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The shift towards higher inclusion of vegetable oils (VOs) in aquafeeds has

resulted in major changes in dietary fatty acid composition, especially

increased amounts of monounsaturated fatty acids (MUFAs) and decreased

polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs). However,

little is known about how this change in fatty acid (FA) profile affects the

intracellular fate of these fatty acids in the intestinal cells. To investigate this

topic, we used the rainbow trout intestinal epithelial cell line (RTgutGC) as an in

vitro model. The cells were incubated with either palmitic acid (16:0, PA), oleic

acid (18:1n-9, OA), or arachidonic acid (20:4n-6, ARA), to represent the SFA,

MUFA, and PUFA, respectively. In all experiments, the RTgutGC were incubated

with either non-labeled or radiolabeled FA (PA, OA, or ARA) for 16 h at 190C.

The cells were then analyzed for the occurrence of cytosolic lipid droplets

(CLD) with confocal microscopy, transcriptomic analysis (non-labeled FA

experiments) and lipid class composition in the cells and serosal media from

the basolateral side of the cells (radiolabeled FA experiments). CLD

accumulation was higher in RTgutGC exposed to OA compared to cells

given PA or ARA. This was coupled with increased volume, diameter, and

surface area of CLDs in OA treated cells than with other FAs (PA, ARA). The

results from radiolabeled FAs performed on permeable transwell inserts

showed that OA increased the triacylglycerides (TAG) synthesis and was

primarily stored in the cells in CLDs; whereas a significant amount of ARA

was transported as TAG to the basolateral compartment. A significant

proportion of free FAs was found to be excreted to the serosal basolateral

side by the cells, which was significantly higher for PA and OA than ARA.

Although there were clear clusters in differentially expressed genes (DEGs) for

each treatment group, results from transcriptomics did not correlate to lipid

transport and CLD analysis. Overall, the accumulation of TAG in CLDs was

higher for oleic acid (OA) compared to arachidonic acid (ARA) and palmitic acid

(PA). To conclude, carbon chain length and saturation level of FA differently

regulate their intracellular fate during fatty acid absorption.
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Introduction

As opposed to most vertebrates, dietary triacylglycerides

(TAG) are completely hydrolyzed in most teleost fish (Bogevik

et al., 2008). The absence of monoacylglycerol as a digestive

product in these fish is a consequence of the evolutionary loss of

colipase (Sæle et al., 2018). Digested dietary fat is taken up by

enterocytes, re-esterified into complex lipids in the endoplasmic

reticulum and subsequently directed to synthesis of lipoproteins

for transport or stored in cytosolic lipid droplets (CLDs) (Sire

et al., 1981; Sheridan, 1988; Sigurgisladottir et al., 1992; Bogevik

et al., 2008). CLDs are temporary lipid storage molecules,

consisting of a core of neutral lipids, mostly TAG and esters,

surrounded by monolayer phospholipids. It has been shown that

high lipid diets increase the number and size of CLDs. Moreover,

replacing fish oil with vegetable oils (VOs) could also influence

the CLD accumulation (Deplano et al., 1989; Olsen et al., 1999;

Olsen et al., 2000; Caballero et al., 2002; Caballero et al., 2003).

Although CLDs are considered as temporary lipid storage

organelles, they serve several crucial physiological functions,

including sequestering toxic lipid molecules and preventing

lipotoxicity, maintenance of endoplasmic reticulum membrane

homeostasis, regulation of fatty acid (FA) storage, and transport

(Walther and Farese, 2012; Olzmann and Carvalho, 2019).

However, excessive accumulation of CLDs may also cause

damage to the cells and create pathogenicity (Schaffer, 2003).

For instance, studies in Arctic char (Salvelinus alpinus) and

rainbow trout (Oncorhynchus mykiss) have demonstrated

extensive damage to enterocytes due to excessive accumulation

of CLDs caused by VO diets high in monounsaturated fatty acids

(MUFA) (Olsen et al., 1999; Olsen et al., 2000; Olsen et al., 2003).

Due to the loss of colipase in fish, dietary TAG is completely

hydrolyzed to single fatty acids (FAs). This leaves the

monoacylglycerol pathway without substrate and all absorbed

FAs are resynthesized into TAG via de novo synthesis and

ultimately transported into CLDs within the enterocytes. We

hypothesize that chylomicrons/VLDL (very low-density

lipoprotein) can be generated for export only after the

synthesis and storage of TAG within lipid droplets. Further,

we hypothesize that the intracellular trafficking of FAs in the

enterocytes is affected by carbon chain length and saturation,

hence there will be consequences of changing the dietary FA

composition. Therefore, the present work is aimed to study the

effects of carbon length and unsaturation levels on intracellular

lipid trafficking and CLDs formation in vitro using RTgutGC

(Rainbow trout gut cell). The current study used three different

approaches: (i) live-cell imaging for lipid droplets formation, (ii)

radiolabeled FAs for lipid class analysis, and (iii) whole cell

transcriptomic analysis. The FAs chosen for the current study

were palmitic acid (PA), oleic acid (OA), and arachidonic acid

(ARA), to represent the saturated fatty acid (SFA), MUFA, and

polyunsaturated fatty acid (PUFA), respectively. These FAs were

selected based on their relevance to current feeding practices in
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salmonids aquaculture. In particular, increased use of vegetable

oils in fish feed has resulted in decreased dietary n-3 PUFA and

SFA (PA); and increased n-9 (MUFA) and n-6 PUFA.

The RTgutGC cell derived from rainbow trout intestine

exhibits apical and basolateral characteristics of intestinal

epithelial cells (Kawano et al., 2011). It has been proposed as a

physiologically adequate fish intestinal epithelial model, which is

equivalent to human intestinal epithelial cells (Caco2 cells)

(Kawano et al., 2011; Minghetti et al., 2017). In addition,

RTgutGC contains functionally active polarized absorptive cells

(enterocytes) that play a central role in lipid metabolism. In

general, enterocytes are responsible for assimilation of luminal

FAs and also support the de novo synthesis of FAs and cholesterol

and serve as a site for production of major lipid transport proteins

such as apolipoproteins. Recently, the RTgutGC cell line has been

used as a model to study nutrient uptake (Antony Jesu Prabhu

et al., 2018; Kim et al., 2018; Pumputis et al., 2018), test functional

ingredients and gut immune function (Wang et al., 2019; Holen

et al., 2021) and toxicity (Langan et al., 2017; Schug et al., 2020).

To our best knowledge, most studies of FA uptake and trafficking

by intestinal epithelial cells were conducted in immortalized cell

lines such as Caco2 and IEC-6 as enterocyte models. Furthermore,

FA uptake and transport system in fish were largely studied in

vivo, where dietary lipids are more complex, and finding the fate

of individual FA is more onerous. Thus, the current study would

be the first trial using fish enterocyte cell model (RTgutGC) to

study the intracellular lipid trafficking and CLDs formation in fish

intestinal epithelial cells.
Materials and methods

Routine RTgutGC cell culture

The intestinal epithelial cell line from rainbow trout

(RTgutGC) was obtained from the Swiss Federal Institute of

Aquatic Science and Technology (Eawag), Switzerland, through

a material transfer agreement. RTgutGC cells were routinely

cultured as per the methods described by Kawano et al. (2011).

In brief, cells were grown in a 75 cm2 culture flask with Leibovitz’

L-15 complete medium (21083027, Gibco Thermofisher),

supplemented with 10% fetal bovine serum (F7524, Sigma

Aldrich) and 1% Antibiotic Antimycotic Solution (A5955,

Sigma Aldrich) maintained at 19°C under normal atmosphere.

After reaching confluency in 7-10 days, cells were sub-cultured for

routine maintenance as per the method described by Kawano et al.

(2011), or harvested to be used in experiments.
Preparation of FA - BSA complexes

The non-radio labeled palmitic acid (PA, P0500, Merk), oleic

acid (OA, O1008, Merk), or arachidonic acid (ARA, 10931,
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Merk) were conjugated to FA-free bovine serum albumin (BSA,

A6003, Sigma Aldrich), as per the method previously described

by Nøstbakken et al. (2012). In brief, an appropriate amount of

FA was weighed in a dark glass container to yield 3.46 mM

concentration, and 0.04 ml chloroform per mg FA was added to

completely dissolve the FA. After evaporating chloroform under

the N2 stream, the residue was dissolved in 0.124 M KOH at the

ratio of 1:3 and vortexed continuously for 10 min. FA free-BSA

(1.5 mM) dissolved in serum-free culture media (Leibovitz’ L-

15) was added in a 2.5:1 molar ratio to the FA and stirred

continuously in water bath for 45 min at 37°C. The final

concentration of FA was 3.46 mM, filter sterilized and stored

in -20°C until use.
Lipotoxicity test using
xCELLigence system

The lipotoxicity effects of FA in RTgutGC were carried out

according to the methods described by (Berger et al., 2017). In

brief, the E96 xCELLigence plate was prepared by adding 50 ml
of culture media to each well and incubating in xCELLigence for

30 minutes with background corrections. The cells were seeded

at a density of 20,000 cells/well in 100 ml culture media. The cell

adhesion and proliferation were monitored every 15 min by the

xCELLigence system. Approximately 24 h after seeding, when

the cells were in the log growth phase, the cells were exposed to

50 mL of medium containing the BSA conjugated FA (PA, OA,

or ARA) at concentrations 50-1000 uM in triplicate, and the

experiments were continued for another 24 h. Controls received

either medium only or medium + BSA.
Visualization of intracellular lipid droplets
and image analysis

RTgutGC cells were seeded on m-slide 8 well plates with a

chambered coverslip (Ibidi GmbH, 80826) at a density of 1.5 x

105 cells/ml and incubated at 19°C for 48 h prior to FAs

treatment. Cells were then washed twice with PBS and

incubated with 200 μMFAs (PA, OA, or ARA) conjugated

with BSA for 16 h at 19°C. BSA in serum-free cell culture

media but no FA was used as a control. After the incubation,

cells were washed twice with PBS and incubated with

LipidSpot™ 488 (green) lipid droplet stain (1:1000) (Biotium,

70065-T) in complete cell culture medium at 19°C for 30 min as

per the manufacturer’s instructions, protected from light prior to

imaging. Visualization of lipid droplets was achieved by Ti-E

inverted microscope (Nikon, Japan) with a CFI Super Plan Fluor

ELWD ADM 20 X C PH-1 objective, numerical aperture 0.45

(Nikon, Japan), and a C2 + confocal scanner (Nikon, Japan).

Images were acquired using an oil immersion 60× objective, and

Z-stacks were taken with a defined Z-step size of 0.93μm and
Frontiers in Marine Science 03
1024 x 1027 pixels. All the acquired 3D constructions were

background-subtracted and analyzed using NIS Elements AR

v.4.51 (Nikon, Tokyo, Japan) software to obtain data on CLDs.

The total number of CLDs per cell, and the volume, diameter,

surface area, and sphericity of individual CLDs were obtained. In

addition, the percentage of cells that accumulated CLDs was also

analyzed manually, using a minimum threshold of 5 CLDs per

cell. Three independent experiments were conducted,

representing 3 replicates (n=3). Each experiment consisted of

three wells for each FA (PA, OA, or ARA) and the control group.
Lipid class analysis in RTgutGC exposed
to radiolabeled FAs

Preparation of uptake medium
The radiolabeled 3H-Palmitic acid (9,10-3H(N),

NET043001MC, 1mCi, PerkinElmer), 3H-Oleic acid (9,10-3H

(N), NET289001MC, 1mCi, PerkinElmer) and3H-Arachidonic

acid (5,6,8,9,11,12,14,15-3H(N), NET298Z050UC, 50μCi,

PerkinElmer) were conjugated to non-radiolabeled FA-BSA

stock solution as described earlier. An appropriate amount of

radiolabeled FAs [3H] was taken in a dark glass tube and dried

under N2 gas, and BSA conjugated FA (3.46 mM) was added,

followed by sonication in a water bath sonicator for 1 hr. In all

the cases, the final working media contained ~200 μM FAs with

radioactive concentration 1μCi/ml (~37 kBq/ml) and specific

activities of 0.33 mCi/mmol for each FA.

Cell culture on permeable membranes
RTgutGC cells from routine culture flasks were trypsinized,

counted and were seeded at a density of 75,000 cells/cm2 onto

apical compartment of 6 wells in commercially available

permeable transwell-membrane inserts (ThinCert® cell culture

inserts, pore size = 0.4 mm; polyethylene terephthalate [PET]

from Greiner Bio-One, Germany) as described previously

(Geppert et al., 2016; Minghetti et al., 2017). The apical and

basolateral compartments were filled with 2 and 3 ml of

complete L-15 culture media, respectively, and the culture

media from both the apical and basolateral compartments

were changed once every 3 days. The cells were grown for 18

days at 19°C before the experiments. The transepithelial electric

resistance (TEER) was measured to assess the tightness of the

cell monolayers by using the epithelial volt-ohm meter (EVOM)

with dual “chopstick” electrodes (World Precision Instruments,

New Haven, CT), and TEER values were calculated as per the

method described by Geppert et al. (2016).

Incubation with radiolabeled FAs
RTgutGC cells grown on permeable transwell-membrane

inserts were taken out of the incubator, and the medium from

apical and basolateral sides was removed. The cells (apical side)

were washed twice with PBS and then cells were incubated with FA
frontiersin.org
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by replacing apical medium with 2 ml of medium containing FA

conjugated with BSA with a final concentration of about 200 μM

(PA, OA or ARA), containing 1 μCi/ml labeled FAs [3H]; specific

activities 0.33 mCi/mmol). The basolateral medium was replaced

with serum-free medium containing only BSA. The cells were

incubated for 16 h at 19°C. After the incubation period, samples

(medium from the apical compartment, basolateral compartment,

and the cells along with membrane) were collected in chloroform:

methanol solution (1:1) for lipid extraction.

Lipid extraction and
thin-layer chromatography

Thin-layer chromatography (TLC) was used to determine the

type of lipids being secreted basolaterally from the cells following

apical exposure to [3H] FAs. Firstly, lipids from each sample were

extracted by Folch’s liquid-liquid extraction method using

chloroform solvent. After phase separation, the aqueous phase was

removed and discarded, and the remaining total organic extract was

evaporated under a gentle stream of N2 prior to TLC analysis.

Extracted lipid was spotted on thin-layer chromatography plates

(20 cm x 10 cm, Silica Gel) and developed in hexane-ethyl ether-

acetic acid (80:20:1). Lipid standards consisting of triacylglycerides

(TAG), free-fatty acids, and cholesterol were included in the analysis.

The plates were developed with iodine vapor and the spots

corresponding to TAG and FFA were scraped off into 20 ml

scintillation vials and dissolved in 3 ml dichloromethane plus

15 ml ultima gold scintillation liquid. The amount of radioactivity

[3H] was measured in a scintillation counter (Packard Tri-Carb

Liquid scintillation counter, Model 1900TR). The final concentration

of each FA was calculated as follows,

FA concentration ðpmolÞ  ¼  
DPM
a  �b  �1012

� �

SA

Where,

DPM, Disintegrations per minute

a= 60, conversion factor for DPM to becquerel (Bq)

b= 2.7x10-11, conversion factor for becquerel to curie

SA, radioactive specificity of FA (mCi/mmol)
Transcriptomic analysis of RTgutGC cell
exposed to different FAs

The RTgutGC cells were seeded in 6-well conventional culture

plates at a density of 1.5 x 105 cells/ml in complete L15/FBS

medium and incubated at 19°C for 3 days to reach the confluency

(~80%). Subsequently, the medium was removed from the cells

and then the cells were washed twice with PBS before treating with

FAs. The FA (PA, OA, or ARA) conjugated with BSA (as described

earlier) was added to the cells at a concentration of 200 μM and

incubated at 19°C for 16 h. After exposure to the respective FAs,

the medium was removed, and 0.4 mL of RTL lysis buffer (Qiagen,

Germany) was added for 30s. The cell lysates were transferred to
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2 ml tubes and stored in −80°C freezer until required for RNA

isolation. Three independent parallel experiments were conducted,

representing 3 replicates and n=9 for each FA (PA, OA, and ARA)

and the control group.
RNA extraction

RNA isolation was performed with the RNeasy Plus Mini Kit

including genomic DNA eliminator columns (Qiagen, Germany).

Three independent parallel experiments were conducted,

representing 3 replicates and n=9 for each FA (PA, OA, and

ARA) and control group. RNA concentration and purity were

measured using a Nanodrop Spectrophotometer (NanoDrop®,

ND-1000, Thermo Fischer, USA). Integrity of RNA was checked

for all the samples using bioanalyzer as per the method provided

by manufacturer (Agilent 2100 Bioanalyzer, Agilent Technologies,

Palo Alto, CA, USA). All the samples except one sample from OA

treatment group, had RIN values above 8.0 and were used for

cDNA library preparation.
Library preparation and sequencing
for RNA-seq

Library preparation and RNA-sequencing (RNA-seq) were

performed by Novogene’s UK Sequencing Centre, Cambridge,

UK. The messenger RNA was purified from total RNA using

poly-T oligo-attached magnetic beads. After purified RNA was

fragmented, the first strand cDNA was synthesized using random

hexamer primers followed by end repair, A-tailing, adapter ligation,

size selection, amplification, and purification. The library was

checked with Qubit and real-time PCR for quantification and

bioanalyzer for size distribution detection. RNA-seq libraries were

sequenced on Illumina Novaseq 6000 platform, where 150-bp

paired-end reads were obtained. The raw RNA-Seq data were

deposited and released in the sequence read archive database,

with the BioProject accession number of PRJNA763330.
Rainbow trout genome and
genomic annotation

The reference sequence data (Omyk_1.0) were downloaded

from the NCBI assembly site (https://www.ncbi.nlm.nih.gov/

assembly/GCF_002163495.1).
Quality trimming, alignment and
quantification of RNA-seq reads

Adaptors, low-quality bases, low-quality reads (phred scores<

Q30) and reads less than 20 bases in length were trimmed from
frontiersin.org
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sequence reads using cutadapt (Martin, 2011). Quality trimmed

reads were aligned to the Rainbow trout RefSeq reference genome

(Omyk_1.0). STAR (Dobin et al., 2013) was used with the default

parameters to index the reference genome and align reads to the

indexed genome. The number of reads per gene was quantified

using featureCounts (Liao et al., 2014), based on genomic

coordinates provided by the general feature format (GFF) file

from the Omyk_1.0 reference genome. The number of the reads

that uniquely mapped on protein-coding genes was 68.7% in

average (Table S1). The precomp function of R (https://CRAN.R-

project.org) was used to perform principal component analysis

(PCA) prior to differential expression analysis.
Differential gene expression analysis

Differential expression analysis was performed in a pair-wise

manner by comparing three different FAs (PA, OA, or ARA)

against the control group using the DESeq2 package (Love et al.,

2014). The minimum log fold change (lfc) was set to log2(1.5)

using the lfcThreshold option in the results function to ensure that

all DEGs were >log2(1.5) and<-log2(1.5). After p-values were

adjusted by the Benjamini-Hochberg procedure, genes were

identified as differentially expressed genes (DEGs) when adjusted

p-values were less than 0.1. Heatmaps of overlapped DEGs were

generated with the Complex Heatmap package (Gu et al., 2016).

The in-house RNA-seq workflow was coordinated in a pipeline by

Snakemake (Koster and Rahmann, 2012) with various R and

Python scripts along with multiple bioinformatics tools.
Statistical analysis

Statistical analysis was performed using the software Statistica

13.4 (Statsoft Inc., Tulsa, OK, USA) and GraphPad Prism version

8.0 (Graphpad Software Inc., San Diago, CA, USA). Data were

tested for normality and homogeneity of variance using the

Kolmogorov–Smirnov test and Shapiro-Wilk test. Data were

analyzed by one-way ANOVA, and comparisons between FAs

were performed using Tukey’s post-hoc analysis. Three

independent experiments were conducted for CLDs analysis and

transcriptomics studies, and two experiments were done for

radiolabeled lipid class analysis. All experiments were performed

in triplicate and values are expressed as mean ± SEM.
Results

Lipotoxicity test

The lipotoxicity test was performed for the FAs (PA, OA,

and ARA) conjugated with BSA in the range of 50-1000 μM

(Figure 1). The strength of cell adhesion is represented as the
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Cell Index (CI) which is a unit-less measurement. The cell index

of cells beginning from 20,000 cells/well increased as the cell

number increased. The CI was normalized at the time point

before FA was added. The RTgutGC exposed to different

concentration of FA (PA, OA, or ARA) grew continuously

irrespective of FA concentration (50, 100, 200, 300, 400, 600,

800 and 1000 μM). However, there was significant reduction in

cell index for cells exposed to higher concentration (800 and

1000 μM; P<0.05). Further, cell peak growth was observed

between 200-300uM and 200uM was chosen for all the FA

exposure experiments.
Intracellular cytosolic lipids droplets

The intracellular CLDs formation was significantly influenced

by FAs supplementation in culture media (Figure 2A). The

percentage of cells that accumulated CLDs was significantly

different between treatments (P<0.0001), and the highest

percentage was found for OA (97 ± 0.9%) followed by ARA

(52 ± 3.6%), PA (34 ± 3.6%), and then control (13 ± 3.0%)

(Figure 3A). The number of CLDs accumulated per cell was

significantly (P< 0.0001) higher for OA (117.8 ± 7.7) compared

to PA (21.10 ± 1.3), ARA (26.6 ± 2), and control (11.6 ± 1.0) and no

significant differences were found between PA vs ARA (P=0.77)

(Figure 3B). Subsequently, the mean volume of the CLDs was also

significantly (P< 0.0001) higher for OA (2.8 ± 0.2 compared to PA

(0.62 ± 0.03), ARA (0.76 ± 0.06), and the control (0.52 ± 0.02)

(Figure 3C). The surface area of the CLDs (Figure 3D) was

significantly (P= 0.0001) higher for cells supplemented with OA

(12.8 ± 0.5) compared to PA (4.7 ± 0.2), ARA (4.7 ± 0.2) and the

control (3.9 ± 0.14). Likewise, the diameter of the CLDs (Figure 3E)

was also significantly (P=0.0001) higher for cell treated with OA

(1.2 ± 0.01) than compared to other treatment groups (PA, 0.86 ±

0.01; ARA, 0.80 ± 0.001; Control, 0.79 ± 0.0001). The sphericity of

the CLDs (~0.7) was similar for all treatment groups (Figure 3F).
Lipid classes during FA transport

TEER levels increased and stabilized at an average of 33 W
cm-2 after 18 days of culture with significant difference observed

over time (Figure 4). TEER values reached a stable plateau at

approximately 8-10 days. Cells seemed to stop proliferating but

remained viable. The total amount of [3H] FFA and [3H] TAG

was measured from the three fractions, i.e., apical, basolateral,

and as well as cells on the permeable membrane (Figures 5, 6).

The percentage of [3H] labeled FAs recovered from FFA and

TAG fractions were 91.3 ± 2.1, 58.7 ± 7.0, and 56 ± 7.6% for OA,

PA, and ARA respectively (Figure 6). The saturation level of the

added FA significantly influenced the uptake of FA from the

apical medium by the cells. The amount of recovered [3H]

labelled FFA from the apical medium was similar for ARA
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(347.9 ± 7.3 pmol; 50.4%) and PA (346.2 ± 4.7 pmol; 51.1%),

while a numerically higher amount was observed for OA

(512.4 ± 14.7 pmol; 73.5%); however, no significant difference

was observed between them due to variation between the trials

(P=0.3) (Figures 5A, 6). The amount of recovered [3H] FFA

from the basolateral medium was significantly higher for PA

(19.3 ± 1.4 pmol, P=0.02; 3.5%) and OA (17.9 ± 1.0 pmol,
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P=0.03; 3%) compared to ARA (5.3± 0.3 pmol; 1.1%), with no

significant difference found between PA and OA (P=0.8)

(Figures 5B, 6). Although similar trends were seen for the [3H]

FFA recovered from the cell fraction, no significant difference

was observed among FAs treatments (P=0.29) (Figure 5C).

Similarly, the amount of [3H] recovered as TAG was measured

for the medium from the apical and basolateral compartments,
BA

FIGURE 2

FAs differentially regulate lipid droplets accumulation in RTgutGC cells. (A) Representative confocal imaging of RTgutGC cells treated with 200

µM of FAs (PA, OA or ARA) control for16 h at 19°C and stained with LipidSpot™ 488 (green); Scale bar: 50µm. (B) Representative image of CLDs
fusion in RTgutGC cells treated with 200 µM of oleic acid; scale bar: 10µm. Scale bar: 10µm. All images were acquired using an oil immersion
60× objective, and Z-stacks were taken with a defined Z-step size of 0.93µm and 1024 X 1027 pixels. PA, Palmitic acid; ARA, Arachidonic acid;
OA, Oleic acid.
FIGURE 1

Normalized cell index of RTgutGC cells exposed to FA (PA, OA, or ARA). Cells were seeded at a density of 20,000 cells/well in a 96-well E-plate
allowing the cells to adhere and proliferate for 24 h. Cells were then exposed to FA (PA, OA, or ARA) conjugated with BSA complex in the range
of 50 – 1000 mM and monitored for 24 h using an xCELLigence system. Data shown here are cell adhesion as mean normalized cell index at
24 h exposure. PA, Palmitic acid; ARA, Arachidonic acid; OA, Oleic acid.
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and the cells. The cells supplemented with ARA had a

significantly higher amount of [3H] TAG in the basolateral

compartment (4.1 ± 0.3 pmol, P=0.006; 1.1%) compared to PA

(0.12 ± 0.03; 0.03%) and OA (P=0.34 ± 0.12; 0.05%), with no

differences between the latter two groups (P=0.9) (Figures 5E, 6).

Conversely, the cell fraction had a significantly higher amount of

[3H] TAG for the group supplemented with OA (72.7 ± 10.3

pmol, P=0.005; 13.8%) compared to PA (20.6 ± 1.2 pmol; 3.3%)

and ARA (13.1 ± 0.2 pmol; 2.8%), and no differences were found

between the latter two groups (P=0.56) (Figures 5F, 6). There

was no difference in [3H] TAG content found in the apical

fraction between the FAs (P=0.57; Figure 5D).
Transcriptomics

A summary of total RNA-seq reads generated for each sample,

the corresponding STAR alignment results, and the alignment

count data can be found in supplementary file 1. In general,

transcriptomics analysis was performed on 35 samples of

RTgutGC cells incubated for 16 h with their respective FAs

conjugated with BSA (control, PA, OA, or ARA). Approximately,
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21.2 to 30 million paired-end reads were obtained per sample. The

results of the principal component analysis (PCA) with the

normalized counts (Figure 7A) showed that PA group was

distinctly separated to control group with OA and ARA being

intermediary and overlapping with each other. Further, the

differentially expressed genes (DEGs) were calculated as log fold

changes [lfc ≥log2(1.5)] along with the P-values (adjusted P-value of

0.1) by comparing FAs (PA, OA, or ARA) against control. The

DEGs analysis revealed a total of 1294, 459, and 249 DEGs for PA,

ARA, and OA, respectively. Out of that, 114, 26, and 55 DEGs were

shared by every combination of two groups, namely PA and ARA,

PA and OA, OA and ARA, respectively. Concurrently, 1003, 139,

and 17 were explicitly expressed in PA, ARA, and OA,

respectively (Figure 7B).

A total of 489 target genes involved in FAs absorption,

transport, lipid droplet synthesis, FA synthesis and oxidation,

TAG synthesis and hydrolysis, phospholipid synthesis, etc., were

selected by using the rainbow trout gene database (NCBI,

Ensemble) (See supplementary file 2 for a full list of genes

analyzed). Out of 489 analyzed target genes, more DEGs were

observed in the ARA treatment group (6.5%; 32 DEGs), followed

by OA (4.1%; 20 DEGs) and PA (3.7%; 18 DEGs) (Figure 8),
B C

D E F

A

FIGURE 3

Quantification of CLDs accumulated in RTgutGC cells treated with 200 µM of FAs (PA, OA or ARA) and control for16 h at 19°C and stained with

LipidSpot™ 488 (green). The Percentage of cells contained CLDs per images (A), number of CLDs per cell (B), mean individual volume (C),
surface area (D), diameter (E), and sphericity (F) of CLDs in RTgutGC cells. Different superscript (small letters) indicates statistical significance as
obtained through one-way ANOVA followed by Tukey’s multiple comparisons. Data are from N = 18 images analyzed from three independent
experiments and are shown as mean ± SEM. PA, Palmitic acid; ARA, Arachidonic acid; OA, Oleic acid.
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when compared to control group. A heatmap was constructed

for selected target genes that were identified as DEGs (Figure 8).

Several transcripts involved in FA uptake and activation (lfc

≥1.5, fatp1-like-1, fatp1-like-2 and abcf2a9) were significantly

upregulated in all FA supplement groups. Among the transcripts

related to the TAG synthesis pathway that were analyzed, more

DEGs (10) were identified in the PA group, and most of them

were upregulated. On the other hand, the TAG synthesis

pathway was downregulated (5 out of 6 DEGs) in OA and

ARA. However, transcripts involved in TAG hydrolysis (lpl-like-

1, lpl-like-2, and pnpla2-like1) were more downregulated in ARA

followed by OA and PA. Further, the expression of mttp, a key

protein involved in chylomicron assembly, was significantly

upregulated in all FA groups compared to control group,

however, this expression was significantly higher in PA (lfc,

1.49) than ARA (lfc, 1.12) and OA (lfc, 1.03). Surprisingly, no

other transcripts involved in lipoprotein synthesis were

differentially expressed except sar1b upregulation in ARA and

OA. Associated with lipid droplet formation, out of 7 analyzed

plin transcripts (plin 1, plin 2, plin 3, and plin 6), two transcripts

from plin 2 (plin-2like1; plin-2 like2) had differential expression
Frontiers in Marine Science 08
and were significantly upregulated in all groups. Furthermore,

the upregulated plin 2 was higher in PA (plin-2like1, lfc 6.1; plin-

2like1, lfc 3.5) than in ARA (plin-2like1, lfc 5.1; plin-2like1, lfc

3.1) and OA (plin-2like1, lfc 4.2; plin-2like1, lfc 3.1) groups.

However, none of the transcripts in apolipoprotein synthesis

were differentially expressed. In particular, very low expression

was observed for Apo B. On the other hand, expression of apoa

I-IV, apoc, apod and apoe was prominent, but no DEGs. More

downregulated transcripts involved in FA synthesis (acsl4a,

acsbg2, acs like-1, acs like-2, fasn-like-1, fasn-like-1, acac) were

observed in ARA and OA, and their downregulation was higher

in ARA compared to OA. Whereas transcripts involved in FA

synthesis (acsl4a, lfc 0.5; acsbg2, lfc 0.9; scd, lfc 0.6, acot1-like, lfc

2.1) were upregulated in PA. In respect to the b-oxidation
pathway, more upregulated DEGs were identified in all FAs

groups, and the upregulation was significantly higher in the ARA

group than compared to OA and PA, and the lowest expression

was observed in PA. Interestingly no analyzed transcripts

involved in endoplasmic reticulum (ER) stress (edem, ER

degradation enhancer, mannosidase; hsp70, Heat shock protein

70) were significantly affected by FAs supplements.
FIGURE 4

Transepithelial electrical resistance (TEER) of RTgutGC cells. Cells were seeded at a density of 75,000 cells/cm2 on transwell membrane inserts
(0.4 mm pore size) and grown for up to 18 days.
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Discussion

In the current study, we demonstrated how the absorption and

intracellular trafficking of FAs vary according to their carbon chain

length and saturation level in the RTgutGC cell line. To the best of

our knowledge, the present study is the first of its kind using a fish

enterocyte cell line as a model to investigate the intracellular fates of

different FAs. However, a human intestinal Caco2 cell line, derived

from colorectal adenocarcinoma, has been extensively used as an

enterocyte cell model to study the mechanism of FAs absorption

and intracellular transport (Ranheim et al., 1994; Van

Greevenbroek et al., 1995; Trotter et al., 1996; Nauli and

Whittimore, 2015). The majority of the studies in Caco2 cells

have demonstrated that MUFA (OA) induced a higher rate of

TAG synthesis and CLDs than SFA and PUFA (Field et al., 1988;

Dashti et al., 1990; Levin et al., 1992; Bateman et al., 2007), thus

explaining that each FA has its own fate inside the enterocyte

according to their chain length and degree of saturation (Yonezawa

et al., 2004b; Vargas-Bello-Pérez et al., 2019). Similarly, OA-induced

CLD accumulation has also been observed in other cell types such
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as HepG2 hepatocytes (Eynaudi et al., 2021), pancreatic b-cells
(Cnop et al., 2001), bovine mammary epithelial cells (Yonezawa

et al., 2004a) and H9C2 cardiomyoblasts (Akoumi et al., 2017). In

vitro studies in adipocytes isolated from Atlantic salmon have

demonstrated the increased CLDs in response to OA treatment

(Todorcević et al., 2008; Bou et al., 2020). In addition to in vitro

studies, several in vivo studies in fish have shown similar

mechanisms of excessive LD accumulation in intestinal tissue in

response to diets containing vegetable oils high inMUFA (Fontagné

et al., 1998; Olsen et al., 1999; Olsen et al., 2000; Caballero et al.,

2002; Caballero et al., 2003; Olsen et al., 2003). In accordance with

these reports, in the present study we also observed a higher rate of

TAG synthesis and subsequent CLD accumulation in OA treated

cells. Hence, the RTgutGC cells respond similarly as other well-

tested cell lines and in vivo studies, and it is deemed to be a suitable

enterocyte model to investigate the intracellular fate of

individual FAs.

Long chain fatty acid (LCFA) transported into cells are

acylated into long-chain acyl-CoA by the action of acyl-CoA

synthetases and are then destined for either TAG synthesis or b-
B C
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FIGURE 5

Lipid class analysis of RTgutGC cells grown on transwell membrane inserts for 18 days and then exposed to [3H] labelled FAs (PA, OA or ARA) for
16 h at 19°C. FFA from apical (A), basolateral (B) and the cells fractions (C); TAG from apical (D), basolateral (E) and the cell fractions
(F) measured as the total amount (pmol) of [3H] recovered after scintillation counting. Different superscript (small letters) indicates statistical
significance as obtained through one-way ANOVA followed by Tukey’s multiple comparisons. Data from two independent experiments in
triplicate (N=2; n=3) and are shown as mean ± SEM. PA, Palmitic acid; ARA, Arachidonic acid; OA, Oleic acid; TAG, Triacylglycerides.
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FIGURE 6

Summary of percentage of FFA and TAG in different compartment of RTgutGC cells grown on transwell membrane inserts for 18 days and then
exposed to [3H] labelled FAs (PA, OA or ARA) for 16 h at 19°C. FA, Fatty acid; PA, Palmitic acid; OA, Oleic acid; ARA, Arachidonic acid; TAG,
Triacylglycerides; CLDs, cytosolic lipid droplets. Ox, b-Oxidation.
BA

FIGURE 7

Transcriptomics analysis of RTgutGC cells treated with 200 µM of FAs (PA, OA or ARA) control for16 h at 19°C. (A) PCA biplot of differentially
expressed genes of RNAseq counts. (B) Venn diagram depicting the number of common and unique genes showing differential expression in
PA, OA and ARA treatment groups. 1.5- log fold change (adjusted P-value of 0.01). Differential expression analysis was performed in a pair-wise
manner by comparing three different FAs (PA, OA, or ARA) against the control group using the DESeq2 package. Data are from three
independent experiments in triplicate (N=3; n=3). PA, Palmitic acid; ARA, Arachidonic acid; OA, Oleic acid.
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oxidation (Listenberger et al., 2003). We hypothesized that the

fish enterocyte metabolizes PA, OA and ARA differently and

that they are stored temporarily as CLDs before being exported

to circulation as chylomicrons/VLDL (very low-density

lipoprotein). This appears to be true for OA, where we found

increased CLD accumulation, although the possible underlying

mechanisms remain unclear. Phospholipids and lipoproteins are

important components of chylomicrons/VLDL, thus enabling

the transport of lipids. Recently, an in vivo study in fish has

demonstrated that diets deficient in phospholipids leads to

accumulation of CLDs, hypothesized to be caused by

insufficient lipoprotein synthesis (Gu et al., 2014; Sæle et al.,

2018). Furthermore, an earlier study in gilthead seabream

(Sparus aurata) fed a rapeseed diet containing high amount of

OA (46% of total FAs) observed reduced lipoprotein synthesis

rates compared to diets lower in OA. They also found lower re-

acylation of OA in the phospholipid fraction, suggested to be the

reason behind reduced lipoprotein synthesis (Caballero et al.,

2003). Hence, one could easily speculate that insufficient

lipoprotein synthesis might be one possible reason for the

increased CLD accumulation. However, these studies are

conducted in vivo, where dietary lipid sources are complex

mixtures of FAs and lipid classes. In contrast, in the current in
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vitro study, cells were exposed to individual FAs (PA, OA, or

ARA) complexed with BSA, meaning that phospholipid level

must be the same for all groups. This leads us to question why

OA would require more phospholipids than other FAs (PA and

ARA) to form chylomicrons/VLDL. The mechanisms behind

this remain unclear and need to be addressed in future studies.

Conversely, the lower accumulation of CLDs for PA and

ARA might indicate that they are preferentially used for b-
oxidation instead of TAG synthesis and LD storage or

phospholipid synthesis. This is further supported by

quantitative data, where 91% of FAs was recovered for OA,

but only 58% of PA and 56% were recovered for PA and ARA,

r e spec t i v e l y . PA i s an impor t an t componen t o f

phosphatidylcholine (PC) and is required for lipoprotein

synthesis (Bell et al., 1985; Olsen et al., 2000). Similarly,

PUFAs such as EPA, DHA and ARA are preferentially

esterified into phospholipids than less unsaturated FA like OA.

This is probably due to their essential function to maintain

membrane integrity and functionality of the cells biomembrane

(Bell et al., 1985). Therefore, some amount of PA and ARA

might be acylated into the phospholipid fractions.

Unfortunately, we did not measure the recovered radioactivity

in b-oxidation products or the phospholipid fraction and hence
FIGURE 8

Heatmap of DEGs from selected target genes with 1.5- log fold change (adjusted P-value:<0.1). Data are from three independent experiments in
triplicate (N=3; n=3). Differential expression analysis was performed in a pair-wise manner by comparing three different FAs (PA, OA, or ARA)
against the control group using the DESeq2 package. The number of differentially expressed genes (DEGs) identified was 18, 32 and 20 for PA,
ARA, and OA, respectively. PA, Palmitic acid; ARA, Arachidonic acid; OA, Oleic acid.
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can only speculate that this was the fate of these FA. However, in

support of our speculation, an in vitro study in the HepG2 cell

line demonstrated that PA preferably stimulates mitochondrial

oxidative metabolism, while OA results in abundant CLDs with

a slower mitochondrial oxidation (Eynaudi et al., 2021).

Similarly, a study on isolated hepatocytes from Atlantic

salmon reported that ARA, followed by PA were the

preferential substrates for b-oxidation compared to OA

(Stubhaug et al., 2005). In the present study, significantly

lower recovery of [3H] FA for PA and ARA compared to OA,

might indicate enhanced b-oxidation of these FA. However, the

expression of genes related to b-oxidation does not show any

significant difference between FA. Furthermore, the cells that are

exposed to high FFA concentrations cause ER stress which may

lead to cell dysfunction, and apoptosis (Cui et al., 2013).

However, in the present study we did not observe upregulation

of transcripts involved in ER stress (edem, hsp70).

Additionally, our study showed that OA not only increases

the CLDs accumulation, but it also promotes CLDs with larger

volume, surface and diameter. This is probably due to fusion of

CLDs, assumed to be mediated through members of the SNARE

protein family (Boström et al., 2007). Although it is generally

accepted that formation of large CLDs protects the cell from

lipotoxic effects from excess FFA (Bateman et al., 2007; Ricchi

et al., 2009; Eynaudi et al., 2021). However, the formation of

large CLDs along with excessive accumulation in intracellular

space may also lead to cell dysfunction or cell death (Schaffer,

2003). Accordingly, several in vivo studies in fish have

demonstrated extensive damage to enterocytes caused by high

lipid accumulation (Deplano et al., 1989; Olsen et al., 1999;

Olsen et al., 2000). Our study demonstrated that OA contributes

to lipid accumulation in enterocytes through increased number

and size of CLDs, suggesting that dietary inclusion of OA rich

oils should be limited.

The perilipins, encoded by the plin genes, are the major

proteins associated to CLD surface that regulate lipid droplet

stability and turnover (Ko et al., 2020). Among reported plin

(plin1, plin2, plin3, and plin6) in fish, including rainbow trout,

plin2 is ubiquitously expressed in all tissue and is associated with

increased CLDs accumulations. In addition, the microsomal

triglyceride transfer protein (mtp), primarily involved in

lipoprotein assembly and also reported to be present in CLDs,

has been found to increase as a response to excessive CLD

accumulation (Love et al., 2015). In the current study, all three

FA types triggered the overexpression of plin2 and mtp

transcripts compared to the control. However, the expression

was significantly higher for PA followed by ARA and OA, which

is not correlated with the CLDs observed from image analysis.

Similar patterns were also observed for the transcripts involved

in the TAG pathway (mogat, agpat4). A recent study by Etayo

et al. (2021) in ballan wrasse (Labrus bergylta) fed lipid rich

meal, reported the initial increase in gene expression involved in

serotonin synthesis and then declined over time post-prandially.
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Simultaneously, serotonin (5-HT) levels increased in the same

tissues. A highly abundant protein will usually have a highly

expressed mRNA. Nevertheless, there are factors involved in the

process between gene transcription and translation into protein,

which can result in a mismatch between gene expression and

protein level. For example, the half-life of different proteins

can vary from minutes to days, whereas mRNA degrades

within hours (Hargrove and Schmidt, 1989). Other possible

factors include the lower rate of mRNA transcription than

protein translation and possible negative feedback

mechanisms, which might also have contributed to the

currently observed lack of correlation between mRNA

transcripts and CLDs accumulation. A further study with time

series samplings could provide additional information in

regulations at transcriptional levels.

FA chain length and degree of saturation influence the

uptake by intestinal cells (Wang et al., 2013). However, the

way it is regulated also depends on several other factors

including the number of monomers delivered, membrane

solubility, permeability of monolayer, and membrane carrier

protein activity (fabp, scavenger cd36, fatp). In the present study,

the mean uptake of labelled OA from the apical compartment

was significantly lower than the other FAs, which is concurrent

with the increased number and size of CLDs observed. Thus, this

result might indicate that excessive accumulation of CLDs in the

cytosol may present a physical barrier and cause the lower

cellular uptake for this OA (Morais et al., 2007). On the other

hand, the uptake of PA and ARA from the apical compartment

by cells was quite efficient. The greater uptake of PA may be due

to lower water solubility and the greater membrane solubility of

PA compared to OA or could also be caused by a greater

efficiency of carrier protein (fabp and scavenger cd36, fatp) in

transporting PA compared to OA, despite similar affinity for PA

and OA (Trotter et al., 1996). Furthermore, the higher affinity of

cytosolic FABP and higher esterification rate for PUFA (Sire

et al., 1981; Pérez et al., 1999) could possibly explain the better

uptake of complex FAs like ARA.

To transport re-esterified FA (TAG) from enterocytes to

systemic circulation and to peripheral tissues, TAG must be

incorporated into lipoproteins (apob, apoa1, apoa4, apoc, apoe,

and apod). The apob is a major secretory lipoprotein, and its role

in transporting TAG from enterocytes to circulation is well

recognized. Previous studies in caco2 cells have clearly

demonstrated the expression of apob both in the presence or

absence of FAs supplements (Liao and Chan, 2000; Bateman

et al., 2007). Similarly, the induction of apob expression in

response to diets has also been demonstrated in the fish

intestine, including rainbow trout (Kamalam et al., 2013a;

Kamalam et al., 2013b). However, in the current study, we

observed very low expression of apob, and although other

apolipoproteins (apoa1, apoa4, apoc, apoe, and apod) were

expressed, no DEGs for any of these apolipoproteins in all

treatment groups, including control. This might be related to
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the time points at which the cells were sampled after FAs

exposure as described in Etayo et al. (2021).

While it has been widely accepted that LCFAs are transported

mainly as esterified form (TAG), in the present study, we observed

a significant amount of fatty acids as FFA in the basolateral region

in the PA and OA treatments, but also some in the ARA group. A

possible explanation for this could be that the high amount of FA

load in the apical regionmight cause transport of a certain amount

of these FFA directly into the basolateral chamber (and into

circulation). Similar results have been observed in vivo in Atlantic

salmon (Denstadli et al., 2011), where they reported the transport

of OA both as esterified lipids (TAG) as well as FFA form in portal

blood. Similarly, an earlier study by Kayama and Iijima (1976) in

carp fed radiolabeled PA found significant amount of labelled FFA

in the circulation and suggested that the FFA plays an important

role in fish lipid transport system. Similarly, in the current study,

for the more complex FA like ARA, the amount of recovered FFA

in the basolateral fraction was quite low compared to PA and OA.

On the other hand, the TAG amount in the basolateral fraction

was significantly higher for ARA than others. These results might

indicate a better regulated intracellular transport of complex FAs

like ARA.
Conclusion

The present study demonstrated that RTgutGC cells have

the characteristics of absorbing and transporting the FA, which

is comparable to similar mammalian cell lines as well as in vivo

studies in fish or mammals. Thus, RTgutGC could serve as a

suitable in vitro model to study the intracellular trafficking of

fatty acids and their metabolism. As hypothesized, carbon-chain

length and saturation level of FA differently regulate the TAG

synthesis and subsequent CLDs accumulation, where the

accumulation of TAG in CLDs was higher for oleic acid (OA)

compared to arachidonic acid (ARA) and palmitic acid (PA).

Accumulation of CLDs negatively affected the absorption of FA

into the cells, such that PA and ARA are better absorbed by the

cells than OA. The relatively higher amount of FFA being

transported to the serosal basolateral side for PA and OA is

backed up by findings in vivo in fish. The lower recovery of

radiolabeled FA for PA might suggest that PA and ARA are

preferred substrates for b-oxidation over OA, warranting further

understanding of intestinal lipid transport in teleost.
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