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Machine-assisted object detection and classification of fish species from Baited Remote 
Underwater Video Station (BRUVS) surveys using deep learning algorithms presents 
an opportunity for optimising analysis time and rapid reporting of marine ecosystem 
statuses. Training object detection algorithms for BRUVS analysis presents significant 
challenges: the model requires training datasets with bounding boxes already applied 
identifying the location of all fish individuals in a scene, and it requires training datasets 
identifying species with labels. In both cases, substantial volumes of data are required and 
this is currently a manual, labour-intensive process, resulting in a paucity of the labelled 
data currently required for training object detection models for species detection. Here, 
we present a “machine-assisted” approach for i) a generalised model to automate the 
application of bounding boxes to any underwater environment containing fish and ii) 
fish detection and classification to species identification level, up to 12 target species. A 
catch-all “fish” classification is applied to fish individuals that remain unidentified due to a 
lack of available training and validation data. Machine-assisted bounding box annotation 
was shown to detect and label fish on out-of-sample datasets with a recall between 
0.70 and 0.89 and automated labelling of 12 targeted species with an F1 score of 0.79. 
On average, 12% of fish were given a bounding box with species labels and 88% of fish 
were located and given a fish label and identified for manual labelling. Taking a combined, 
machine-assisted approach presents a significant advancement towards the applied use 
of deep learning for fish species detection in fish analysis and workflows and has potential 
for future fish ecologist uptake if integrated into video analysis software. Manual labelling 
and classification effort is still required, and a community effort to address the limitation 
presented by a severe paucity of training data would improve automation accuracy and 
encourage increased uptake.
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1 INTRODUCTION

1.1 BRUVS for Marine Environment 
Reporting
Baited Remote Underwater Video Stations (BRUVS; Harvey 
and Shortis, 1995) have become widely adopted as the standard 
tool for non-destructive fish sampling in both coastal waters in 
Australia1 and across the world2, providing a cost-effective and 
40% more efficient approach to recording species counts than 
diver-operated video transects (Langlois et al., 2010; Watson 
et al., 2010). BRUVS sampling is based on self-contained video 
cameras, pointing at a fish-attracting bait source and recording 
visitation by fish to sample their diversity and abundance. The 
resultant video is traditionally manually analysed by specialists 
to identify, count, and photogrammetrically measure the fishes 
that visited the station. BRUVS video analysis shares a common 
challenge with other marine video data analysis: it is a time-
consuming and expensive process, typically taking several 
hours per hour of video (Francour et al., 1999). The Australian 
Institute of Marine Science (AIMS), a major user of BRUVS, 
estimates that 4,000 h of video from BRUVS are collected 
annually in Australia alone, taking approximately 12,000 h of 
highly trained analysts to manually extract usable fish diversity 
and abundance data.The analysis time lag from video recording 
to the delivery of numerical information creates a significant 
workflow bottleneck (Ditria et  al., 2020; Jäger et al., 2015; 
Sheaves et al., 2020) and inhibits research data synthesis and 
the timeliness of appropriate policy or management decisions. 
Overcoming these challenges requires accurate, reliable, 
autonomous classification, and measurement systems or tools 
to increase data throughput and significantly decrease analysis 
cost and time lag (Boom et al., 2014; Jäger et al., 2015; Kavasidis 
et al., 2014; Lopez-Marcano, et al., 2021a; Tseng and Kuo 2020; 
L. Yang et al., 2021).

1.2 Deep Learning for Fish Classification  
and Object Detection
Deep learning (DL) presents an opportunity to automate, or 
partially automate, the analysis. DL and object detection in 
automated fish classification is a rapidly developing field with 
potential well demonstrated through both computer vision 
methods (Strachan et al., 1990; Strachan, 1993; Storbeck and 
Daan, 2001; White et al., 2006; Huang, 2016; Miranda and 
Romero, 2017; Muñoz-Benavent et al., 2018) and object-based 
approaches for features and shape-based fish classification 
(Ravanbakhsh et  al., 2015). Extending to video, Salman et  al. 
(2019) used the Lucas-Kanade Optical Flow tracking method 
(Lucas and Kanade, 1981) to isolate moving objects, crop these 
fish out of the frame, and classify them individually using 
CNN. Fully Connected Networks (FCN; Shi et  al., 2018) can 
also classify any shaped image. More recently, object detectors 
such as YOLOv3 (Knausgård et  al., 2021), masked region-
based CNN for segmentation (Arvind et al., 2019; Ditria et al., 

1https://globalarchive.org.
2https://globalfinprint.org. 

2020), or hybrid object detection models (Mohamed et al., 2020) 
have been shown to outperform traditional computer vision 
techniques (L. Yang et al., 2021; X. Yang et al., 2021). DL models 
make predictions based on learning from labelled datasets and 
require substantial volumes of accurately data compared with 
traditional “rule”-based computer vision models (Rawat and 
Wang, 2017) but can extract ecologically useful information 
from video footage only when adequately trained (Cutter et al., 
2015; Ditria et al., 2021, Ditria et al., 2020). DL models can take 
many hours or days to train, although advances in Graphics 
Processing Unit (GPU) technology have sped up the training 
process by orders of magnitude (Hey et al., 2020) once automated 
tools become  available.

1.3 Challenges to DL Uptake by the  
Fish Ecology Community
BRUVS users need to be able to quickly analyse video 
imagery; for this, a DL model (or DL-based approach) needs 
to simultaneously identify a fish individual in a video scene 
and to identify its species, something as yet unavailable. A DL 
model that can simultaneously perform object detection and 
classification requires: i) training datasets with bounding boxes 
already applied, identifying the location of all fish individuals 
in a scene, to learn to identify fish; and ii) training datasets 
identifying species with labels, task that must be undertaken by 
fish specialists following established quality control protocols 
(Langlois et al., 2020).

1.4 Dataset Availability and Suitability
Despite the potential, the application of DL to automating 
fish identification and classification still presents limitations 
and challenges for widespread adoption into BRUVS analysis 
workflows and meeting specific BRUVS analysis requirements. 
A paucity of training data is one reason for this and is a major 
limitation to DL uptake by the fish ecology community. Data 
paucity for DL model training is a recognised challenge 
common to many disciplines and one that, for some domains, 
has been well addressed due to availability of datasets (for 
example, Common Objects in Context, COCO, Lin et al., 2014).

A range of publicly available fish datasets exists, summarised 
concisely by Ditria et al. (2021) but, for several reasons, do not 
meet the requirements for DL and object detection development. 
Several datasets exist for image classification (Holmberg et al., 
2009; Anantharajah et al., 2014; Boom et al., 2014; Kavasidis 
et  al., 2014;  Cutter et al., 2015; Jäger et al., 2015; Saleh et al., 
2020; Ditria et al., 2021; Lopez, 2021; Lopez-Marcano et al., 
2021b), but few resolve the object detection challenge, instead 
identifying the species once cropped from the image. Although 
some datasets do address object detection (e.g., Saleh et al., 
2020; Ditria et  al., 2021; Lopez, 2021; Lopez-Marcano et al., 
2021b) they fall short due to lack of bounding boxes (e.g., Saleh 
et al., 2020), lack of species labels matching the BRUVS species 
library (e.g. Cutter et al., 2015; Holmberg et al., 2009), or video 
resolution inadequacy for accurate computer vision application 
(e.g., Boom et al., 2014; Kavasidis et al., 2014). There are many 
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hours of public and hand-labelled BRUVS data available3,4,5 
but, as with the examples by Cutter et al. (2015) and Holmberg 
et al. (2009), they are very imbalanced in the species labelling, 
reiterating the challenge of training DL models to a high enough 
precision to recognise the required object (Xu and Matzner, 
2018; Li and Ling, 2022). For the method that we propose and 
explain in further detail in later sections, we use the datasets of 
(Ditria et al., 2021; Lopez, 2021; Lopez-Marcano et al., 2021b; 
Saleh et al., 2020) for out-of-sample testing for generalisability. 
The OzFish dataset (AIMS, 2019) is closest to meeting the DL 
requirements, having been designed specifically to do so and 
analysed and quality-controlled following the marine sampling 
field manual for benthic stereo BRUVS (Langlois et al., 2020). 
However, OzFish presents its own challenge for DL: the point-
based measurements made by fish ecologists were intended for 
easier, quicker video analysis, and not with DL models in mind. 
The pixel location of the label is recorded in the software, and the 
ecologist assigns a genus or species label to the fish. The location 
and species of the label then can be exported for training DL 
models; however, object detection models require the extent of 
the object to be defined either using a bounding box, polygon, 
or per-pixel segmentation, each increasing in complexity and 
time to apply manually by a fish ecologist. OzFish does include 
some bounding boxes with associated species labels, but only 
for the MaxN objects (the maximum number of individuals 
observed in a single video frame within the 1 h observation 
period) and not every object in the image. Although MaxN 
has been adopted as a conservative and practical abundance 
estimate, it obviates the need to record every individual and has 
the potential to repeatedly count the same fish as it enters and 
leaves the field of view. MaxN is therefore unsuitable for DL 
dataset generation which requires every object (species of fish 
in this case) to be labelled to ensure negative reinforcement of 
the classifier. As such, OzFish is also deficient in the requisite 
training data for object detection and classification; however, it 
has bounding boxes and species in the same dataset, providing 
a basis for the proposed approach.

1.5 Data Volume to Train for  
Accurate Performance
Data-driven DL models require very large datasets 
(conservatively estimated at greater than 2,000 images per 
class of object by early YOLO researchers6), split into separate 
training and validation datasets, and expertly hand-labelled 
and curated by fish experts. For a DL model to identify the 
location of a fish in a video scene, it has to have been trained 
to identify the location of a fish; this requires the training 
data to have had bounding boxes already applied to all fish in 
every scene to achieve accurate performance. For a DL model 
to identify species, the training dataset also requires the fish 
to be identified at the species level identification level with 

3OzFish https://github.com/open-AIMS/ozfish.
4Fish 4 Knowledge https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/.
5LifeCLEF https://www.imageclef.org/.
6https://github.com/AlexeyAB/darknet#custom-object-detection.

labels applied. The time required to add bounding boxes and 
the specialism involved in species identification mean that the 
volume of data just does not exist yet for effective DL model 
training and accurate performance for generalised application. 
Even with specially designed software such as EventMeasure7, 
the amount of data that needs to be processed can overwhelm 
the human resources available for analysis (Sheaves et  al., 
2020), curtailing high-quality assessment and label numbers 
required for model training. Retroactively hand-labelling all 
of these data is not feasible due to the sheer size and volume 
of the data. Data augmentation and synthetic data generation 
methods (Allken et al., 2018) have been developed but are yet to 
completely solve the problem of insufficient datasets.

1.6 Generalisation to Real-World 
Application
Reported detection algorithm accuracies are commonly calculated 
by using test data generated as a subset of a larger corpus of data 
(Villon et al., 2018). This method of model evaluation is required 
to ensure DL models are not over-fit and gives some metric of 
how well the model can generalise to real-world applications. 
Applying models to different habitats (domain shift) also leads 
to increased false-positive results. To address this, Ditria et  al. 
(2020) highlight the importance of training DL models in a 
variety of different habitats as seagrass and reef models did not 
perform well when trained exclusively on one habitat and testing 
on the other. Furthermore, in situations such as those occurring 
with BRUVS videos, when the prediction models are applied to 
data collected from habitats that include a wider variety of fish 
species than they have been trained on, the model’s performance 
metrics quickly degrade due to false-positive detections of 
species that are not included in the training data. This scenario, 
known as the “out-of-sample”, describes the number and types 
of objects that the DL algorithm is required to classify outside 
the sampled classes (i.e., species) of fish it was trained on. When 
DL models are trained with constrained datasets and deployed in 
unconstrained environments, objects observed in a given scene 
that are not included in the training corpus of data will generate 
and apply false-positive labels. Connolly et  al. (2021) address 
the challenge of reducing false-positive detections due to fish 
occlusion but limit their study to targeting a single key species, 
reducing the number of species able to detect but with improved 
accuracy for the target species.

Recognising the enormous need to speed up data analysis and 
processing of an ever-growing corpus of BRUVS data in step with 
current DL capabilities, we present a machine-assisted approach 
to labelling of fish in BRUVS video imagery, which aids the 
current manual process and enables the generation of training 
data to be used in fine tuning DL models for species classification. 
The objective is to develop a hybrid DL methodology for 
simultaneously applying species labels to detected fish objects in 
moving video, with the potential for integrating into and assisting 
existing BRUVS analysis workflows.

7https://www.seagis.com.au.
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2 METHOD

Here, we present the steps taken to develop a machine-assisted 
approach to automated bounding boxes application and species 
labelling fish in BRUVS underwater video imagery. The potential 
for application of DL to underwater video imagery is yet to be 
realised due to the paucity of labelled BRUVS data. Development 
of this approach has therefore included consultation with the 
specialists, in this case fish ecologists and the BRUVS user 
community, to address sampling and analysis requirements. 
Involving the user community in developing practical approaches 
to overcoming specific challenges is well recognised as essential 
to optimising workflows to mutual benefit (e.g., Holmberg et al., 
2009; Boom et  al., 2014; Weinstein, 2018; Herrera et  al., 2020; 
Sheaves et al., 2020).

The approach that we take to development i) applies a DL model 
for testing the generalisation of the bounding box generation and 
applying a “fish-only” label, ii) applies a second model to test species 
classification, and iii) applies a third model for which sufficient 
species label data exists to confidently train the model for a subset 
of 12 species. Confidence in species label performance for 12 target 
species derives from the performance of object detection in step i, 
wherein the fish-only label has identified the fish. A glossary of the 
terms explaining their application is provided in Table 1.

2.1 Datasets
The BRUVS video imagery available to this study is the Ozfish8 
dataset (AIMS, 2019) made available publicly available by the AIMS, 
University of Western Australia (UWA) and Curtin University, for 
the purpose of developing machine learning–based automation 
methods for annotating BRUVS (Figure 1). The OzFish data were 
collected, analysed, and quality-controlled following the marine 
sampling field manual for benthic stereo BRUVS (Langlois et al., 
2020). The ideal dataset for DL is to have every image labelled 
with both the fish species and a bounding box. Of the datasets 
available and accessible publicly, OzFish contains the species and 
bounding box combinations needed for model development. The 
OzFish dataset includes two different annotation sets: i) the extent 
of all the fish in each image defined with a bounding box but not 
including the species label of the fish; and ii) a “point-and-labelled” 
annotation set, hand-labelled with the species as a single point on 
the body of the fish, but without a bounding box.

All species of fish are manually identified with specialist video 
analysis software with built-in species libraries, and the abundance 
of each species is estimated by recording the MaxN value for each 
(e.g., Whitmarsh et al., 2017). As previously noted, MaxN is not 
useful for the DL application, but the species labels associated with 
MaxN are used.

2.2 Deep Learning for Object Detection 
and Bounding Box Generation
Although there are a number of possible object detection 
model families, for this project, we adopted a You Only Look 
Once model (YOLO; Redmon et al., 2016). YOLO has multiple 

8OzFish collection: https://github.com/open-AIMS/ozfish.

implementations available depending on the size, number of 
classes, and computer resources required for a particular use case. 
The implementation used in this study YOLOv5 is a model that 
has been trained on the Common Objects in Context (COCO) 
public dataset. Starting with the available model trained using 
COCO, the specific implementation for this study was the large 
YOLOv5 large. The deep transfer learning technique was used to 
build upon previously learned model knowledge to solve the new 
fish classification task while reducing the training time and data 
volume required compared with training from an uninitialised 
state. Transfer learning was used to retrain the model, using a 
subset of the OzFish dataset. We followed the standard procedure 
for selecting the implementation and retraining using transfer 
learning for custom data outlined on the YOLOv5 website.9

2.3 Preparation for Transfer Learning 
and  Retraining
Figure  2 illustrates the steps taken to identify and filter for 
images with species labels from the OzFish image collection, 
subset and prepare the images with bounding boxes and labels 
for model training. For reference, we define our main dataset 
terms in Table 1.

To make use of the available data and leverage the expertly 
annotated point-and-labelled dataset, two primary key species 
were targeted for relabelling with bounding boxes: Lethrinus 
punctulatus (Bluespotted Emperor) and Lutjanus sebae (Red 
Emperor). These two species were selected for their abundance 
in the videos. They are also of interest because they represent two 
differing forms of patternations and body shape; one quite distinct 
in colour pattern and body form (L. sebae) and one more generic 
in form and colouration (L. punctulatus). Both are a relatively 
large fish and so avoid the possible added complications brought 
by particularly small subject sizes and consequent insufficient 
image resolution. Both species are also sought after target fish 
for recreational and commercial fishing and are representative of 
certain species that may be of particular interest in a monitoring 
campaign.

All of the point-and-labelled images that included either 
L.  punctulatus or L. sebae were subset from the full corpus of 
images, generating a subset of 1,751 images that had single point 
labels of the targeted species and many other fish in the images 
with no labels at all. The target species were relabelled with 

9https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data.

TABLE 1 |  Glossary of terms.

Term Definition

Fish A class that aggregates all species outside the 12 
species into a single class for labelling

Fish-only Binary class applied to fish of any species
Bounding box A rectangle label that surrounds the fish that specifies 

its location
Point-and-labelled A pixel point on the body of a fish that includes a 

species label
Box-and-labelled A bounding box that includes a species label
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bounding boxes, and all other fish in the images were given both 
bounding boxes and species labelled by a fish ecologist resulting 
in 42,685 fish in total. Finally, the top 12 most abundant species 
labels of the subset were kept, and any labels outside the top 12 
by abundance were relabelled with a 13th catch-all “fish” class, 
chosen to avoid the long distribution tail of single-digit labelled 
fish that results in selecting more than 12 species and which 
are insufficient in number to use for training and impossible to 
split between the train, validate, and test validation sets. This 
relabelling process, the “box-and-labelled” data, resulted in 
42,685 total number of object labels; 37,573 were given the fish 
label leaving 5,112 objects with species labels. Fish labelled with 
both species and bounding boxes are considered the “ground 
truth” labels for testing the accuracy, precision, and recall during 
model testing.

A two-step process was applied to fish detection model 
development:

1. Object detection and bounding box generation: A single  
fish-only class object detection model was trained using 
transfer learning. Every bounding box labelled fish was given 
a single fish-only label regardless of species. The box-and-
labelled data were split into train, validation, and test sets 
with 66%, 17%, and 17% by class, respectively. The train data 
were used to train the model, the validation data were used 
for monitoring the training progress, and the test data were 
reserved for calculating the performance metrics.

       This process resulted in a detection model for all classes of fish 
that applies a bounding box annotation. To test the recall of the 
fish detection model and to derive an indication of how well 
the detection model performed when applied to data outside 
the sampled training set, the model detection was applied 
to four completely independently collected and published, 
out-of-sample datasets: DeepFish (Saleh et al., 2020), Dataset 
A (Lopez-Marcano et  al., 2021b), Dataset B (Ditria et  al., 

2021), and Dataset C (Lopez, 2021). The DeepFish dataset 
includes three annotation sets: classification, localisation, and 
segmentation sets. For testing the fish detection model, 1,600 
localisation images were combined into a binary fish-only/
no-fish test set, from which the recall of the detection model 
is derived.

2. Species labelling: The second method was to train a species 
detection model focusing on the 12 species and one fish 
label in the box-and-labelled data. The same transfer 
learning, starting with the COCO model, was repeated 
for the species detection model. The aim of this step was 
to develop an automation model that could target key 
species of interest and automatically apply bounding box 
annotation to all other species. Species aggregated into 
the fish class will still be required to be hand-labelled, 
but, where key species are present, the labelling process 
is automated by the model. In addition, bounding box 
annotations are applied to all fish across all classes to assist 
with future DL datasets after manual labelling of species. 
The distribution of each class and the number of individual 
fish are shown in Figure 3.

     A Jupyter Notebook containing the code used to prepare both 
the OzFish data and the DeepFish Data are published on 
Github10.

2.4 Metrics for Model Performance

2.4.1 Recall, Precision, and F1 Score
It can be useful to condense model performance down into 
a single measurement. An F1 score is an example of such 
a measurement and is the harmonic mean of both recall 
and  precision.

Recall (Equation 1) is the probability of ground truth objects 
being detected, whereas labelled recall is the probability of 
ground truth objects being detected and correctly labelled. 
Precision (Equation 2) is the probability of predicted objects 
matching ground truth objects. F1 is derived from the recall 
and precision by Equation 3.

Recall:

 

Recall TP
TP FN

=
+   

Equation 1 

 Precision: Precision TP
TP FP

=
+

  Equation 2

F1 score: F score Recall Precision
Recall Precision1

2
=

× ×
+

  Equation 3 

10https://github.com/AutomatedFishID/afid-publications/blob/main/Data_Audit.
ipynb.

FIGURE 1 |  Stereo BRUVS deployed in situ: a steel frame on which 
is mounted one or two video cameras (typically GoPro or small Sony 
camcorders) in underwater housings, in either a mono or stereo 
configuration. A container of bait is projected 1.5 m in front of the camera, 
attracting fish into the BRUVS video view. From Langlois et al. (2018).
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where TP is true-positive, the classifier made the same prediction 
as the ground truth label; FP is false-positive, the classifier 
predicted a class that was different to the ground truth label; and 
FN is false-negative, the classifier failed to predict a class where a 
ground truth label existed.

2.4.2 Out-of-Sample Validation for Automated 
Bounding Box Generation
Testing and validation of the model performance in real-world 
applications is difficult due to the lack of bounding box ground 
truth datasets. The lack of ground truth bounding boxes in 
the out-of-sample datasets made validation metrics based on 
localisation impossible. Furthermore, as these datasets did not 
include species labels for our 12 targeted species, out-of-sample 
validation for the species detection model was also impossible 
for these specific species; this is due to the model not having been 
trained to identify these species.

For an indication of the model’s ability to generalise automation 
of bounding box annotations in out-of-sample applications, the 
fish detection model was run over all of the 1,600 DeepFish 
localisation images. Where the DeepFish pixel point ground truth 
label was found inside the extent of the bounding box detected by 
the fish detection model, it was considered a TP result. There is no 
way to assess FP with any of the out-of-sample validation data, and 
precision and therefore F1 score cannot be calculated, only recall. 
All models were given a confidence threshold of 0.5, meaning any 
predictions with a confidence less than 0.5 were ignored.

3 RESULTS

3.1 Model Performance: Object Detection 
and Automation of Bounding Box Labels
A recall above 0.700 of the fish-only detection model when 
applied to all the out-of-sample datasets indicates how well the 

FIGURE 3 | Data used for training YOLOv5. The train, validation, and test data were split at a ratio of 66%, 17%, and 17%, respectively, between classes, chosen 
to optimise the number of test classes available

FIGURE 2 | Data preparation steps and subsetting, identifying all images that included species labels followed by filtering two primary key species then manually 
relabelling all fish with bounding boxes and species generated the data used to train YOLOv5.
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model generalises when applied to real-word use-cases and 
its ability to automatically apply bounding box labels to fish 
(Table 2). Furthermore, this gives a positive indication of how 
well the fish class will generalise in the 12 species + fish model. 
The Supplementary Material includes a selection of images 
extracted from the resulting videos, from both the OzFish dataset 
and out-of-sample datasets (DeepFish, A, B, and C). The images 
clearly demonstrate: i) object detection performance across all 
datasets, with the model identifying fish against backgrounds of 
a range of habitat types (such as seagrass, sand, and coral) and in 
a range of water conditions and clarities; and ii) species labelling.

3.2 Model Performance: Species 
Classification
Table  3 shows that the fish-only model gives more accurate 
metrics than the out-of-sample test presented in Table  2 
indicated by an F1 score of 0.786, compared with that of 0.560 
in Table 3. The table also shows that the 12-species model does 
not perform as well as the model that includes the fish class; this 
is due to the model finding false-positives. Where fish labels 
exist outside the 12 target species, this model applies one of the 
12 labels resulting in many false positives.

The model with the fish class in comparison more often 
applies the more general fish class as it is more confident with 
that label, albeit it does so with reduced per class accuracy. 
These results demonstrate the ability to target species leaving 
unknown species for manual labelling in a single pass rather 
than finding all the fish using the fish-only classifier and then 
relabelling with a second species classifier.

3.3 Model Performance: Automation of 
Bounding Box Labelling
Table 4 summarises the number of fish that were automatically 
given the fish label and the fish that were given species labels 
across the full corpus of data. The fish label reduces false-positive 
species classifications and incorrectly labels some known species 
as fish. In the context of generating datasets for DL training, this 
reduced accuracy in species detection is preferred over false-
positive classifications, and this improved model is represented 
by a higher F1 score in Table 2.

4 DISCUSSION

The innovation of this research is to combine machine-assisted 
learning with a DL model to decrease the manual labour required 

to annotate and classify images of fish collected by BRUVS. 
Although the ability to develop accurate DL models for labelling 
species of fish remains a significant challenge due to the paucity 
of available training data, applying DL automates bounding 
box annotation and key fish species labelling and presents an 
approachable method for accelerating these processes. As more 
labelled data becomes available, it is anticipated this method will 
increase the automated labelling accuracy because bounding 
box and manually labelled data can be added back into training 
datasets and used to further tune, train, and develop new DL 
models. Our results supports other recent work in combining 
methodologies for more effective fish object detection and 
observational analysis (e.g., Lopez-Marcano et al., 2021b); 
moreover, it demonstrates that taking an iterative, ideally 
community-oriented approach will go a long way to progressing 
the long-recognised requirements of accurately labelled data for 
DL (Boom et al., 2014; Jäger et al., 2015; Kavasidis et al., 2014), 
and, in particular, for automated fish observations, monitoring, 
and tracking, which lags behind other disciplines or above water 
object classes.

Annotating fish images with bounding boxes generates data 
suitable for training DL models such as YOLOv5; however, 
processing of high volumes of fish video with existing bulk 
labelling, web-based tools (Computer Vision Annotation Tool 
CVAT, for example11) is not possible as they are not trained to 
recognise fish to apply the bounding box around it, let alone label 
to species level, which is challenging even for humans. Manual 
annotation is now achievable with the video analysis software 
EventMeasure, which was developed specifically for point 
annotation and species labelling. The challenge with labelling fish 
using bounding boxes is that it takes considerably longer for a 
fish ecologist to draw the box than to make a point measurement 
annotation. Following the standard operating procedure12 for 
drawing bounding boxes in EventMeasure, it takes approximately 
10 s to draw and adjust the bounding box around a single fish. 
Compared with less than 1 s for a point measurement, this extra 
time compounds over the course of annotating an hour-long 
video with thousands of images of fish. Ditria et al. (2020) take 
an R-CNN approach to object segmentation; the additional time 
required to draw the polygon would be even more impractical 
for BRUVS analysis. A reasonable balance of manual bounding 

11https://github.com/openvinotoolkit/cvat.
12https://youtu.be/u7XLa7EdcPo.

TABLE 2 | Summary of the datasets used for evaluating the object detection performance. 

Dataset Footage Type Annotation Level Annotation Type Evaluation Level Out-of-Sample Precision Recall F1

OzFish BRUVS 507 species BB Fish-only FALSE 0.898 0.699 0.786
Dataset A RUV 3 species Partial BB Fish-only TRUE - 0.701 -
Dataset B RUV 2 species Partial BB Fish-only TRUE - 0.885 -
Dataset C RUV 19 species Partial BB Fish-only TRUE - 0.786 -
DeepFish RUV Location (pixel coordinates) Point Fish-only TRUE - 0.700 -

OzFish included bounding boxes (BB) for all fish, datasets A, B, and C included bounding boxes for some fish in the image (Partial BB) and DeepFish included pixel points (Point).

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
https://github.com/openvinotoolkit/cvat
https://youtu.be/u7XLa7EdcPo


Marrable et al. Species Recognition With Machine-Assisted Deep Learning

8Frontiers in Marine Science | www.frontiersin.org August 2022 | Volume 9 | Article 944582

box annotation for DL model training with model performance 
accuracy needs to be found.

Once trained, DL models can annotate images much faster 
than humans; a single image in this study takes approximately 
500 ms to annotate using YOLOv5-large, and an hour-long 
video at 30 frames per second can be completely annotated 
with YOLOv5-large in approximately 15 m. Furthermore, every 
single frame in the video can now be automatically annotated, 
an impractical expectation for a human annotator to complete 
as it would take too long. The ability to detect and count every 
fish in every frame in 15 m represents a significant advancement 
in this field, to date unseen in the published literature. Whereas 
human labellers are limited to analysing a small subset of video 
key frames of interest such as MaxN frames, this advancement 
presents opportunities to increase the information gathered from 
BRUVS, such as average number of fish, statistical distributions 
of fish abundance, and pre-screening for MaxN frames.

4.1 Limitations
By training a fish detection model, we have demonstrated that 
drawing the bounding box can be automated using YOLOv5 
with a recall of greater than 0.70, using an out-of-sample testing 
method. Intuitively, this means that a fish can be correctly found 
and a bounding box applied approximately 70% of the time. 
Hand labelling is still required for the 30% of fish that the model 
has missed, but a 70% automatic identification rate represents a 
considerable reduction in time required to manually identify and 
label and presents a compelling case for integration of machine-
assisted stages into analysis workflows.

The species labels in the out-of-sample datasets used for 
validation are not labelled with bounding boxes and do not 
include the same target 12 species; it is therefore impossible to 
test the species detection accuracy and emphasises the point that 
detector performance is dependent on training data, and training 
and detection parameters, among other factors. Addressing this 

paucity of public datasets for DL must be considered a priority 
and highlights the complexity of developing a generalisable 
model and the challenges in quantifying their accuracy. Labelling 
fish with a single fish label is insufficient for fish ecology research, 
and monitoring purposes and species identification is still 
required (Galaiduk et  al., 2018). DL models based on YOLO 
require a very large number of images per class (greater than 
2,000) to converge on accurate predictions. For application to the 
marine environments, often impacted by complex water quality 
parameters such as turbid and dark water, the number of images 
per class may be much higher, and quantifying this requirement 
remains ongoing research. After subsetting the OzFish dataset 
and adding bounding box labels, the only class label with greater 
than 2,000 images was the fish class; the second most abundant 
class, L. punctulatus, was 1,737; and all others were less than 600. 
There exists many publicly available datasets such as COCO for 
DL training and advancement for common objects; however, 
complete and publicly available datasets for fish ecology, expertly 
labelled with bounding boxes, do not yet exist.

4.2 Real-World Generalisation
Applications of CNNs to underwater fish imagery have, to 
date, been of species labels applied to cropped images of fish 
(i.e., image classification, not object detection) with up to 90% 
reported classification accuracies (e.g., Salman et  al., 2016; 
Villon et  al., 2018). Application of CNNs to BRUVS is more 
challenging, even impossible because BRUVS have many fish in 
a single image and an object detection model is required before 
labelling. Furthermore, the reported classification accuracy and 
comparison to human accuracy is only valid for the in-sample 
images. When applying DL to habitats with an abundance of 
species unknown prior to BRUVS deployment, these accuracy 
metrics are invalid as the model cannot apply a label that it has 
not been trained to recognise. Our catch-all fish approach was 
developed to negate this issue by applying a generic label to 
unrecognised fish.

Generalisation of DL models remains a significant challenge 
(Ditria et al., 2021; Ditria et al., 2020; Xu and Matzner, 2018) with 
previous cross habitat analyses demonstrating the requirement 
for training on accurately labelled datasets and a reduction in 
performance when a model trained on data captured in one habitat 
is applied to a novel habitat. In this study, we quantify how well 
the fish detection model generalises by training using the OzFish 
data and applying tests to out-of-sample datasets. OzFish, being an 
amalgam of data from different habitats, addresses this issue and 

TABLE 4 | The total number of autonomously labelled species and the number 
of fish autonomously identified for manual labelling using the 12 species + fish 
model.

Labels Total Percentage

12 species 5,112 12%
Fish 37,573 88%

TABLE 3 | Summary of the datasets used for evaluating the species classification performance on the OzFish test data. 

Dataset Footage Type Annotation Level Annotation Type Evaluation Level Out-of-Sample Precision Recall F1

OzFish BRUVS 507 species BB 12 species FALSE 0.641 0.497 0.560
OzFish BRUVS 507 species BB 12 species + fish FALSE 0.898 0.565 0.694

The comparison shows the improved performance when using the fish label for species outside the 12 targeted species.
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potentially partially explains the high performance of our model. 
As these data do not include species labels for our targeted species 
or bounding box labels, a robust test of generalisation remains the 
focus of future work as more datasets become available. However, 
our Supplementary Material demonstrates encouraging progress 
upon application to DeepFish and datasets A, B, and C in which 
the object detection performs well against a range of benthic 
habitats and water clarities.

4.3 Datasets for Future Development
OzFish partially addresses the labelling requirement for marine 
environments by freely and openly publishing annotation sets for 
advancing DL. As these data are open source, a community of 
ecologists are needed and encouraged to complete the labelling of 
this data for future advancement of DL. By subsetting the OzFish 
data collection to create a dataset that has manually applied 
bounding box and species labels to train a DL model based on 
YOLOv5, we have established the possibility of automatically 
labelling 12 species of fish while also identifying fish and 
aggregating counts outside the targeted species. Training the 
fish prediction model using OzFish and testing the classification 
accuracy on the out-of-sample datasets demonstrate that the 
model appears to generalise and can automate the application 
of bounding box labels. Such automation of bounding box 
annotations would be applicable to other reliable datasets that 
are published with point annotation labels and would be a viable 
contribution to growing the corpus of DL datasets.

4.4 Workflow Integration
DL models and algorithms continue to advance, and we have 
demonstrated that DL has the potential to assist fish ecologists’ 
research and labelling. The use of a single-label fish detection 
technique also opens opportunities for counting fish stock in 
farms (Yang et  al., 2021) such as southern bluefin tuna farms 
where a single species is present (Xu et al., 2020). By targeting 
key species, many of the manual labels can be automated. Before 
automated methods using DL can be realised, species-rich 
datasets, labelled with defined extent (bounding box, polygon, or 
segmentation), need to significantly increase.

A machine-assisted method employing DL to target key 
species would be a valuable bridging step in the process of data 
curation and preparation for video analysis workflows. Where 
the DL model has low confidence and fish in the image are not 
within the targeted species, a fish ecologist is left to manually 
label the remainder. In this study, 88% of fish were identified 
and given a bounding box, and approximately 12% of images 
were automatically labelled with species. The time saved from 
doing these tasks manually is incentivising; not only does it 
speed up the process of identifying and labelling the datasets for 
environmental assessment, it presents a convenient and attainable 
solution for addressing the data paucity challenge because more 
data can be exported and published in a format suitable for 
furthering DL applications in this field. Added incentive for 
uptake and application of DL approaches for underwater video 
analysis would take the form of integration with software such as 

EventMeasure, minimising the disruption to current workflows 
and allowing fish ecologists to easily leverage this technology if 
required.

5 CONCLUSION

We demonstrate that applying a DL model is an effective approach 
to automated bounding box annotation, bridging a large gap in 
advancing BRUVS analysis for data-driven ecosystem assessment 
and management. Improvements in retail GPU performance 
and price and access to powerful, on-demand GPUs in the 
cloud (such as Google Colab and Amazon Web Services) makes 
DL a potentially cost-effective approach to autonomous fish 
classification, increasing reusability, accuracy, and scalability 
(Lopez-Marcano et al., 2021a; Yang et al., 2021). Coupled with 
this, it is anticipated that, once a machine-assisted workflow has 
been integrated into software, the cost and turnaround time of 
video processing will be substantially reduced, offering: i) the 
prospect of wider and more frequent application of BRUVS and 
related video-based sampling methodologies; and ii) a more 
comprehensive ability to monitor and assess fish populations in 
coastal and offshore waters. DL also opens up the potential for 
fish surveys to be undertaken by non-specialists and the results 
to be analysed and reported to stakeholders and relevant agencies 
in a timelier manner than currently possible.
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