomposition rate can lead to

efficient nutrient recycling inside the meadows (Vonk and

Stapel, 2008) and, therefore, to less NPP export (Hyndes et al.,

2014). In their data compilation, Hyndes et al. (2014) calculate

that, in tropical seagrass meadow, a greater proportion of

seagrass net primary production (NPP) is being processed

through decomposition and herbivory than in temperate

seagrass meadow (global average 85.2 vs. 34.1% of annual NPP

(calculated form Table 1 in Hyndes et al., 2014) indicating as a

general observation that NPP export is proportionally lower in

tropical seagrass meadow than in temperate seagrass meadows.

Accumulations of exported macrophytodetritus (AEM) (also

known as dead leaf mat, wrack, beach cast or exported litter in the

literature) can be found in a wide range of ecosystems including

the ocean floor of the deep sea and continental shelf, to coastal

systems including coral reefs, saltmarshes, mangroves, beaches

and dunes (Table 1). Seagrass detritus forms part of beach-cast

wrack across the globe (Hyndes et al., in press), often constituting

high proportions in regions where large seagrass meadows occur,

particularly in the Mediterranean Sea and southern Australia, but

also in tropical areas (Figure 1). Accumulations of dead seagrass

leaves are also found in subtidal areas, close or distant to meadow

sources (Figure 2). This is particularly the case in the initial phase

of detritus export before mechanical fragmentation. Fossil

evidence for extinct (Jagt et al., 2019) and extant (Moissette

et al., 2007) seagrass species indicates that this process has been

occurring for millions of years.
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Here we discuss the potential flow-on effects of

tropicalization of temperate seagrass meadows to the

functioning of other inter-connected habitats in the coastal

seascape, focusing on shifts in the quantity and quality of

detritus exported from seagrass meadows and imported into
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AEM habitats (Figure 3). We use the term tropicalization to refer

both to the expansion of tropical species to temperate areas

(Arntz and Tarazona, 1990) and to the functional change

occurring in temperate ecosystems due to this species shift

(Vergés et al., 2014a). We will focus in particular on seagrass
TABLE 1 Published examples of habitats and locations in which seagrass detritus has been linked to habitat or trophic associations with fauna in
coastal and offshore systems.

Recipient
habitat

Associated
fauna

Trophic link Seagrass genus Location Country Other forms
of detritus

Article

Beach Invertebrates Phyllospadix California USA Kelp Lastra et al. (2008)

Beach Invertebrates Phyllospadix California USA Kelp Michaud et al. (2019)

Beach Invertebrates Zostera New South
Wales

Australia Brown algae Poore and Gallagher (2013)

Beach Invertebrates California USA Kelp Dugan et al. (2003)

Beach Invertebrates Thalassodendron Mombasa Kenya Ochieng & Erftemeijer (1999)

Beach Invertebrates Zostera marina Hel (Baltic
Sea)

Poland Jedrzejczak (2002)

Beach Invertebrate Posidonia oceanica Tuscany Italy Colombini et al. (2009)

Beach Invertebrates Cymodocea, Zostera Cadiz Spain Macroalgae Ruiz-Delgado et al. (2016)

Beach Zostera Banc
d’Arguin

Mauritania Hemminga and Nieuwenhuize
(1990)

Beach Phyllospadix British
Columbia

Canada Macrocystis Orr et al. (2005)

Beach Cymodocea nodosa Tarragona Spain Mateo (2010)

Bay Thalassia, Thalassodendron,
Cymodocea, Syringodium

Gazy Bay Kenya Mangrove leaves Slim et al. (1996)

Lagoon Zostera noltii Thau
Lagoon

France Costa et al. (2021)

Estuaries Invertebrates Cymodocea, Zostera spp. Po River
Delta

Italy Reed detritus Mancinelli and Rossi (2002)

Surf zone Invertebrates, fish Posidonia, Amphibolis Western
Australia

Australia Kelp, Red algae Crawley et al. (2009)

Surf zone Fish Posidonia, Amphibolis Western
Australia

Australia Kelp, Red algae Lenanton et al. (1982)

Bay Zostera Boha Sea China Min et al. (2019)

Bay Syringodium Florida Bay USA Perry et al. (2018)

Bay Meiofauna, macro-
invertebrate,
vertebrates

Posidonia oceanica Corsica France macroalgae Mascart et al. (2018), Remy et al.
(2018, 2021)

Bay Invertebrates Posidonia oceanica Corsica France macroalgae Gallmetzer et al. (2005); Lepoint
et al. (2006), Sturaro et al., (2010)

Offshore Fish Zostera Tasmania Australia Thresher et al. (1992)

Offshore Zostera spp Hokkaido
Island

Japan Sargassum, Kelp,
Red algae

Kokubu et al. (2019)

Submarine
canyon

Invertebrates Phyllospadix California USA Kelp Vetter (1994)

Submarine
canyon

Invertebrates Phyllospadix California USA Kelp Vetter (1998)

Deep Sea
(abyssal
plain)

Invertebrates Invertebrates Thalassia testudinum Puerto
Rico

USA wood, leaves,
fruits, and
Sargassum

Wolff (1979)

Deep Sea
(abyssal
plain)

Thalassia testudinum North
Carolina

USA Menzies and Rowe (1969)
Seagrass genus and location (including country) are provided, along with other detrital macrophytes in the detrital accumulations. The published examples are not exhaustive, particularly
for beach habitats where numerous studies have examined accumulations of detritus (see Hyndes et al. In press) for extensive list on beach systems.
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ecosystems and AEM in temperate Western Australia and

Mediterranean Sea, regions which are characterized by large

and expansive seagrass meadows comprising the genus

Posidonia and have been shown to be already affected by

tropicalization (Vergés et al., 2014a) and where structure and

function of subtidal or intertidal AEM are relatively well

documented. We will also refer to tropical seagrass meadows

functioning as a possible functional scenario for temperate areas

under tropicalization threats. Prior to this discussion, we provide

a synopsis of what is currently known about the ecosystem

functioning of AEM habitats.
Frontiers in Marine Science 04
Macrophytodetritus accumulation
as habitats

Unlike seagrass meadows that support both green and

brown food webs, habitats formed by AEM generally support

brown food webs and display their own characteristics compared

to seagrass meadows or the surrounding environment

(Boudouresque et al., 2016). For example, AEM may

experience very fast change in detrital composition and

quantity (height, cover) or in oxygenation (Mascart et al.,

2015; Ricart et al., 2015), and be highly variable across seasons
FIGURE 1

Some example of seagrass beach cast. (A) beach accumulation of Posidonia oceanica dead leaves, also known locally as “banquette”, on Alga
Bay Beach, Calvi, Corsica, March 2007; (B) 2 m high banquette on a beach in St Florent Gulf, St Florent, Corsica; (C) beach cast of Syringodium
filiforme and other tropical species on a Guadeloupe beach (Caribbean Sea); (D) brown and green leaves of diverse tropical species (mainly
Cymodocea serrulata, Syringodium isoetifolium, Thalassia emprichii and Halodule uninervis) on Andravo beach (Toliara, Madagascar), May 2018;
(E) and (F) beach cast in the Perth region of southwestern Western Australia. Typically, it comprises Posidonia spp., Amphibolis spp., the kelp
Ecklonia radiata and other brown and red macroalgae.
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in temperate regions particularly (Romero et al., 1992). In Calvi

bay, studied AEM accumulation height varies seasonally from

5cm (i.e. less than 400 gDM.m-2) of very compact and degraded

material in spring to more than 50cm (1800 gDM.m-2) of less

compacted material just after the dead leaf export in November

(Mascart et al., 2015). Depending on hydrodynamics and

seascape morphology, subtidal AEM habitats can be highly

mobile, displaced or disrupted by tidal currents, waves and

storms (Ricart et al., 2015, Slim et al., 1996). Oxygen is often

depleted inside the AEM due to decomposition and

remineralization processes and intrusion of reduced

compounds from sediment (e.g. sulfides, ammonium) (Vetter

and Dayton, 1998; Gallmetzer et al., 2005) and hypoxia is often

experienced by fauna (Gallmetzer et al., 2005; Mascart et al.,

2015). Furthermore, composition of these AEM is highly

variable. In temperate regions, they are often mixed with

various macroalgae detached from their substrate (e.g. Lepoint

et al., 2006; Crawley et al., 2009), or with litter from terrestrial or

salt marsh origin, notably in areas close to estuaries or

transitional waters (Mancinelli and Rossi, 2002; Mascart et al.,

2015) (Table 1). In the tropics, mangrove leaves as well as

detached macroalgae from rocks and coral reefs can contribute

to the AEM (Slim et al., 1996). In addition, anthropogenic

material such as microfiber can be present and enter the food

web (Remy et al., 2015). While AEM is generally considered

heterotrophic with high respiration and remineralization rates,

detached macroalgae can still be living and photosynthetically

active in subtidal habitats (Frontier et al., 2021), providing an

autotrophic source of production for a period prior to the algae

senescing. Furthermore, leaf litter can be colonized by macro

and micro epiphytes (e.g. microalgae including diatoms)

(Lepoint et al., 2006), paradoxically, providing a source of

primary production in a heterotrophic system. Despite this,

AEM is typically driven by decomposition through the

colonization and expansion of microbial decomposers
Frontiers in Marine Science 05
(bacteria, fungi) (Cuomo et al., 1987; Lepoint et al., 2006;

Singh et al., 2021). Little is known about the microbial

communities in AEM, but microbial decomposers can

contribute to a large part of nitrogen and other nutrients

found within the dead material of salt marshes (Newell et al.,

1989) and it could also be the case in seagrass AEM.

AEM can be viewed as a pulsed system (Yang et al., 2008),

where litter pulses provide both habitat and food for resident

fauna (Mancinelli and Rossi, 2002; Remy et al., 2017; Costa et al.,

2021). Beach AEM is generally colonized by specialized semi-

aquatic fauna. Crustaceans, particularly talitrid amphipods and

isopods, are by far the dominant taxa in beach-cast systems (see

Hyndes et al., In press). In subtidal AEM, species are more

related to adjacent donor ecosystems (i.e. macroalgae or seagrass

habitats), but are often inhabited by fewer species than vegetated

habitats (Borg et al., 2006; Como et al., 2008; Calizza et al., 2013).

It is likely that some of the small vagile species found in AEM are

exported from donor habitats via their substrate (dead leaf or

ripped macroalgae). Fauna transport via rafting (floating or not)

is known to be an important colonizing process in coastal areas

(Thiel and Gutow, 2005). Regardless of the composition of the

AEM (seagrass, reed, macroalgae or kelp), these less diverse

macrofauna communities are dominated by crustaceans

(particularly amphipods and isopods), and to a lesser extent,

annelids, mollusks and echinoderms (Vetter, 1995; Vetter, 1998;

Gallmetzer et al., 2005; Mancinelli et al., 2007; Duggins et al.,

2016; Costa et al., 2019; de Bettignies et al., 2020). Copepods

generally dominate the meiofauna of subtidal AEM (Mascart

et al., 2015), but the hypoxic sediment under AEM or beach cast

are often dominated by nematodes (Vetter and Dayton, 1998).

Meiofauna and macrofaunal densities in AEM, whatever their

composition, are generally huge (densities from 1×105 to 1×107

individuals m-1 are often observed), often far above densities

measured in seagrass meadows (Vetter, 1998; Norkko et al.,

2000; Gallmetzer et al., 2005; Como et al., 2008; Mascart et al.,
FIGURE 2

Subtidal accumulation of Posidonia oceanica macro detritus. Left: November 2010, recently exported dead leaves (80 cm thick), 10 m depth,
Revellata Bay, Calvi, Mediterranean Sea. Right: June 2012, fragmented macrophytodetritus with uprooted living P. oceanica shoots, 10 m depth,
Revellata Bay, Calvi Corsica.
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2015). These high invertebrate densities are likely to provide an

accessible foraging resource for the many fishes that are observed

around intertidal and subtidal AEM (Crawley et al., 2006;

Boudouresque et al. , 2016; Baring et al. , 2019). In

Mediterranean surf zones, these fishes, mostly represented by

invertivorous (e.g., labrids) and omnivorous species, are

observed feeding in P. oceanica AEM and using the

resuspended dark-brown vegetal fragments to hide; higher

species richness and fish density are observed on AEM than

on sand. (Bussotti et al., 2022).

The food web in subtidal P. oceanica AEM in the

Mediterranean Sea is simplified when compared to P. oceanica

meadows due to a lower species diversity and the absence of

trophic guilds such as suspension feeders (Remy et al., 2018).

Herbivorous fishes such as Sarpa salpa that are dominant in P.

oceanica meadows (Havelange et al., 1997) can be observed

around AEM but not feeding in them (Jadot et al., 2006).

Consumers of AEM are dominated by detritivores (i.e.

consumers of dead material), but herbivores (consumers of

living macrophytes or microepiphytes) or consumers switching

between the two modes are also present and sometimes

dominant (Remy et al., 2018). While there is no evidence of

direct consumption of P. oceanica detritus by talitrid amphipods

in beach cast (Colombini et al., 2009), gut contents provide

evidence of the ingestion of dead seagrass material by dominant

taxa, in particular by amphipods in subtidal AEM (Lepoint et al.,

2006). Furthermore, stable isotopes show that these dominant

species also assimilate carbon from ingested seagrass (Vizzini

and Mazzola, 2008; Remy et al., 2018). This assimilation occurs

directly (i.e. digestive ability of the species itself) or indirectly (i.e.

assimilation of microbial biomass degrading seagrass detritus).

The first enhances mechanical degradation of macro-detritus

(Costa et al., 2019), while the second way is potentially

important for most species of meiofauna (Mascart et al.,

2018). Additionally, it is demonstrated that the food web

responds to seasonal pulses of litter, with an increase of litter

contribution to the diets of dominant invertebrates, including

meiofauna, in autumn (Mascart et al., 2018; Remy et al., 2021).

Compared to the Mediterranean, there is limited evidence of

direct consumption of seagrass detritus in Western Australia.

Similar to seagrass meadows (Smit et al., 2005; Smit et al., 2006),

macroalgae typically fuel the food web (Hyndes and Lavery,

2005), although seagrass detritus may contribute as a food

source for a limited number of species on beaches (Ince et al.,

2007). Indeed, the dominant detritivore in surf-zone AEM in the

region, the amphipod Allorchestes compressa, feeds preferentially

and almost exclusively on macroalgae, particularly kelp and

other brown algae (Crawley and Hyndes, 2007; Crawley et al.,

2009), and these detritivores form the bulk of the diet of fish in

the AEM (71-99%; Crawley et al., 2006). Thus, this semi-aquatic

amphipod, like many other species in beach ecosystems

elsewhere in the world (Hyndes et al., In press), displays high

feeding rates and preferences for kelp.
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Tropicalization

The poleward expansion of tropical species resulting from

ocean warming has occurred throughout the world, including

seagrasses (Kim et al., 2009; Virnstein and Hall, 2009; Gorman

et al., 2016). The pole-ward range extensions of tropical

herbivorous fishes have had profound effects on ecosystem

structure and functioning of kelp forests in Japan, Australia

and the Mediterranean Sea (Vergés et al., 2014a). Spread of

tropical species into the Mediterranean Sea has occurred since

the opening of the Suez Canal in 1869, resulting in the

introduction of Red Sea species in east Mediterranean Sea

(known as Lessepsian species) (Bianchi and Morri, 2000).

Additionally, tropical species of macroalgae, seagrasses,

invertebrates and fishes have been introduced via tropical

aquarium release and maritime transport (Katsanevakis et al.,

2014; Galil et al., 2018; Zenetos and Galanidi, 2020). Until

recently, many introduced species were only settled in the

southern basin of the Mediterranean Sea and often considered

as native by present day fishermen, but recent sea temperature

increases have now allowed Lessepsian species to expand their

range northward (all Aegean Sea, and Adriatic and northern

Mediterranean basin) (Katsanevakis et al., 2014; Zenetos and

Galanidi, 2020; Thibaut et al., 2022). This has also allowed

species that have recently been introduced via ballast water,

yachting or aquarium trading to acclimate themselves in

Adriat ic and north-western Mediterranean waters

(Katsanevakis et al., 2014).

In Western Australia, a warm pole-ward flowing current, the

Leeuwin Current, strongly influences the coastal waters along

the entire west coast. While this current has been a feature of the

coast for millennia, ocean temperatures have been increasing

~0.1°C per decade for the last 100 years, increasing to ~0.3°C per

decade since the mid-1980s (Pearce and Feng, 2007; Lough,

2008). On top of this, a marine heatwave event in the summer of

2010/11 increased sea surface temperatures by up to 5°C above

average, leading to the transport and maintenance of tropical

species in temperate waters, and major seagrass loss in the sub-

tropics (Strydom et al., 2020) and functional changes to

temperate reefs due to declining kelp biomass and increasing

abundances of herbivorous fishes (Wernberg et al., 2013). Since

the 2010/11 marine heatwave, several tropical fish species have

been observed in temperate coastal waters (Lenanton et al., 2017;

Zarco-Perello et al., 2020). The impact on temperate seagrasses

by these tropical invaders is currently unknown, but it is

predicted that they will substantially increase grazing rates on

seagrass leaves over the next century (Hyndes et al., 2016). This

will be enhanced by the pole-ward shift in the distribution of the

seagrass-grazing megafauna dugongs and green turtles, and

ultimately, there will be a shift in seagrass species to those

from the tropics (Hyndes et al., 2016). Combined, this

tropicalization will lead to fundamental changes in the

ecosystem functioning of seagrasses in the region.
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Shifts in animal community living in AEM

Most AEM macrofauna are dominated in diversity and

abundance by small crustacea (mainly amphipods and

copepods, sometimes isopods, decapods and leptostracans),

small mollusks and errant annelids. Most of them are also

found in the litter layer of the meadow itself (Como et al.,

2008). Moreover, they are generally not specific to one type of

detritus accumulation: species colonizing seagrass AEM are also

found in macroalgae or reed detritus (Péres and Picard, 1964,

Mancinelli and Rossi, 2002). Physico-chemical and biological

conditions act as a strong environmental filter: most AEM

macrofauna are opportunist species tolerant to short-term

environmental change (oxygen, salinity, temperature) and able

to cope with habitat and food source variability and quality.

Beside diversity or abundance changes linked to change of their

composition (Haram et al., 2020) (see below), AEM are likely to

be also colonized by non-native species and therefore to be

subject to biodiversity tropicalization. AEM have presently

received little attention from an invading species point of view

and, globally, small invertebrate changes are clearly less known

than changes in macrophytes, large invertebrates or fishes.

Nevertheless, in Mediterranean Sea, Lessepsian amphipod

invaders are recorded in Levantine waters, Aegean Sea and

South Western Mediterranean and are likely to spread north

like other taxa (Sezgin et al., 2007; Christodoulou et al., 2013;

Khammassi et al., 2019). We can predict that tropical species

invading AEM will possess opportunistic behavior, plastic

trophic ecology and high tolerance to short-term environment

parameter changes (e.g. oxygen), like native AEMmacrofauna. It

is difficult to predict if their tropical origin will give them

competitive advantage over native fauna (such as higher

metabolism, higher growth and reproductive rate) and it is

possible that current AEM communities resist these new

invaders. Nevertheless, if current AEM macrofauna is

outcompeted and replaced by other species, it is likely to have

consequences on coastal fish that use AEM as nursery or as

foraging habitats.
Shifts in the export of seagrass detritus

Tropicalization of seagrass ecosystems is predicted to

influence the supply of seagrass detritus to other ecosystems

through a number of processes: (1) increases in tropical

grazers will lead to greater consumption of seagrass biomass

and reduced release of leaves for internal processing or export;

(2) increases in microbial and invertebrate processing with

increasing temperatures and invasive invertebrates will lead to

less export due to increased internal cycling and a change in

the quality of litter being exported; (3) shifts in seagrass

species to tropical species will lead to less export of detritus;

and/or (4) seagrass meadows exhibiting a shift from seagrass
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to macroalgae will shift the quality of the material in AEM.

Most of these potential changes will affect AEM as habitat for

associated fauna and AEM trophic functioning. It must be

noted that these processes are not mutually exclusive, and are

likely to have a compounding influence on the amount of

seagrass detritus being exported from seagrass systems.

Seagrass beds in tropical areas show higher herbivore diversity

than temperate areas and, potentially, higher herbivory rate in

relation with absence of biomass seasonality (i.e. continuous

grazing) (Heck and Valentine, 2021). Tropical herbivore fishes,

mainly rabbitfishes and parrotfishes, are successfully expanding

from tropical to more temperate waters where they have been

shown to increase grazing on macroalgae (Vergés et al., 2014a;

Vergés et al. 2014b). Far less is known about the effects of these

and other grazers on seagrass meadows, but we do know that

seagrass grazing fishes are far more abundant and diverse in the

tropics compared temperate seagrass beds (Valentine and Duffy

2006; Heck et al., 2021). InWestern Australia, Hyndes et al. (2016)

predicted that these tropical fishes will be the first to increase their

ranges to temperate regions, with a Siganus species already

establishing a viable population in southwest Western Australia

(Lenanton et al., 2017) and occurring in seagrass meadows

(Zarco-Perello et al., 2020). Little is known of their impact on

the temperate seagrasses, but very little herbivory occurs in these

temperate systems normally. In the Mediterranean Sea, the

endemic sparid S. salpa can graze on significant amounts of the

dominant seagrass, P. oceanica, in the region (Havelange et al.,

1997, Tomas et al., 2005). However, tropical species have moved

into the Mediterranean. In eastern Mediterranean Sea,

occurrences of rabbitfish have been reported since the beginning

of 20th century (Shakman and Kinzelbach, 2007). Furthermore,

Siganus spp. and parrotfishes have invaded P. oceanica meadows,

sometimes replacing S. salpa in the region. This invasion has

significantly increased the diversity and abundance of herbivore

fishes in Mediterranean (Stergiou and Karpouzi, 2002), where

they have been shown to consume P. oceanica (Stergiou, 1988).

Both in Western Australia and in Mediterranean Sea, this has

increased the functional diversity as the co-existing species have

different trophic niches (Azzurro et al., 2007; Zarco-Perello et al.,

2020). High herbivory rates are often recorded in tropical seagrass

meadows (Heck et al., 2021), and with tropicalization of

herbivores, it is the likely fate of temperate seagrass meadows.

Increases in abundance, species diversity and functional diversity

of herbivores will likely lead to an increase of the proportion of

primary production removed by herbivores (Ozvarol et al., 2011;

Hyndes et al., 2016; Zarco-Perello et al., 2020) and, therefore,

reduce macrophytodetritus production, disrupt the detritus cycle

and reduce its export (Hyndes et al., 2016). This would likely

result in a decrease of AEM occurrence and abundance in

recipient ecosystems and, therefore, reduce the subsidies this

material provides in those ecosystems.

Increases in herbivory will also shift the production of

macrophytodetritus to feces (Zarco-Perello et al., 2019),
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drastically changing the nature and the size of exported detritus

to dissolved and fine particulate matter. This would lead to a

decrease in the value of AEM as both habitat and food for fauna

since seagrass-based feces do not have the same nutritive

characteristics or composition than senesced detritus

(Velimirov, 1984; Velimirov, 1987), and would not provide the

habitat structure that senescing leaves provide. Furthermore,

while larger sections of seagrass leaves are likely to be released

from the foraging activities of herbivores, the release and export

of these green leaves are likely to occur at different rates, times

and amounts compared to the seasonal release of senescing

leaves under normal temperate conditions. Furthermore, these

exported green leaves would be at a lower level of decomposition

compared to senesced leaves and potentially less palatable. In P.

oceanica AEM, green leaves are generally not found in gut

content of AEM macrofauna, except the crab Lissocarcinus

navigator (Remy et al. , 2018). Thus, the functional

tropicalization of seagrass meadows would likely result in

modified amounts and quality of macrophytodetritus exported

to other systems, deeply affecting AEM occurrence, location,

abundance , qual i ty as habi ta t , and food webs in

recipient systems.

Seagrass leaf litter is initially processed in the seagrass

meadow itself, when released leaves fall and lay between

standing shoots . Decomposit ion by microbes , and

consumption by animals, start in the meadow during the

senescing process (Harrison, 1989). Increasing temperature is

likely to increase microbial metabolism leading to a greater

generation and export of dissolved versus particulate organic

material in macrophyte habitats (Säwström et al., 2016). For

example, a 5°C temperature increase has been shown to boost

the short term decomposition rates of Zostera muelleri from 0.04

to 0.06 d-1 and this effect increases with decomposition progress

(Trevathan-Tackett et al., 2020).

Detritivores are also present in the litter laying in donor

meadow (e.g. Gambi et al., 1992; Como et al., 2008 for P.

oceanica system). Like microbes, increasing temperatures are

likely to increase the metabolism of temperate detritivores in

seagrass meadows, thereby increasing the consumption rate of

litter, and facilitating its decomposition. Presence of detritivore

is shown to boost seagrass detritus mechanical degradation (e.g.

Costa et al., 2019). A shift to more tropical conditions will also

likely affect the processing of detritus by macrofauna. It appears

that many invertebrate species in tropical seagrass meadows

depend on seagrass detritus (Vonk et al., 2008a). Additionally,

tropical seagrass meadows are massively colonized by different

burrowing crustaceans (e.g. Thalassanidae shrimp) (Vonk et al.,

2008b; Kneer et al., 2008). Many of those crustaceans either use

detritus as a food source which is found in the sediment or they

actively collect plant material from the area surrounding their

burrow openings (Kneer et al., 2008). The burrowing shrimps

Neaxius acanthus and Alpheus macellarius have been shown to

collect in their burrows an amount of seagrass leaf material
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tropical meadow (Vonk et al., 2008b). Native burrowing shrimp

are also present in the Mediterranean Sea where they also exhibit

such behavior regarding macrophyte detritus (Papaspyrou et al.,

2004), but their impact on litter processing is probably lower

than in tropical regions considering their lower abundance and

size. Presently, to our best knowledge, tropical burrowing

shrimp have not been recorded in the Mediterranean Sea, but

they could occur in the near future through either their range

extensions via tropicalization or aquarium introductions. This

could lead to an increase of litter processing in the meadow itself,

mimicking the functioning of tropical seagrass meadow and

therefore reduce the amount of exported detritus.

Increased in situ degradation rates and detritus

fragmentation by fauna will decrease the amount of

macrophytodetritus exported from seagrass meadows and,

therefore, alter the occurrence and abundance of AEM in

other systems. It will also affect the quality of the exported

material as the seagrass material will be more degraded and

fragmented and will contain less epiphytes, leading to material

more impoverished in nutrients. More degraded and fragmented

material devoid of epiphytes are potentially less valuable as

habitat or food sources for associated fauna in those

recipient systems.

Ultimately, tropicalization could lead to a shift in meadow

composition from temperate to tropical seagrass species (Hyndes

et al., 2016). The tropical seagrass Halophila stipulacea, a

Lessepsian species, has been observed in the southern part of

Mediterranean Sea since the opening of the Suez Canal. It has

progressively settled northward and has been frequently observed

in Ionan Sea since the 1990s, detected in Tyrrhenian Sea in 2006)

(Di Genio et al., 2021), and is presently reaching northwestern

Mediterranean (Winters et al., 2020; Di Genio et al., 2021; Thibaut

et al., 2022). In Cannes harbor (NW Mediterranean Sea), H.

stipulacea was probably introduced via big yachting coming by

Suez Canal and are establishing stable population which could

indicate that conditions are now more favorable for long-term

population establishment (Thibaut et al., 2022). H. stipulacea is

presently the only non-native seagrass in the Mediterranean Sea

(Garcıá-Escudero et al., 2022). It generally colonizes habitats

devoid of native seagrass, forms mixed meadows with C. nodosa

(Winters et al., 2020), or colonizes dead matte of P. oceanica

(Thibaut et al., 2022). Presently, H stipulacea is not replacing any

native seagrass species, but this may occur when temperatures rise

beyond the thermal tolerances of the native species (Wesselmann

et al., 2021). In comparison, this invasive seagrass has already

spread rapidly and displaced several nativemacrophytes in eastern

Caribbean islands (Winters et al., 2020). H. stipulacea is a small

seagrass species, compared to P. oceanica and C. nodosa, the two

main native Mediterranean species. The lower biomass and a

higher leaf renewal rate (Duarte 1991), which reduce epiphytic

load (Borowitzka et al., 2006) will alter the amount and timing of

detritus export, and the morphological difference in the leaves of
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H. stipulacea will reduce the 3D-structure of the AEM habitat.

Also, the higher levels of decomposition in tropical seagrasses

(Hyndes et al., 2014), at least partly reflecting the more efficient

recycling of detritus in the meadow itself (Vonk and Stapel, 2008;

Hyndes et al., 2014), will reduce the export of seagrass detritus.

While there is no evidence of this shift to tropical species in

southern Western Australia yet, Hyndes et al. (2016) predicted

that several tropical species, including Cymodocea rotundata,

Enhalus acoroides, and Thalassodendron ciliatum, will extend

their southern limit by over 500 km, and temperate species such

as Amphibolis antarctica or Posidonia spp. will reduce their

distribution ranges by 200 km by 2100. This is predicted to

result in the tropical system replacing the current temperate

seagrass ecosystem, and altering the processing and export of

detritus as stated above.

From the above, shifts to tropical species, along with

increased processing of litter within the meadow via microbial

degradation, burrowing organisms or other detritivores is likely

to decrease macrophytodetritus export, and, therefore

occurrence and quantity of AEM. Nevertheless, global change

has very complex consequences – not only tropicalization - and

for example, the predicted increase of storm and wind gusts

frequency could increase this export and counteract the

accelerated in situ processing (i.e. decomposition or

consumption) of litter. The influence of these two opposite

trends should be determined by the match (or the mismatch)

between leaf fall period (or cycle) and occurrence of export.
Shifts in other forms of detritus across
the seascape

The composition of AEM is often very heterogeneous and,

depending on the proximity of the recipient system to different

forms of donor material (i.e. macroalgae, salt marshes or

mangroves) or local conditions that contribute to its

composition and retention (Mancinelli and Rossi, 2002;

Wernberg et al., 2006; Mascart et al., 2015). The AEM

composition and diversity influences the diversity of the

communities inhabiting them (Mancinelli and Rossi, 2002;

Bishop and Kelaher, 2013; Haram et al., 2020) and the food

web functioning (Vonk et al., 2016). For example, the addition of

detritus from the invasive Caulerpa taxifolia drastically changed

the macroinvertebrates in soft sediments of estuaries of eastern

Australia (Taylor et al., 2010). Furthermore, considering the role

of drift macroalgae as raft for benthic invertebrates (Thiel and

Gutow, 2005), the nature of drift macroalgae can influence the

composition of AEM macrofauna (Baring et al., 2014). Absence

of drift macroalgae in AEM could lead to fauna impoverishment

by the absence of new colonizers. This could happen where

overgrazing by new tropical grazers leads to declines of loss of

macroalgae standing stock in donor systems (Vergés et al.,
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2004b). Knowledge of vegetated benthic communities beyond

seagrass meadows at the seascape level (e.g. macroalgae habitats,

saltmarsh or mangroves) is therefore essential to understand the

values and functioning of AEM (Ricart et al., 2015).

In the Mediterranean Sea, macroalgae assemblages on rocks

are deeply affected by invasive species, which are often of tropical

origin (Piazzi and Balata, 2009). Changes of macroalgae in hard

substrate habitats have a direct effect on the material found in

AEM. Multi causal and long-term trends in the loss of native

forests of the macroalgae Cystoseira spp. in the Mediterranean

Sea (Piazzi and Ceccherelli, 2017) have resulted in these algae no

longer being present in the AEM (G. Lepoint, personal

observation in Revellata Bay, Corsica), and being replaced as

drift algae in AEM by other native brown algae or invasive

species. Similar to seagrasses, another threat on macroalgae biota

is the increase in herbivory due to invading herbivorous fishes.

Both in Western Australia and Mediterranean Sea, they have

already had drastic impacts on macroalgae habitats leading to an

increase of standing stock consumption and sometimes creating

barrens dominated by incrusting corallinaceae (Vergés et al.,

2014b; Zarco-Perello et al., 2017). Replacement of macroalgae

habitats by barrens will affect AEM composition by decreasing

the contribution of drift macroalgae to detritus accumulations.

Absence of macroalgae in AEM may affect the quality of habitat

and food for AEM macrofauna. For example, in Western

Australia, the kelp Ecklonia radiata provides a critical food

source for the food web in AEM of surf zones comprising

both seagrass and kelp (Crawley et al., 2009), yet this kelp is

being lost from reefs in the region due to marine heat waves

(Wernberg et al., 2016). While Sargassum spp. may replace kelp

on reefs and can contribute to the surf-zone food web (Crawley

and Hyndes, 2007), it is unclear how much of this material will

contribute to the AEM in the surf zone.

Mediterranean seagrass meadows (i.e. P. oceanica and

Cymodocea nodosa) are also invaded by the green macroalga

Caulerpa cylindracea, which was introduced via ballast water or

aquarium trading (Piazzi et al., 2016 for a review). This is an

endemic species from southwestern Australia that showed high

development capacity throughout the central and western

Mediterranean Sea at the end of the past century (Piazzi et al.,

2016). Presently, C. cylindracea is often restricted to the meadow

periphery in healthy meadows, but dead matte of P. oceanica

meadow and anthropized areas are often heavily colonized

(Piazzi et al., 2016). Where C. cylindracea occurs, Caulerpa

fragments are found in Posidonia AEM (G. Lepoint, Pers. Obs.

in Calvi Bay).

Changes in contributions, but also specific diversity and

quantity of dead seagrass leaves vs drifted macroalgae will

probably change AEM food web topology and energy fluxes.

Influence of AEM composition on food web structure is not well

known but, as stated before, living algae material (i.e. micro and

macro epiphytes, decaying drifted macroalgae) is often preferred
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over dead seagrass material (Hyndes and Lavery, 2005), even if

dominant fauna component are able to use dead seagrass and

respond positively to dead material pulse (Remy et al., 2017;

2021). A relative increase of macroalgae contribution (or a

relative decrease of dead seagrass contribution) would lead to

green AEM food web and to select more herbivorous species.

Nevertheless, many species found in subtidal AEM, particularly

gammarid amphipods, are relatively plastic regarding their diet

and are found in AEM whatever their composition. These more

plastic and opportunist species may adapt their diet to new AEM

composition. Nevertheless, changes in the source habitat may

also affect AEM food web in two other ways. Firstly, many

tropical algae are often better defended against herbivory (e.g.

Demko et al., 2017) and, therefore, could be less integrated in the

AEM food web. Change in macroalgae sourcing via the

replacement of native species by tropical invaders is therefore

likely to affect potential food sources available for AEM

inhabitants, food web structure and detritus processing.

Secondly, herbivory increase in tropicalized seagrass meadows

would lead to an increase of feces export relative to

macrophytodetritus export. This could have consequence for

AEM as habitat but also on AEM food web as fecal material do

not have the same dietary quality than macrophytodetritus

(see above).
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Conclusions and perspectives

There is considerable evidence that seagrass meadows are

already shifting to another state under the pressure of global

change (Strydom et al., 2020), and this rate of change is likely to

increase in the future (Hyndes et al., 2016). In temperate areas,

tropicalization of seagrass communities and/or functioning is

one potential scenario of these changes. Temperate seagrass beds

are recognized as a net autotrophic ecosystem, exporting variable

parts of its primary production to other marine and coastal

terrestrial systems. Here, we show that shifts in the quantity and

quality of exported detritus is likely to impact the functioning of

AEM in recipient ecosystems across the coastal seascape. AEM

could change either through: (1) declines in biomass or loss of

seagrass directly due to increased ocean temperatures (e.g. via

marine heat waves) or increased herbivory from tropicalized

herbivores shifting seagrass export to dissolved or finer

particulate material; (2) increased degradation and processing

of seagrass detritus within seagrass meadows leading to reduced

export; (3) replacement of large temperate seagrass species with

smaller tropical seagrass species with different leaf cycling, or

macroalgae species; and/or (4) loss or changes to macroalgae

species in neighboring habitats that export detritus (Figure 3B).

These processes will alter the amount, composition, quality,
FIGURE 3

Conceptual representation of the relative magnitude of the export of particulate and dissolved organic matter from seagrass meadows and
other subtidal macrophyte systems: (A) under current temperate conditions; and (B) and under tropicalized conditions with increasing sea
temperatures. Changes in the forms of seagrass, macroalgae and consumers are represented by the different symbols. The color and thickness
of each arrows indicates the type and the relative importance of the vector, respectively.
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timing and frequency of inputs of detritus into ecosystems that

rely on AEM as trophic subsidies, which will alter the suitability

of AEM as habitat and food for invertebrates. In addition,

changes in exported material associated with those processes

could decrease “rafting” of invertebrates into recipient habitats,

thereby altering recruitment of invertebrates, while the invasion

of tropical opportunistic invertebrates could alter the

invertebrate community structure of AEM. It is possible that

present dominant species resist these invasions considering these

dominant species are able to cope with a very large range of

environmental conditions and are able to adapt to diverse AEM

type and composition.

Ultimately, tropicalization of temperate seagrasses will alter the

export of seagrass detritus, and as a result, the AEM food web will

change too as food web topology and energy flow are largely linked

to AEM composition. Notably, this will be largely influenced by the

relative proportion of macroalgae vs seagrass detritus (Crawley

et al., 2009; Haram et al., 2020; Remy et al., 2021). Increases of

macroalgae contributions could shift this brown food web greener

than presently when AEM has been dominated by dead seagrass

leaves. However, beyond beaches and to a lesser extent surf zones,

we know very little about the biodiversity and functioning of AEM

in marine systems. Yet, AEM is known to accumulate in a range of

habitats across the coastal seascapes and offshore systems

(Table 1). Furthermore, there has been very limited advances in

our knowledge on export rates of seagrass detritus since the review

of Heck et al. (2008). Accumulations of kelp detritus in sub-tidal

areas have recently received much more attention, showing their

importance as habitats, delineating complex associated food webs

and underlining their role as trophic subsidies for coastal areas

(Duggins et al., 2016, Feehan et al., 2018; Filbee-Dexter et al., 2018;

De Bettignies et al., 2020; Frontier et al., 2021). We therefore

recommend far greater research effort into determining export

rates of seagrass detritus from temperate seagrass meadows, and

the role of AEM in a range of sub-tidal coastal and offshore
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systems. This will allow for a greater understanding of the flow-on

effects of tropicalized seagrass ecosystems beyond the

systems themselves.
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