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The Yokozuna Slickhead Narcetes shonanmaruae is a recently described deep-sea fish 
species and an active-swimming, relatively large top predator in Suruga Bay, Japan. Its 
only known habitat is the deepest part of the bay (>2,000 m); six individuals have been 
collected thus far (up to 138 cm in total length). During our monitoring survey of faunal 
diversity on seamounts within marine protected areas in Japanese waters, environmental 
DNA (eDNA) metabarcoding revealed the Yokozuna Slickhead 12S ribosomal RNA gene 
sequence on/around three seamounts belonging to the Nishi-Shichito Ridge (at depths 
of around 2,000 m) located 400–600 km south of the known locality. A baited camera 
system deployed at the foot of one of the three seamounts at a depth of 2,091 m captured 
a Yokozuna Slickhead individual that was over 250 cm in total length, threatening Pacific 
Grenadiers Coryphaenoides acrolepis around the bait and attacking the bait cage. A 
combination of eDNA metabarcoding and baited camera observation represents a 
powerful tool for the detection of rare predatory fish species and the study of their ecology 
even in the deep sea, thus helping to better understand vulnerable marine ecosystems 
and reveal the impact of the rapidly changing global ocean.

Keywords: eDNA metabarcoding, baited camera, rare species, top predator, Yokozuna Slickhead, marine 
protected area, Nishi-Shichito Ridge, MiFish primer

INTRODUCTION

Top predators play an important role in maintaining species diversity and ecosystem functions 
(Sergio et al., 2005; Baum and Worm, 2009; Estes et al., 2011; Wallach et al., 2015). The extinction 
and reintroduction of gray wolves in Yellowstone National Park are examples of drastic changes 
in top predator populations that affect the entire ecosystem (Ripple and Beschta, 2012). Similar 
instances can be enumerated not only in terrestrial but also in marine ecosystems (Myers et al., 2007; 
Baum and Worm, 2009; Roff et al., 2016).

Marine environments are increasingly affected by global climate change and anthropogenic activities, 
leading to oceanic warming, acidification, and deoxygenation even in deep-sea regions (Levin and Le 
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Bris, 2015). Such global changes are assumed to initially affect 
large, predatory consumers and have subsequent repercussions 
for organisms at lower trophic levels (Zarnetske et al., 2012). Thus, 
there is an urgent need to elucidate the present biodiversity and 
abundance of predatory fishes inhabiting deep-sea sites (Schmitz, 
2007; Tecchio et  al., 2013). However, due to the relatively small 
population sizes, the probability of detecting top predators is 
usually low in all environments, especially in the hydrosphere where 
organisms are hidden beneath water layers (Jerde et al., 2011).

Environmental DNA (eDNA) detection represents a powerful 
tool for assessing aquatic biodiversity (Miya et  al., 2015; 
Yamamoto et al., 2017) and is also used for the efficient detection 
of “hard-to-find species,” including top predators (Jerde et  al., 
2011; Wilcox et al., 2013; Fukumoto et al., 2015; Thomsen and 
Willerslev, 2015; Bakker et al., 2017; Weltz et al., 2017; Boussarie 
et  al., 2018; Lafferty et  al., 2018; Postaire et  al., 2020; Ip et  al., 
2021). Detection of a species-specific eDNA sequence implies the 
presence of this species in a certain area.

However, further ecological information, such as body size, 
population, sex, maturity, coloration, and behavior, is not obtained 
in most cases through eDNA metabarcoding alone. Baited camera 
observation is one of the complementary methods for detecting 
predatory/scavenging species, which not only indicates the diversity 
of species but also provides insight into population size, abundance, 
behavior, and relationship with conspecific or heterospecific 
individuals (Stoner et al., 2008; Brooks et al., 2011; Devine et al., 
2018; Fujiwara et al., 2021b; Sakaue et al., 2021; Aoki et al., 2022).

The Yokozuna Slickhead Narcetes shonanmaruae is a recently 
discovered large predator in Suruga Bay, Japan (Fujiwara et  al., 
2021a). Compound-specific isotope analyses of specific amino 
acids and DNA metabarcoding analyses of the stomach contents 
revealed that the slickhead consumes relatively large fish species 
and is a top predator at depths greater than 2,000 m in Suruga Bay 
(Fujiwara et al., 2021a). Only six individuals have been collected so 
far, with their distribution limited to the Suruga Bay mouth, and 
the extent of their habitat remains elusive (Fujiwara et al., 2021a).

In 2020 and 2021, two research cruises were conducted to 
develop biodiversity monitoring methods for the management of 
deep-sea marine protected areas (MPAs) and monitoring the deep-
sea MPAs in Japanese waters (Hookabe et al., 2021; Koeda et al., 
2021; Hookabe et al., 2022; Jimi et al., 2022; Komai et al., 2022). 
To understand fish diversity including large predatory consumers, 
metabarcoding analyses of fish and baited camera observations 
were conducted on/around six seamounts on the Nishi-Shichito 
Ridge as well as the Central and Western Mariana ridges, which are 
designated as MPAs. During the research cruises, we coincidently 
discovered novel habitats of the Yokozuna Slickhead, which were 
distantly separated from the type locality. Unexpected threatening 
behavior and colossal body size were also reported.

MATERIALS AND METHODS

Water Sampling and Metabarcoding  
of Fish
During cruises KM20-10C and KM21-E04C, seawater sampling 
and physico-chemical measurements were conducted using an 

SBE 32 Carousel Water Sampler (Sea-Bird Electronics, Bellevue, 
USA), which was composed of 36 bottles of 12-L Niskin water 
samplers with an SBE 9plus CTD (Sea-Bird Electronics) installed 
on R/V Kaimei belonging to the Japan Agency for Marine-Earth 
Science and Technology (JAMSTEC). Sampling locations are 
shown in Table 1 and Figure 1. Approximately 30 L of the collected 
seawater was immediately filtered onboard using an enclosed 
type filter, Sterivex-HV Pressure Filter Unit (0.45 µm pore size, 
PVDF membrane, gamma-irradiated, sterile) (Merck KGaA, 
Darmstadt, Germany) according to previous studies (Miya et al., 
2016; Kawato et al., 2021), and the filters were stored at −30°C in 
freezers onboard. To monitor contamination during the filtration 
process, blank samples (negative control) were prepared onboard 
by filtering approximately 30 L ultrapure water during the 
KM21-E04C cruise. Subsequent experiments were conducted in 
land-based laboratories after the cruises. eDNA extraction, first-
round PCR amplification for eDNA metabarcoding of fish using 
MiFish primers, paired-end library preparation through second-
round PCR, and MiSeq sequencing were conducted according 
to previous studies (Miya et al., 2015; Kawato et al., 2021; Oka 
et al., 2021). Data preprocessing and taxon assignment were also 
conducted according to the previous study (Oka et  al., 2021). 
The sequences reported here have been deposited in the DNA 
Data Bank of Japan (DDBJ) database under accession numbers 
LC710825–LC710836. All physico-chemical data were acquired 
using a CTD in real-time via a coaxial cable.

Baited Camera Observation
Baited camera systems were deployed to estimate the diversity and 
population density of predators/scavengers during the KM20-
10C and KM21-E04C cruises. Detailed information on the casts 
is shown in Table 2. Two types of baited camera systems were 
used. Both were deployed from R/V Kaimei in the free-fall mode; 
one, named “BCM,” was retrieved by a remotely operated vehicle 
KM-ROV installed on R/V Kaimei, and the other, named “POP,” 
released a sinker through an acoustic release command and rose 
to the surface by itself. Both BCM and POP were composed 
of the following: a digital still camera DSC-RX0 (Sony, Tokyo, 
Japan) equipped with a Beastgrip × Kenko Pro Series 0.75× wide-
angle lens (Kenko Tokina, Tokyo, Japan) (horizontal angle: 97.6°; 
vertical angle: 74.6° both in air); two LED flashlights (model no. 
OL0183) (KC Fire, Guangdong, China); three aluminum alloy 
housings for the camera and flashlights; an electro-magnetic 
current profiler Infinity-EM (JFE Advantech, Nishinomiya, 
Japan) for BCM or an electro-magnetic current profiler Infinity-
Deep (JFE Advantech) for POP; a miniature conductivity, 
temperature, and depth (CTD) logger DST-CTD (Star-Oddi, 
Garðabær, Iceland); an acoustic release transponder STE (Kaiyo 
Denshi, Tsurugashima, Japan); an ROV Homer (Sonardyne 
International, Yateley, UK); a stainless steel bait cage containing 
approximately 0.7 kg of fresh mackerel; a syntactic foam TG2000 
(Trelleborg AB, Trelleborg, Sweden) for BCM or a syntactic foam 
TG3000 (Trelleborg AB) for POP; and a stainless steel frame 
for BCM or a vinyl chloride frame for POP. Additionally, POP 
was equipped with a miniature flasher MMF-7500 (Novatech, 
Montreal, Canada), a miniature VHF radio beacon MMB-7500 
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(Novatech), an internal manufacturing sinker-release device, 
internal manufacturing backup release timer, a 20-kg steel sinker, 
and a customized plastic buoy 10AS-30 (Plastech Industrial, 
Tainan, Taiwan). Video recording was started approximately 
20  min before free fall and yielded 13-h video footage. All 
data, including video footage, CTD, and current profiles, were 
recovered when the system was retrieved onboard.

Size Estimate of the Yokozuna Slickhead
The size of Yokozuna Slickhead was estimated from the video 
images. The postorbital head width and the interorbital distance 
were measured using video grabs and corrected using the 
bait cage width (260  mm). The standard length (SL) was first 
estimated using the average ratio of the postorbital head width 
(9.08% in standard length) and the interorbital distance (7.33% 
in standard length) (Fujiwara et al., 2021a). The total length (TL) 

was calculated using the mean ratio of SL/TL (87.79%) (Fujiwara 
et al., 2021a).

RESULTS

Fish eDNA Metabarcoding
Eight CTD casts were conducted during KM20-10C and 
seven during KM21-E04C (Table  1). More than 2,600 kg of 
seawater was filtered using 75 cartridge filters at 15 sites on/
around six seamounts (35 ± 2 kg of seawater filtered/cartridge) 
(Table  1).  Approximately 7.8 million denoised reads were 
acquired using MiSeq sequencing. The reads of Yokozuna 
Slickhead were detected in seawater samples collected at a depth 
of 1,961 m at Shotoku Seamount, at a depth of 2,060 m south 
of Genroku Seamount, and at depths of 1,969 and 1,976 m at 
An’ei Seamount. No Yokozuna Slickhead reads were detected 

FIGURE 1 |  Research area and location of CTD casts and baited camera deployments. This map was created using QGIS software version 3.10 (https://qgis.org/), 
and bathymetric data etopo1 (doi:10.7289/V5C8276M) was supplied by the NOAA National Geophysical Data Center. Triangle: research locations; red triangle: 
Yokozuna Slickhead (Narcetes shonanmaruae)-positive sites; yellow triangle: Yokozuna Slickhead-negative sites; blue square: type locality of Yokozuna Slickhead; 
red box: the Nishi-Shichito Ridge Marine Protected Area.
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at depths shallower than 1,900 m, and detection was limited to 
the Nishi-Shichito Ridge (Table 1 and Figure 1). At all sampling 
sites where Yokozuna Slickhead reads were detected, more than 
half of the filters contained the reads (50–67% appearance shown 
in Table  1). Of these positive sites, the ratio of the Yokozuna 
Slickhead reads ranged from 0.5 to 8.9% (2.4% of the total reads in 
the positive samples) (Table 1). Even at the same location (CTD 
cast no. A02M001), Yokozuna Slickhead reads were detected 
near the seafloor but not in a midwater column (Table  1). No 
PCR product was detected from the blank samples.

Baited Camera Observation
Seven baited camera casts were conducted during KM20-10C 
and nine during KM21-E04C, at depths from 337 to 2,092 m 
on/around six seamounts (Table  2). More than 11  h of video 
sequences were recorded during each cast, and a total of 194 h of 
video footage was recorded by baited cameras (Table 2).

A single individual of Yokozuna Slickhead was observed 
at a depth of 2,091 m south of Genroku Seamount during cast 
no. POP1-1 at 17:52 (Japan Standard time; JST) on October 
14, 2021 (Table 2; Figures 1, 2, and Supplementary Video 1). 
The Yokozuna Slickhead individual came around the bait 5  h 
29  min 50 s after the baited camera landed (Figure  2A). Two 
Pacific Grenadiers Coryphaenoides acrolepis and two Snubnosed 
eels Simenchelys parasitica had already arrived around the bait 
before the arrival of the slickhead (Supplementary Video 1). The 
slickhead swam into the video frame from the right side against 
the current (Supplementary Video 1).

After first contacting one of the Pacific Grenadiers, the 
slickhead opened its mouth wide twice in a display of threatening 
behavior, and all the grenadiers around the bait cage quickly 
disappeared (Figures 2B, C and Supplementary Video 1). The 
slickhead attacked the bait cage and disappeared to the far right 
of the baited camera (Supplementary Video 1). Its eyes were 
deep blue, and its skin was bumpy, damaged, and ridden with 
parasites (Figure 2 and  Supplementary Video 1). Approximately 
4  min later, the same individual re-entered the video frame 

from the right side at 17:56 (JST) and came closer to the bait 
cage (Figure 2D). However, this time, the fish suddenly turned 
around and disappeared to the far left without attacking the bait 
cage. The recording duration of the first and second arrival of the 
slickhead was approximately 1.5 and 1 min, respectively.

The TL of the Yokozuna Slickhead was estimated from 
the video images. Five measurements of the postorbital head 
width and four measurements of the interorbital distance were 
conducted from five video grabs, and the average SL and TL were 
estimated to be 222 cm and 253 cm, respectively.

Environmental Factors at the Time of 
Yokozuna Slickhead Appearance
The presence of Yokozuna Slickhead was confirmed a total 
of five times during this study (four recorded through eDNA 
metabarcoding and one through baited camera observation), as 
shown in Tables 1, 2. The depth, temperature, salinity, and oxygen 
concentration were between 1,961 and 2,091 m, 1.9 and 2.0°C, 
34.6‰, and 97.6 and 105.3 µmol·kg-1, respectively, at the time of 
appearance of the Yokozuna Slickhead (Tables 1, 2). The salinity 
data acquired during the baited camera observations were not 
used because the accuracy of the salinity sensor installed on the 
miniature CTD was low during deployment.

DISCUSSION

In this study, we discovered novel habitats of the Yokozuna 
Slickhead and observed its unexpected threatening behavior 
through the use of eDNA metabarcoding and baited camera 
observation. Despite its large size, the Yokozuna Slickhead had 
not been recognized until 2021, and only four individuals have 
been collected from Suruga Bay thus far (Fujiwara et al., 2021a), 
with two additional individuals collected from the same location 
for television show projects. Although the population density in 
Suruga Bay was not estimated due to an insufficient number of 
baited camera casts (Fujiwara et al., 2021a; Aoki et al., 2022), the 

TABLE 2 | Summary of baited camera deployment.

Cast No. Date (JST) Location Latitude (N) Longitude (E) Depth (m) Temp (°C) Landing Time Observation  
period

Appearance of  
Yokozuna Slickhead

BCM2-13 2020-11-29 Shoho Seamount 32°19.95′ 138°44.37′ 363 16.6 16:15 12:42:01 NO
BCM3-12 2020-11-29 Shoho Seamount 32°19.65′ 138°44.26′ 412 15.3 16:40 12:35:17 NO
BCM2-14 2020-12-01 Shotoku Seamount 30°46.82′ 138°33.67′ 337 17.3 16:33 12:18:38 NO
BCM3-13 2020-12-01 Shotoku Seamount 30°47.65′ 138°32.47′ 477 14.3 17:12 12:46:10 NO
BCM2-15 2020-12-04 Ritto Seamount 21°47.78′ 142°02.75′ 611 6.9 15:53 12:32:32 NO
BCM3-14 2020-12-04 Ritto Seamount 21°46.80′ 142°03.58′ 701 5.8 16:32 12:09:05 NO
BCM3-15 2020-12-09 Nikko Seamount 23°04.95′ 142°19.55′ 503 9.6 16:43 12:55:03 NO
POP1-1 2021-10-14 South of Genroku Seamount 30°40.35′ 139°02.50′ 2,091 1.9 12:22 11:34:34 YES
POP2-1 2021-10-14 South of Genroku Seamount 30°39.42′ 139°02.83′ 2,092 1.9 15:05 11:27:18 NO
POP3-1 2021-10-14 South of Genroku Seamount 30°39.46′ 139°02.00′ 2,000 1.9 15:50 11:31:56 NO
POP1-2 2021-10-17 An’ei Seamount 29°16.87′ 138°37.33′ 1,110 3.5 16:22 12:09:34 NO
POP2-2 2021-10-17 An’ei Seamount 29°16.46′ 138°37.89′ 1,073 3.4 16:41 12:10:42 NO
POP3-2 2021-10-17 An’ei Seamount 29°17.40′ 138°38.05′ 1,135 3.3 17:11 12:09:09 NO
POP1-3 2021-10-20 An’ei Seamount 29°17.32′ 138°41.13′ 1,814 2.0 17:04 11:37:14 NO
POP2-3 2021-10-20 An’ei Seamount 29°18.06′ 138°40.39′ 1,920 1.9 17:31 11:37:13 NO
POP3-3 2021-10-20 An’ei Seamount 29°18.97′ 138°39.93′ 1,739 2.1 17:45 11:47:10 NO

16 casts   6 seamounts           194:03:36  
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extremely high trophic position implied its rarity (Fujiwara et al., 
2021a). In fact, Yokozuna Slickhead reads were not detected 
from all the filters for each Yokozuna Slickhead-positive site, 
and even at the Yokozuna Slickhead-positive sites, the average 
detection rate of Yokozuna Slickhead reads was only 2.4% 
(Table 1). Despite the rarity, eDNA metabarcoding was able to 
reliably detect the “hard-to-find species” even in low-biomass 
offshore areas. Therefore, eDNA metabarcoding would be an 
effective method to monitor fish biodiversity in deep-sea MPAs. 
To increase the likelihood of detecting the “hard-to-find species,” 
the use of as many sample replicates as possible is recommended.

Many attempts have been made to uncover the diversity of 
aquatic organisms, including rare species, through the use of 
eDNA metabarcoding, thereby expanding the knowledge of 
fauna diversity in various environments (reviewed in Miya, 
2022). However, it is not easy to infer ecological aspects such as 
body size, population, sex, maturity, coloration, and behavior 
through eDNA metabarcoding alone. The baited camera survey 
is a complementary method for non-invasively studying these 
ecological characteristics of predators/scavengers, especially in 
the deep sea (Stoner et al., 2008; Brooks et al., 2011; Devine et al., 
2018; Fujiwara et al., 2021b). The target area of a baited camera 
survey is confined to the light irradiation range and is considered 
to be much smaller than that of eDNA analysis (Murakami et al., 
2019). Therefore, a combination of a wide-range survey through 
eDNA metabarcoding and a spot survey using the baited camera 
represents a powerful tool for elucidating the ecology of “hard-
to-find species,” such as predators in the deep sea.

The novel habitats of the Yokozuna Slickhead were found 
on Nishi-Shichito Ridge, more than 400  km south of the type 
locality. The type specimens of slickhead were collected from 
Suruga Bay at depths between 2,171 m and 2,572 m, and the 
video sequence was recorded at a depth of 2,572 m in the bay 
(Fujiwara et  al., 2021a). Therefore, the present study expanded 
the geographic range and depth (1,961–2,091 m) of the habitat. 
The water temperature range of Yokozuna Slickhead appearance 
in this study (1.9–2.0°C) was comparable to that determined 
in our previous study (1.6–2.0°C) (Fujiwara et  al., 2021a). The 
Yokozuna Slickhead did not appear on the Shoho Seamount, 
which is located between Suruga Bay and other seamounts where 
its distribution was confirmed (Figure 1 and Tables 1, 2). The 
environmental factors on Shoho Seamount were similar to those 
in Suruga Bay and the other seamounts. It is difficult to conclude 
whether the distribution of Yokozuna Slickhead is divided near 
the Shoho Seamount, as only one CTD cast was performed, 
and no baited camera cast was conducted around a depth of 
2,000 m on the seamount. There was no evidence of Yokozuna 
Slickhead distribution on the Nikko and Ritto seamounts 
located approximately 800  km south of the An’ei Seamount, 
the southernmost known habitat of the slickhead. Again, the 
environmental factors were similar between Yokozuna Slickhead 
habitats and the Nikko and Ritto seamounts. Notably, CTD cast 
was performed only once per seamount, and no baited camera 
was deployed around a depth of 2,000 m on the seamounts. Thus, 
further research is needed to reveal the distinct distribution of 
this species.

FIGURE 2 | Yokozuna Slickhead Narcetes shonanmaruae. In situ video grabs recorded using a baited camera system at a depth of 2,091 m south of Genroku 
Seamount during cast no. POP1-1 on October 14, 2021. (A) First arrival of a Yokozuna Slickhead individual (on the right side) at the baited camera system; (B) 
First threatening behavior toward Pacific Grenadiers Coryphaenoides acrolepis; (C) Second threatening behavior to the Pacific Grenadiers; (D) Second arrival of the 
Yokozuna Slickhead at the baited camera system.
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In general, slickheads are mesopelagic or benthopelagic fish, 
and their behavioral ecology is largely unknown (Jones and 
Breen, 2013). Although slickheads have been caught in demersal 
trawls, images and video footages taken by baited cameras and 
submersibles are rare (Trenkel et al., 2004; Priede et al., 2010; 
Pakhorukov and Parin, 2012; Zintzen et al., 2012). Trenkel et al. 
(2004) suggested that the lack of video footage was due to the 
slickheads swimming a few meters above the seafloor and being 
out of the field of view. Pakhorukov and Parin (2012) suggested 
that the slickheads avoid the submersible’s light. The Yokozuna 
Slickhead was observed via baited cameras deployed on the 
seafloor, equipped with a red LED light (Fujiwara et al., 2021a) 
or with two white LED lights in the present study. Therefore, the 
Yokozuna Slickhead is possibly benthopelagic and swims closer 
to the seafloor. Further, red and white lights did not seem to 
have a significant negative effect on its foraging behavior.

The threatening behavior of the Yokozuna Slickhead 
against Pacific Grenadiers was unexpected (Figures  2B, C). 
The slickhead vigorously opened its mouth wide toward 
a grenadier, and the grenadier quickly fled (Figure  2B and 
Supplementary Video 1). Nevertheless, the slickhead widened 
its mouth even further (Figure  2C and Supplementary 
Video 1). As such threatening behavior would not be seen by 
grenadiers in the darkness at 2,000 m of depth, it was probably 
threatening other individuals via sound or pressure waves. 
The Yokozuna Slickhead is presumed to be a top predator 
in the deepest part of Suruga Bay owing to its high trophic 
position (TP = 4.9), estimated from compound-specific 

isotope analyses, and its predation of relatively large fish 
(Bassozetus sp.), as inferred via stomach content analysis 
(Fujiwara et  al., 2021a). Although slickheads are generally 
considered fragile with watery flesh (Childress and Nygaard, 
1973), this aggressive, threatening behavior may indicate that 
the Yokozuna Slickhead is a top predator not only in Suruga 
Bay but also in this area.

The Yokozuna Slickhead body size estimated from video 
footage (253  cm in TL) was much larger than that from the 
original description (122–138 cm in TL) (Fujiwara et  al., 
2021a). The skin surface was bumpy, damaged, and parasite-
infested, indicating that the individual was quite old (Figure 2 
and Supplementary Video 1). To the best of our knowledge, 
there are only seven species from six families of teleost fish with 
a body length of 2 m or more that may be distributed deeper 
than 2,000 m (Figure  3) (Froese and Pauly, 2022). Among 
these, only two species, i.e., the Yokozuna Slickhead and the 
Giant Grenadier Albatrossia pectoralis, are endemic to the deep 
sea as adults (>98% of records of appearance were deeper than 
200 m according to the Ocean Biodiversity Information System 
[OBIS]) (OBIS, 2022). Currently, the Yokozuna Slickhead is 
the largest deep-sea-endemic teleost fish at depths of over 
2,000 m (Figure  3). The scavenging ability and broad gape 
of the Yokozuna Slickhead are thought to be correlated with 
its colossal body size and relatively high TP (Fujiwara et  al., 
2021a). The Giant Grenadier usually lives at depths greater 
than 400  m (Figure  4), and the trophic positions of large 
adult individuals are relatively high (TP up to 4.44 ± 0.12) 

FIGURE 3 | Box plot of maximum standard length (SL) of teleost species that live deeper than 2,000 m from each family. Species with total length (TL) over 2 m are 
labeled. Size information is primarily based on FishBase (www.fishbase.org). The Yokozuna Slickhead is highlighted. *families displayed in TL.
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(Chuchukalo and Napazakov, 2012). The presence of these large 
species implies the existence of an ecological niche of colossal 
predators with high trophic status even at depths greater than 
2,000 m. The distributions of these two species are limited 
within the North Pacific, which may suggest that the deep 
waters of the North Pacific provide sufficient energy to meet 
the nutritional requirements of such predators. Apparently, 
there is a spatial partitioning between the two species in the 
North Pacific (Figure 4). The Yokozuna Slickhead is distributed 
at greater depths and lower latitudes than the Giant Grenadier 
(Figure  4). Considering this result, the Yokozuna Slickhead 
may be distributed further south at depths greater than 2,000 
m in the North Pacific.

Our understanding of deep-sea predators is limited. The 
Giant Grenadier exhibits a typical form of “rattail,” i.e., the 
caudal area is narrowed to the posterior point. The swimming 
speed of the Giant Grenadier was presumed to be slow 
(Rodgveller et  al., 2017), and individuals could be caught by 
trawling (Napazakov and Chuchukalo, 2011; Hutchinson and 
Anderl, 2012). In contrast, the Yokozuna Slickhead is fusiform 

and has a narrowed but robust caudal peduncle with a relatively 
large emarginate caudal fin (Fujiwara et al., 2021a). A Yokozuna 
Slickhead turned vigorously with a single tail stroke and rapidly 
disappeared from the video frame recorded using a baited 
camera (Fujiwara et al., 2021a). All Yokozuna Slickheads were 
captured using longlines, and none have been caught in trawl 
nets thus far, probably owing to their high swimming ability. 
According to information from OBIS, there were less than 10 
longline records deeper than 2,000 m and more than 1,000 
trawl records at the same depth range (OBIS, 2022). Most 
deep-sea surveys are likely to have failed to collect large, active 
swimmers due to incompatibility with collection methods. 
Further metabarcoding and baited camera surveys, in addition 
to longline research, will reveal active-swimming predators 
lurking in the deep waters of global oceans.

In 2010, “Aichi Target 11” declared that by 2020, at least 
17% of terrestrial and inland water and 10% of coastal and 
marine areas, especially areas of particular importance for 
biodiversity and ecosystem services, will be conserved through 
effective and equitable management, in addition to ecologically 

A

B C

FIGURE 4 | Distribution patterns of the Yokozuna Slickhead Narcetes shonanmaruae and the Giant Grenadier Albatrossia pectoralis. (A) Geographic distribution 
of the Yokozuna Slickhead and the Giant Grenadier. (B) Depth distribution of the Yokozuna Slickhead and the Giant Grenadier. (C) Latitudinal distribution of the 
Yokozuna Slickhead and the Giant Grenadier. The distribution information of the Giant Grenadier is derived from the Ocean Biodiversity Information System (OBIS) 
(OBIS, 2022).
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representative and well-connected systems of protected 
areas and other effective area-based conservation measures 
(OECMs). Further, these would be integrated into the wider 
landscapes and seascapes (Conference of the parties to the 
convention on biological diversity, 2010). Since 2010, over 21 
million km2 have been placed within protected and conserved 
areas, meaning that 42% of these areas have been added within 
the last decade (UNEP-WCMC and IUCN, 2021). As a result, 
the May 2021 WDPA and WD-OECM showed that at least 22.5 
million km2 (16.64%) of land and inland water ecosystems, as 
well as 28.1 million km2 (7.74%) of coastal waters and the ocean, 
are within protected areas and OECMs (UNEP-WCMC and 
IUCN, 2021). However, the understanding of the biodiversity in 
protected and conserved areas remains relatively poor, especially 
in offshore environments (Vad et al., 2017; Ferrari et al., 2018; 
Hookabe et al., 2021; Koeda et al., 2021; Hookabe et al., 2022; 
Jimi et al., 2022; Komai et al., 2022). In fact, all newly discovered 
habitats of the Yokozuna Slickhead, with the exception of 
the Genroku Seamount, are in the MPAs established in 2020 
in Japanese waters. It is suggested that climate change should 
have a stronger impact on top predators, disrupting vertical 
interactions, and thereby affecting many species across trophic 
levels (Zarnetske et  al., 2012). Understanding the ecology of 
top predators, especially in areas of particular importance for 
biodiversity and ecosystem services such as MPAs, is urgently 
needed to assess and determine the impact of rapidly changing 
global oceans.
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