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Remote sensing identification of
marine floating raft aquaculture
area based on sentinel-2A
and DEM data

Yishuo Cui, Xuehong Zhang*, Nan Jiang,
Tianci Dong and Tao Xie

School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and
Technology, Nanjing, China
Marine floating raft aquaculture forms an integral component of the

monitoring of coastal marine environments. It is essential to accurately

obtain the spatial distribution of marine floating raft aquaculture to gain the

fullest understanding of the development of marine fishery production,

optimization of the spatial layout of aquaculture, and protection of the

marine environment. The Sentinel-2 Multispectral Instrument (MSI) is used to

acquire optical imagery at a high spatial and temporal resolution, sampling 13

spectral bands in the visible, near-infrared, and short-wave infrared parts of the

spectrum. This research reports how a decision-tree-based procedure was

developed to map marine floating raft aquaculture using Sentinel-2A MSI

imagery and DEM (Digital Elevation Model) data. Three indices and spectral

features were used in this algorithm to differentiate marine floating rafts from

other land-cover and land-use types in Fangchenggang City, China. These

included the Differential Ratio Floating Raft Index (DRRI), newly proposed in the

paper, the Normalized Difference Vegetation Index (NDVI), and visible

reflectance. Additionally, a comparison was made between the decision tree

classification method (DT) and the random forest (RF) and support vector

machine (SVM) methods. The results demonstrate that these three methods

can obtain raft information with high accuracy. Finally, the classification results

were merged into aquaculture rafts and non-aquaculture rafts. The overall

accuracy for DT was 98.20% and 1.28 and 4.99 percentage points higher than

RF and SVM, respectively. The user accuracy for marine floating rafts for DT

(98.25%) was also markedly higher than that of RF and SVM methods (93.97%

and 86.50%, respectively). The producer accuracy for marine floating rafts

through the DT method was 98.17%, 0.81 percent lower than that of RF, and

1.03 percent lower than that of SVM. The decision-tree method does not

assume strict data distribution parameters, optimization of the application of
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multispectral imagery and elevation data becomes possible, and combing with

the DRRI index, then results in higher classification accuracies of marine

floating rafts. When using multi-source data of different types and

distributions to map marine floating rafts, a decision-tree method, therefore,

appears to be superior to RF and SVM classifiers.
KEYWORDS

Floating raft aquaculture, Sentinel-2A, decision tree, random forest, support vector
machine, DRRI
1. Introduction

Floating raft aquaculture is generally found in the shallow

marine regions, consisting of cultures of macroalgae, shellfish,

and other marine animals (Yu, 2019). Following the rapid

growth of the fishery market scale, the floating raft density in

seawater continues to increase, resulting in the slowdown of

seawater flow, thereby reducing the exchange capacity of the bay

water, causing many marine ecological problems. It is important

to ascertain the distribution of floating rafts in the marine area

for the following reasons: to inform and develop macro

governmental regulations; to ensure the protection of marine

ecological environments; to guarantee safe ship navigation and

reasonable planning of cultures, facilitating production

value estimations.

Floating raft aquaculture is primarily located in offshore

areas that are difficult to cover using traditional manual

monitoring methods. With a wide range of distribution and a

tendency to increase year by year, this represents the urgent

requirement for timely monitoring. Manual aerial surveys are

time-consuming and laborious, showing the potential in the

use of satellite remote sensing as an efficient means to obtain

information on floating raft distribution, a method that is

suitable for long-term dynamic monitoring. Remote sensing

extraction of floating raft aquaculture areas carried out by both

domestic and foreign scholars usually uses visual interpretation

(Yang et al., 2005; Cheng et al., 2012), object-oriented methods

(Chu et al., 2008; Loberternos et al., 2016; Wang et al., 2018;

Yu, 2019; Liu et al., 2020), image enhancement methods (Liu

et al., 2013; Fan et al., 2015), and deep learning (Cui et al.,

2019a; Cui et al., 2019b; Liu et al., 2019a; Liu et al., 2019b)

based methods.

Visual interpretation methods involve interpreting floating

raft information directly using the human eye alone by following

certain interpretation markers (Yang et al., 2005; Cheng et al.,

2012). The efficiency of this type of method is low (Rajitha et al.,

2007; Jayanthi, 2011), and generally focuses on a small number

of floating rafts as training samples. Image enhancement

methods normally involve the use of information
02
enhancement indices to extract floating raft information. The

image enhancement and classification method based on

neighborhood analysis being designed (Liu et al., 2013)

demonstrate a good extraction effect for seine farming areas.

Through the use of feature extraction with a joint sparse

representation classification method and other information

enhancement methods, Fan (Fan et al., 2015) efficiently

extracted floating raft information from a single high-

resolution SAR image.

However, there is room for improvement in classification

accuracy. The mariculture floating raft extraction methods

which combine optical and SAR images to create one single

fused image can improve the classification accuracy (Yu, 2019),

but the fused image makes full use of the rich spectral features of

the original optical images difficult. Object-oriented methods

establish classification systems based on the spectral, textural,

and spatial features of floating raft targets (Du et al., 2013; Xu

et al., 2018). Liu (Liu et al., 2020) located floating raft targets by

processing Landsat8 images using object-oriented NDVI,

NDWI, and edge extraction operators, however, most object-

oriented classification systems require additional expert

experience, making such methods more subjective (Xue

et al., 2018).

Compared with traditional methods, machine learning and

deep learning methods can improve the extraction efficiency of

floating raft information. However, it should be noted that

general machine learning and object-oriented methods are

more prone to the phenomenon of “adhesion”(Liu et al.,

2019a; Liu et al., 2019b; Yu, 2019; Liu et al., 2020), and the

fact that a large number of aquaculture areas on land are

misclassified as floating raft targets when this method is used

is problematic. Chu (Chu et al., 2020) proposed a support vector

machine method combining spectral and texture features based

on GF-1 image data. This improved overall classification

accuracy, acting to reduce the “adhesion” phenomenon when

compared with general machine learning methods, however, the

extraction accuracy was reduced without the presence of strong

local spectral features due to the reduced number of bands in

GF-1 data. Cui (Cui et al., 2019a; Cui et al., 2019b) proposed a
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fully convolutional neural network method as another way to

overcome this “adhesion” phenomenon. However, this method

requires a large number of training samples with high spatial

resolution and the extraction of floating rafts on a large spatial

scale, which can lead to the omission of floating rafts in coastal

rivers. Sui (Sui et al., 2020) proposed a semantic segmentation-

based algorithm for offshore fish box and floating raft extraction,

but the learning and extraction efficiency of this method is

reduced when dealing with remote sensing images over

larger areas.

Commonly used remote sensing data for extracting marine

floating raft aquaculture areas mainly includes optical images

such as GF-1 (Wang et al., 2018; Cui et al., 2019a; Cui et al.,

2019b; Chu et al., 2020); GF-2(Liu et al., 2019a; Liu et al., 2019b);

SPOT-5 (Chu et al., 2008; Liu et al., 2013); Landsat TM (Yang

et al., 2005); Landsat 8 OLI (Yu, 2019; Liu et al., 2020) and SAR

images (such as GF-3 (Yu, 2019) X-band SAR images (Fan et al.,

2015)), and Phil-Lidar2 LiDAR (Loberternos et al., 2016) point

cloud data. Extraction studies of mariculture rafts based on

Sentinel-2 imagery have been less reported. Sentinel-2 consists of

two satellites, Sentinel-2A and Sentinel-2B, which carry a

multispectral imager (MSI). This covers 13 spectral bands,

from visible to short-wave infrared, and can acquire

multispectral images with a revisit period of 5 d (10 d for a

single satellite) with a spatial resolution of up to 10m. Therefore,

its high spatial and temporal resolution alongside the wide

working band has great potential for the remote sensing

identification of floating rafts. Additionally, marine-farmed

rafts are distributed in coastal waters with low elevation, and a

combination of DEM (Digital Elevation Model) data can make

full use of this feature leading to the potential improvement of

the accuracy of raft extraction.
Frontiers in Marine Science 03
Accordingly, this paper uses Pearl Bay in Fangchenggang

City, Guangxi as the study area. This study aims to construct a

spectral index of floating rafts by comparing the differences in

spectral characteristics of typical features based on Sentinel-

2MSI satellite images and making full use of the special coastal

environment in which the offshore floating rafts are located, to

eventually establish a decision tree model to extract offshore

floating raft areas based on Sentinel-2 and DEM data.
2. Data & methodology

2.1 Overview of the study area

The study area selected in this paper is at the southernmost

point of the Chinese mainland coastline (107°28′E~108°36′E,
20°36′N~22°22′N), located in Pearl Bay, Fangchenggang City.

The area borders Vietnam to the southwest and contains 580 km

of coastline with a subtropical monsoon climate. The latitude

and longitude range of the study area is 108°0′E~108°19′E, 21°
25′N~21°39′N, as shown in Figure 1.

The deep-water wind & wave-resistant aquaculture base for

fish farming in Pearl Bay represents the first national marine

ranching core demonstration area in Guangxi Province, where

enterprises develop the deep-sea net box and new shellfish

floating raft aquaculture in both the marine breeding area and

surrounding waters. The offshore deep-water wind and wave

resistant net cage and new shellfish floating raft culture cage are

two new types of aquacultures forming an important element of

the development of marine fisheries in Fangchenggang City,

possessing a large economic value. The floating raft in this area

averages about 15m-20m wide and 55m-60m long. This means
FIGURE 1

The geographical location of the study area and Sentinel-2A standard false color composite image of the study area.
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that when the spatial resolution is 10m, the floating raft target

generally occupies about 2-3 pixels in width and about 6-8 pixels

in length.
2.2 Data acquisition

2.2.1 Satellite imagery data
In this paper, the satellite image data used for the extraction

of aquaculture floating raft information is the Sentinel-2A

satellite image. Sentinel-2 is composed of two satellites, “2A”

and “2B”, carrying a high-resolution multispectral imaging

device with 13 bands from the visible to the near-infrared and

short-wave infrared, whose band settings and performance
Frontiers in Marine Science 04
indicators are detailed in Table 1. This experiment uses the

atmospherically corrected S2A satellite data product of the L2A

level acquired on December 21, 2020. The atmospheric

correction of data is based on Sen2Cor. To allow for the

difference in resolution of Sentinel-2A data in different bands,

the data are resampled using cubic convolutions. This

experiment includes band data with 10m (B2, B3, B4, B8) and

20m (B6) resolution, and data with a 20m spatial resolution are

resampled to 10m resolution to enable subsequent experiments.

Data are selected for the newly formed index and model used in

this study and were selected by index principle and accuracy

assessment of models.
2.2.2 DEM data

The DEM data used in this paper is the SRTM (Shuttle Radar

Topography Mission) DEM, comprising digital elevation data

obtained from the Shuttle Radar Topography Mission SRTM.

NASA and the National Geospatial-Intelligence Agency (NGA)

conducted this 11-day mission from February 11 to 22, 2000, on

board the Space Shuttle Endeavour. The data used for this

experiment are 30m resolution SRTM DEM products.
2.2.3 Sample data set

The data sample for this study was determined through the

combining of quasi-synchronous high-resolution Google images

with visual interpretation from Sentinel-2 images. The spatial

distribution of the samples is shown in Figure 2. 7488 sample

pixels were extracted by sample polygons, of which 639, 631,

505, 661, 679, 861, 915, 2597 were artificial buildings, bare soil,
TABLE 1 Sentinel-2A band data.

Band
Number

Central
Wavelength

(nm)

Band
Width
(nm)

Spatial
resolution

(m)

1 443.9 27 60

2 496.6 98 10

3 560.0 45 10

4 664.5 38 10

5 703.9 19 20

6 740.2 18 20

7 782.5 28 20

8 835.1 145 10

8A 864.8 33 20

9 945.0 26 60

10 1373.5 75 60

11 1613.7 143 20

12 2202.4 242 20
FIGURE 2

Sample Distribution.
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sandy beaches, land vegetation, mangroves, water bodies, land

aquaculture ponds, and floating rafts, respectively. 1369 floating

raft pixels and 1941 non-floating pixels (including artificial

buildings, bare soil, sandy beaches, land vegetation,

mangroves, water bodies, and land-based aquaculture ponds

494, 472, 242, 390, 460, 431, 461 respectively) were randomly

selected as training samples, with the remaining ones being

validation samples. Data is processed with weights in RF and

SVM, detailed process models are in Section 3.2. Category

definitions are shown in Table 2.
2.3 Research methodology

2.3.1 Analysis of Spectral Characteristics
The typical features in this study area comprise floating rafts,

land-based aquaculture areas (Aquafarm), water bodies,

vegetation (land-based vegetation and mangroves), bare land,

artificial buildings, and sandy beaches (Sand). The Sentinel-2A
Frontiers in Marine Science 05
reflectance data were combined with the region of interest (ROI)

for statistical purposes (in Figure 3) to analyze the reflectance

characteristics of the typical features within the study area. The

reflectance of the floating raft shows a peak with increasing

wavelength, a trough value (0.040) in the near-infrared band

(740.2 nm-782.5 nm), and reflectance of 0.061 at 835.1 nm. The

reflectance of the floating raft decreases continuously from 835.1

nm to 945 nm, decreases to 0.021 at 945 nm, and then increases

to 0.040 at 2202.4 nm. The reflectivity of the raft at the

wavelength of 2202.4 nm is 0.030.

The reflectance of the land-based aquafarm and the floating

raft were close to each other, however, the difference between

them was obvious in the visible wavelength, while the similarity

is high in the NIR. The difference between the two is most

obvious at 496.6 nm, where the reflectance of the floating raft is

about twice as high as that of the land-based aquafarm. From the

perspective of the change in reflectance values with wavelength,

the change in reflectance between the floating raft and the land-

based aquafarm is in the opposite direction from 835.1 nm to
TABLE 2 Category Definition.

Classes Classification Class Definition

Raft Areas covered by floating Rafts used for aquaculture

Non-Raft Water Bodies Areas covered by sea, rivers, lakes

Bare land Areas covered by exposed soil

Artificial building Areas covered by artificial facilities

Aquafarm Areas covered by aquaculture ponds on the coast.

Mangrove Forest Areas covered by both closed and open mangrove forests

Sand The region of the shore of the sea

Land vegetation Areas covered by vegetation on the land
FIGURE 3

Schematic of the reflectivity curve between the floating raft and the water body.
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945 nm, and the slope of the change in reflectance of the floating

raft is larger in absolute value than that of the aquafarm. The

reflectance of the floating raft increased while that of the

aquafarm decreased.

The reflectance of the water bodies increases with

wavelength then decreases and tends to level off in general,

with the highest being 0.076 (560 nm) and the lowest being 0.008

(945 nm). This is closer to the reflectance of the floating raft in

the visible band, while the difference in the NIR is relatively large

(703.9 nm-835.1 nm). The average difference in reflectance

between the water bodies and the floating raft is up to 0.029.

The reflectance of bare land and artificial buildings is high in

all wavelengths, so they are different from the floating raft,

making it easier to distinguish the floating raft from them. The

lowest reflectance of bare land and artificial building is at 443.9

nm (0.10 and 0.08, respectively), and the highest is at 1613.7 nm

(0.36 and 0.230 for bare land and artificial building,

respectively). The beach reflectance does not vary much in

bands and is higher than that of the floating raft, so it is

generally easy to discern the two when classifying.

Reflectance changes in the mangrove forest and terrestrial

vegetation are identical, making it easy to distinguish between

these and the floating raft, because of their distinct vegetation

characteristics and high reflectance at the NIR.
2.3.2 Spectral index
NDVI (Normalized Difference Vegetation Index) is a widely

used vegetation index (Rouse et al., 1974). The near-infrared and

red bands of Sentinel-2 multispectral remote sensing data fall in

Band 8 (central wavelength 842 nm) and Band 4 (central

wavelength 665 nm), respectively. NDVI attempts to indicate

information about vegetation in the study area and is calculated

as follows

NDVI = (rNIR − rR)=(rNIR + rR) (1)

In Equation (1), rR corresponds to the Band4 (red band) and
rNIR corresponds to the Band8 (NIR band).

Due to the diversity of features in the study area, the overall

NDVI values ranged from -0.9974 to 0.9994, and eight types of

features were analyzed: raft, Aquafarm, water bodies, mangrove

forest, land vegetation, bare land, sand, and artificial building.

This was done in order to extract information on floating rafts in

the ocean and exclude the influence of aquafarm. Statistical

information on the NDVI values of features is shown in Table 3.

Information in the table demonstrates that the NDVI values of

land and water bodies are distinct, meaning the index can be

used to distinguish land and water bodies effectively, however,

the NDVI values of land areas such as rivers and lakes are

negative, which would have an influence on the result.

NDWI (Normalized Difference Water Index) is a

normalized difference water index calculated using green and

near-infrared bands (McFeeters, 1996), and is commonly used to
Frontiers in Marine Science 06
extract information about water bodies in images. The NDWI

can be calculated using Band3 and Band8 in Sentinel-2 to extract

water body information in the study area, and its calculation

formula is as follows.

NDWI = (rG − rNIR)=(rG + rNIR) (2)

In Equation (2), rG corresponds to the Band3 (green band),

and rNIR corresponds to the Band8 (NIR band).

From the statistical information of NDWI, it can be analyzed

that in this index, the difference between floating rafts and water

bodies is obvious: the mean value of NDWI for the floating rafts

is 0.0135, while that for water bodies is 0.6485. In a marine

context, the NDWI index can be used to distinguish floating rafts

and water bodies, and the statistical information for eight types

of features is shown in Table 3.

DRRI (Difference-Ratio Raft Index) is improved by using

bands in NDWI, which is calculated based on green (Band3

560nm), red (Band4 664.5nm), and red edge (Band6 740.2nm),

and near-infrared (Band8 835.1nm). The index is capable of

separating the ocean background from floating rafts and is

applicable for the extraction of floating rafts on the sea surface

by using the following calculation formula.

DRRI = (rNIR − rRE + 1:25 * (rR

− rG))=(1:25 * (rG + rR) + rRE + rNIR) (3)

The theory of DRRI lies mainly in using the difference

between the floating raft and the water body in the following

four bands: green, red, red edge, and near-infrared in order to

extract the floating raft from the water bodies. In Equation(3) the

following band reflectance is thusly represented:rNIR represents

the NIR, rRE represents the red-edge, rG represents the green,

and rR represents the red.

As is indicated by the red and purple arrows in Figure 4, the

index is built based on the differences in red-green and NIR-red-

edge bands between Raft and water bodies. For water bodies,

there is a steep in red-green bands(pointed by the first red

arrow), while in the NIR-red-edge band, the reflectance change
TABLE 3 Statistics of typical feature indices in the study area.

Features NDWI NDVI DRRI

m±s m±s m±s

Raft 0.0135 ± 0.0967 -0.0927 ± 0.0699 0.0647 ± 0.0515

Aquafarm 0.1785 ± 0.1866 0.0524 ± 0.1760 -0.1726 ± 0.1194

Water Bodies 0.6485 ± 0.0753 -0.3674 ± 0.1191 -0.3994 ± 0.0587

Mangrove Forest -0.6859 ± 0.0667 0.8157 ± 0.0580 0.0237 ± 0.0245

Land Vegetation -0.7486 ± 0.0550 0.8444 ± 0.0727 0.0727 ± 0.0382

Bare Land -0.1476 ± 0.1149 0.0698 ± 0.1128 0.0359 ± 0.031

Sand -0.0676 ± 0.0115 0.0526 ± 0.0099 0.0173 ± 0.0082

Artificial Building -0.2097 ± 0.1116 0.1804 ± 0.1168 0.0397 ± 0.0547
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in water bodies is small(pointed by the second red arrow). The

floating raft target has large differences in reflectance in both the

red-green band(pointed by the first purple arrow) and the NIR-

red-edge band(pointed by the second arrow). Short lines indicat

their changes. By amplifying the difference in the green-red band

by a factor of 1.25 (measuring the mean standardized distance

with the coefficient, and optimizing the factor by the least square

method) and adding the amplified part with the NIR-red-edge

band, the floating raft target becomes brighter and the water

background darker. Then the extraction index is normalized to

-1 and 1, and the water bodies are always smaller than 0. The

difference between the floating raft and water bodies being

processed by DRRI is more obvious than using a single band,

or a simple combination of bands.

From the analysis of the DRRI statistical information

obtained, the mean value of DRRI of water bodies is -0.3994.

The standard deviation is 0.0587. The DRRI values of marine

water bodies are all small and distinctive, and the standard

deviation is smaller than the statistical value in NDWI. Other

features that are easily confused with rafts, such as aquafarm,

have large differences in DRRI with rafts and can be better

identified using the DRRI. The DRRI statistics of typical

features are shown in Table 3 below.

This study uses mean standardized distance to evaluate the

effectiveness of the three indexes mentioned above and aims to

select indexes that have better separability within the group of

categories. The mean standardized distance d is calculated as

follows:

d =
m1 − m2j j
s1 + s2

(4)

In the Equation, m1m2 is the statistical mean of the sample on

the corresponding index for both feature categories, and s1s2 is

the statistical standard deviation of the sample on the

corresponding index for both feature categories.
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The mean standardized distance of NDVI, NDWI, and

DRRI are shown in Table 4. The NDWI index has good

differentiability for raft & water bodies, raft & artificial

building, raft & mangrove forest, and raft & land vegetation,

with distances d of 3.703, 1.032, 4.186, and 4.873, respectively.

The newly constructed DRRI index of this experiment has better

differentiability between raft and water bodies than NDWI, with

the best distance d between the floating raft and water body

(4.211), and distance between raft and aquafarm was 1.389.

In summary, among the three indexes in this experiment,

NDVI is applicable to distinguish floating rafts from terrestrial

vegetation and mangrove forest, and DRRI is applicable to

distinguish floating rafts from water bodies and aquafarms.

The validity of the DRRI index proposed in this experiment is

verified and applies to the extraction of floating raft targets from

the marine surface.

2.3.3 DEM feature analysis
The study area includes land, islands, ocean, mudflats, and

other topography. It can be seen from the SRTM DEM data that

the elevation of the marine area is 0m, while the land and island

areas are generally higher, in the mudflats area at the junction of

land and ocean and elevation of some aquafarms, it is also 0m.
FIGURE 4

Characteristic curves of typical feature reflection.
TABLE 4 Index Separability of NDVI, NDWI, and DRRI.

Types of objects d (NDVI) d (NDWI) d (DRRI)

Raft Water Bodies 2.517 3.703 4.211

Bare Land 0.164 0.849 0.349

Artificial Building 0.417 1.032 0.235

Aquafarm 0.180 0.559 1.389

Mangrove Forest 5.510 4.186 0.539

Sand 0.497 0.755 0.794

Land Vegetation 5.115 4.873 0.0892
fro
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The difference in elevation characteristics can be roughly

distinguished between land rivers, lakes and other water

bodies, and marine water bodies.
2.3.4 Classification and accuracy
assessment method

To validate the classification result, the accuracy

assessment is carried out by computing User’s Accuracy

(UA), Producer’s Accuracy, Overall Accuracy, and Kappa

coefficient using the test dataset.

OA =
TP + TN

TP + TN + FP + FN
(5)

UA =
TP

TP + FP
(6)

PA =
TP

TP + FN
(7)

Pe =
(TP + FN) ∗ (TP + FP) + (TN + FN) ∗ (TN + FP)

TP + TN + FP + FN
(8)

Kappa =
OA − Pe
1 − Pe

(9)

In equations above, TP represents True Positive, FN

represents False Negative, FP represents False Positive, and TN

represents True Negative.

The decision tree method is one of supervised classification,

this study uses ENVI to realize the decision tree model. The

decision tree subdivides the study objects level by level so that

the probability of the Raft at the end point is maximized through

multiple discriminative classifications to obtain highly accurate

classification results. Coastal aquaculture areas and sand areas

influence the remote sensing extraction results offloating rafts. A

decision tree model is established based on Sentinel-2A, DEM

data, and spectral indexes to reduce the influence of other

features, therefore, achieving a more effective identification of

floating rafts in the ocean. The overall accuracy of the decision

tree is 98.20%. A detailed explanation of the decision tree model

is introduced in section 3.1.

The random forest method is a widely used machine

learning remote sensing information extraction method. It has

the advantages of low human intervention, fast computing

speed, and robustness (Yu et al., 2019). Based on the random

forest classification tool of van der Linden (Van der Linden et al.,

2015) we used the following parameters, and input the visual

interpretation of the floating raft ROI; the number of trees was

set to 1000 with the number of features determined using the log

function, and Gini Impurity is employed to measure whether to

continue splitting. The overall accuracy of the random forest

model is 96.92%. The detailed data processing method is in “3.2”.
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Support vector machine is a kind of machine learning

method based on statistical learning theory. Ocean surface

information is complex and has a lot of interference. The

principle of the support vector machine is to segment the

samples into different classes by using the hyperplane. This

allows the maximum interval on the feature space, making the

support vector machine method capable of achieving better

results for general classification problems. For nonlinear

classification problems, they are generally converted to a high-

dimensional feature space by nonlinear transformation for linear

support vector machine learning (Li, 2012). The general process

includes inputting a training data set (region of interest);

selecting a radial basis function as the kernel function; setting

the penalty parameter as 100, and then constructing the model.

The overall accuracy of the SVM model is 93.21%. The detailed

data processing method is in “3.2”.

Further discussion of accuracy assessment is shown in

“3.3 Evaluation”.
3. Results and analysis

3.1 Decision tree model construction

From the analysis of NDVI, NDWI, and DRRI, it can be seen

that, relative to the results of the index operation, the

differentiation degree of various types of features on Sentinel-2

images (b1-b11) is not high, and only land objects (vegetation,

mangrove forest, and artificial building) are distinguishable from

other features. This means that the floating raft cannot be

identified by directly using the original remote sensing

reflectance data in the Decision Tree (Figure 5).

Since the floating raft is located on the marine surface, its

identification depends on segmenting the land and the ocean for

extraction to avoid the misclassification of objects on land with

materials similar to the floating raft. Using DEM can distinguish

most of the marine water bodies from the land. In coastal

regions, there is a large area of mangrove forest, and the DEM

value in this area is consistent with the marine water bodies.

Therefore, it is difficult to eliminate the mangrove forest only by

the DEM value, however, because the NDVI of the mangrove

forests is positive, the NDVI index can be used to extract it

efficiently. The sand can also be eliminated according to the

positive NDVI. Therefore, the combination of NDVI and DEM

is applied in order to exclude the influence of land water bodies

(rivers, lakes, etc.) and mangroves. However, for land-based

aquaculture areas (Aquafarms) and marine water bodies in

coastal areas with DEM less than or equal to 0m, the influence

of such features cannot be excluded in this step and need to be

further processed and analyzed in the subsequent steps.

To locate the floating raft target, it needs to complete further

processing of the obtained part containing the marine water

body, aquafarm, and floating rafts. It can be seen from the DRRI
frontiersin.org

https://doi.org/10.3389/fmars.2022.955858
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cui et al. 10.3389/fmars.2022.955858
index that the water bodies’ DRRI value is low, where the mean

value is -0.3994 and the maximum value is -0.2849, while that of

floating rafts and aquafarm is 0.0647 and -0.1726, respectively.

The separability index of floating rafts and water bodies is 4.211.

The histogram of the index shows that it is best extracted at

-0.175 for floating rafts and extracting floating rafts and

aquafarm areas from the marine surface.

The Sentinel-2 B2 band is used to help extract the floating

rafts target. This eliminates the interference of aquafarm in

identifying floating rafts because the distinction (measured by

mean standardized distance) between the two features in the

Sentinel-2A B2 band is the highest among all bands and indexes,

which is 1.645. Aquafarm areas have low reflectance in the blue

band, and the average reflectance of the floating rafts is two times

that of aquafarm areas, so the B2 band can be used to separate

them. Then set the threshold at 0.0430 to extract the floating

raft target.

Finally, the decision tree is constructed by combining NDVI,

DRRI, DEM, and Band 2 to improve the recognition accuracy of

the floating raft, in the reason of the high mean standardized

distance between them and features (in Section 2.3.1).
3.2 SVM and random forest construction

The parameter set for SVM and Random Forest is written

in 2.3.4, while the input data is unclear. Considering the

Accuracy of different band combinations in Tables 5, 6 then

select the best combination as input data. Eventually, the

combination of B2, B3, B4, and B8 is selected for SVM, and

the combination of B2, B3, B4, B6, and B8 is selected for

Random Forest.
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If the DEM data is added, the overall accuracy will have a

0.0056(SVM) and 0.2180(RF) drop due to the lower resolution

of DEM, which would cause the aggravated adhesion

phenomenon, and more image pixels misclassified around the

floating raft target.

Input ROI for SVM and Random Forest is unbalanced, so

Cost-Sensitive learning (CSL) is used in this study for

comparison, and assign a higher weight to minority groups,

settings of weight are 4.05,4.10, 5.12, 3.92, 3.82, 3.01, 2.83, 1 for

artificial buildings, bare soil, sandy beaches, land vegetation,

mangroves, water bodies, land aquaculture ponds, and floating

rafts, respectively. But there is no significant effect while using

CSL in the process of learning (Tables 5, 6).
3.3 Evaluation

3.3.1 Evaluation of results and accuracy
The three methods mentioned in Section 2.3.4 were used to

identify the floating rafts in the coastal area from the remote

sensing image of Fangchenggang City on December 21, 2020.

The classification results were finally combined into two

categories: raft and non-raft, and the identification results are

shown in Figure 6. Firstly, the subjective evaluation of the

classification results shows that all three methods can

effectively extract floating rafts. The decision tree method

extracts the purest information about floating rafts, with the
TABLE 5 Comparison of input in RF.

Extraction method RF RF (CSL)

OA Kappa OA Kappa

B2+B3+B4+B8 94.1158 0.8823 93.9829 0.8831

B2+B3+B4+B5+B8 95.2307 0.9046 95.1734 0.9016

B2+B3+B4+B6+B8 96.9235 0.9372 96.7055 0.9342

B2+B3+B4+B7+B8 94.9210 0.8984 94.9334 0.8993

All Bands 96.8102 0.9362 96.8093 0.9354

All Bands+DEM 96.2837 0.9257 96.2713 0.9241

B2+B3+B4+B6+B8+DEM 96.7202 0.8685 96.6273 0.8542
frontie
TABLE 6 Comparison of input in SVM.

Extraction method SVM SVM (CSL)

OA Kappa OA Kappa

B2+B3+B4+B8 93.2074 0.8632 93.2018 0.8614

B2+B3+B4+B5+B8 93.1833 0.8641 93.1769 0.8638

B2+B3+B4+B6+B8 93.1498 0.8635 93.1564 0.8598

B2+B3+B4+B7+B8 93.0154 0.8608 93.0027 0.8594

All Bands 91.8737 0.8385 91.9542 0.8403

All Bands+DEM 92.0416 0.8418 91.9583 0.8341

B2+B3+B4+B8+DEM 92.8427 0.8518 92.8762 0.8543
FIGURE 5

Schematic diagram of decision tree algorithm.
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RF forming the second most accurate and the SVM representing

the worst. The following is an objective evaluation of each of the

three classification methods, the accuracy of which is evaluated

using the validation sample dataset. From Table 7, it can be seen

that in terms of overall accuracy, the decision tree method has

the highest success rate at 98.20%; the RF method is the second
Frontiers in Marine Science 10
highest at 96.92%, with the SVM method at 93.21%. From the

perspective of producer accuracy, the SVM method is optimal at

99.20%, but the user accuracy of this method is lower at only

86.50%. The decision tree method has 98.25% user accuracy,

producer accuracy of 98.17%, and overall accuracy is 98.20%. It

is also the classification method with the highest Kappa

coefficient among the three methods.

Overall, the SVM method has the lowest user accuracy and

lowest overall accuracy due to the misclassification of non-raft

pixels as rafts. The decision tree method is more suitable for

floating raft identification because it has higher producer

accuracy, user accuracy, and the highest overall accuracy, the

identification results are also clear and reliable. Detailed

statistical information on different models is shown in Table 7.

3.3.2 Comparison of extraction algorithms
The extraction offloating raft information mainly depends on

the spectral information of the material within the floating raft:

there are spectral characteristic differences among different

features, and information about floating rafts can be effectively

extracted through the selection of classification features and

amplifying differences among them. In this study, the decision

tree method, SVM method, and random forest method are

applied to identify marine floating rafts. Among them, the RF
A B

DC

FIGURE 6

Comparison of floating raft extraction results and spatial distribution, Original Image (A), Support Vector Machine (B), Random Forest
(C), Decision Tree (D).
TABLE 7 The extraction results of floating raft.

Method Confusion Matrix Extraction accuracy
of Floating raft area

(%)

Kappa

Prod User Overall

Decision Tree Raft Non-Raft Total
Raft 1344 34 1368
Non-Raft 25 1880 1905
Total 1369 1914 3283

98.17 98.25 98.20 0.9632

RF Raft Non-Raft Total
Raft 1355 87 1442
Non-Raft 14 1827 1841
Total 1369 1914 3283

98.98 93.97 96.92 0.9372

SVM Raft Non-Raft Total
Raft 1358 212 1368
Non-Raft 11 1702 1905
Total 1369 1914 3283

99.20 86.50 93.21 0.8632
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method and the SVM method require less human intervention,

while the decision tree model is obtained through the statistical

analysis of remote sensing data. For raft extraction algorithms,

there are some distinctions in their principles, which lead to

differences in recognition accuracy. Figure 7 shows some of the

intercepted areas, and the reasons for the differences in

classification accuracy are as followed.

For the decision tree method, the difference in spectral

features between the raft and non-raft areas can be used to

better extract the target, however, a small number of

misclassified elements around the floating raft still exists due
Frontiers in Marine Science 11
to the similarity of the spectrum. Since the number of bands in

multispectral images is small, which means there are fewer

features that can be used for classification, leading to a higher

probability of misclassification when the object material is

similar to that of the floating raft. In the process of floating

raft extraction, the normalized vegetation index NDVI and DEM

were used for the initial screening of water bodies. Next, the

DRRI index and blue band were used to screen out rafts.

Choosing a variety of features such as band, index, and

elevation can better avoid misclassification. The decision tree

method has the highest overall accuracy, and good classification
A

B

D

E

F

C

FIGURE 7

Examples of floating raft extraction comparison and misclassification, (A–C) and (D) are for raft areas, (E) and (F) are for misclassification aquafarm.
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effect, with the clearer and more accurate acquisition of floating

raft contours.

The SVM method is a category classification method.

Multispectral remote sensing data often do not have a high

enough spatial resolution for the sensing of smaller features.

Supervised classification methods have a high dependence on

samples, and the selected training samples may have the

problem of mixed image elements. This in turn affects the

computation of the support vector machine hyperplane, then

reducing the accuracy of classification, while the increase in the

number of samples leads to an increase in the time required for

successful training. The data used for the SVMmethod are bands

selected from Sentinel-2A (L2A). The actual size of the floating

raft in this area should be 2-3 pixels in width and 6-8 pixels in

length (10m resolution). Extraction results show that the target

of the floating raft obtained by the support vector machine

method is larger than its actual size. Furthermore, there is the

phenomenon of misclassification of water body pixels into

floating rafts (Figure 7).

For the random forest method, the principle is to integrate

multiple decision trees to obtain the output category, however,

the number of trees, inter-tree correlation, and data quality affect

the accuracy of this algorithm. For the problem of floating raft

extraction, the adjacent non-raft pixels are more similar to the

floating raft pixels, causing a mixed pixel problem, thus affecting

the inter-tree correlation, leading to problems such as larger

contours and serious adhesion between floating rafts (as shown

in Figure 7C). This misclassification results in lower user

accuracy, while some of the floating raft pixels are also

classified as other features such as water bodies. Although the

Random Forest method should have higher Accuracy than the

Decision Tree method theoretically, the complexity of features,

the newly formed DRRI index, and the application of DEM

make the Decision tree method has higher precision, which also

verifies the effectiveness of the DRRI index.

The decision tree has the best classification effect of the four

sets of classification results in Figure 7. The rafts extracted using

the decision tree method have low adhesion to the rafts, better

distinguishability, a clearer raft outline, and the area is closer to

the actual size of the rafts.

For aquafarms, all three methods have the phenomenon of

misclassification, mainly because the two elevations are similar,

and comprise similar material, which cannot be distinguished

using DEM value (decision tree method) or other algorithms.

However, the overall classification accuracy of the decision tree

method is the best of the three, and the misclassification

phenomenon is smaller than in the other two methods (in

Figure 7E, F).
3.3.3 Influence of data and objects
The identification accuracy of the floating raft is related both

to the chosen classification method, and the spatial resolution of
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the remote sensing images used for classification, which shows a

greater relationship with when the spatial resolution is higher,

the corresponding extraction accuracy also increases. Chu (Chu

et al., 2020) used the high-resolution remote sensing images and

texture features of GF-1 for classification using the SVM

method, and the classification accuracy was as high as

97.803%. However, for data with lower spatial resolution, the

classification accuracy will be reduced. The floating raft target is

about 15m-20m in width and 55m-60m in length, and the spatial

resolution of Sentinel-2A data is 10m, so the accuracy of

extracting floating raft information with Sentinel-2A meets the

basic requirements, improving the efficiency of floating raft

information extraction.

There are more aquafarm areas in coastal areas that are

easily confused with floating raft areas (in Figure 7E, F), and

coastal aquafarm areas have lower reflectance at 496.6 nm than

marine waters and floating rafts. The decision tree method can

use this feature to distinguish them from marine waters and

floating rafts. Some of the coastal aquaculture areas have similar

spectral features to the floating rafts, which may be caused by the

same or similar materials within both elements, thus affecting

the extraction accuracy. However, this issue can be investigated

further by subsequent research.
3.4 Evaluation of another coastal area

Another coastal area in China was chosen to demonstrate

the practical utility of the newly formed index DRRI and the

decision tree model. It is Sandu Gulf located in Ningde city,

Fujian Province. The location is shown in Figure 8.

The overall accuracy (OA) and the Kappa are computed to

validate the performance of the DRRI index and the decision tree

model, and the validation samples were randomly selected from

Google Earth high-resolution images. The OA of classification

results is 98.03%, and the Kappa is 0.9591, which represents high

precision. Partial extraction results are in Figure 8. The water

bodies’ DRRI is always smaller than 0. There are tiny differences

in the setting of the parameters due to the material used for

floating rafts, although they are both rafts for fish farming. The

threshold of DRRI to distinguish between water bodies and rafts

was set to -0.039 (raise 0.136), and the separability (measured by

mean standardized distance, which is 2.1) of water bodies and

rafts in DRRI is also strong.
4. Discussion

4.1 Strengths and potential

Floating rafts are located in the offshore bay area, where

individual rafts are small and densely arranged, which makes

“adhesion” easier between the rafts when using remote sensing
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images for classification. The problem of “adhesion” is more

obvious in studies with low spatial resolution such as Landsat

images (Yu, 2019; Liu et al., 2020), however, it is reduced with

the use of higher spatial resolution images such as SPOT and

GF-2. It should be noted that the phenomenon of “adhesion”

still exists in areas with high floating raft density (Liu et al., 2013;

Liu et al., 2019a). General machine learning and object-oriented

methods show poor performance in dealing with this problem

(Liu et al., 2019a; Liu et al., 2019b; Yu, 2019; Liu et al., 2020),

whereas the DRRI index proposed in this study can efficiently

extract the floating raft targets at images with 10m and 20m

spatial resolution, thereby alleviating the “adhesion”

phenomenon to a large extent. To alleviate the problem of

similar spectral characteristics in the aquafarm regions and

floating rafts, the use of the land elevation feature of the

region where it is higher than 0 and uses DEM elevation

information effectively reduces part of the misclassification

phenomenon. The decision tree constructed in this study

successfully distinguished aquafarms with low elevation in the

coastal region from marine aquaculture floating raft areas.

Decision tree-based models are suitable for large-scale

floating raft aquaculture extraction, which can provide

accurate results (Hou et al., 2022). This study proposes a

floating raft identification index that aims to extract the

floating raft target from the background of marine water

bodies, and it is demonstrated success in reducing the degree

of “adhesion” between these water bodies and the floating rafts

caused by mixed pixels. The index is different from the HIS-FRA

index constructed by Hou (Hou et al., 2022), which uses four
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bands, including red band, green band, red-edge band, and near-

infrared, in order to make full use of the differences in the

spectral characteristics of the typical features discussed. It shows

a relatively stable ability to distinguish between floating raft

targets and marine water bodies. The index can not only

effectively extract the floating raft target from the background

of the marine water, but also fully distinguish the floating raft

from artificial buildings, sand, vegetation, aquafarms, etc. The

DRRI index also outperforms NDVI and NDWI in the

extraction of floating rafts and has a good application value.

This study innovatively uses DEM data in the process of

floating raft target extraction, thereby improving the spatial

range adaptation capability of the algorithm. For large-scale

remote sensing images, floating raft extraction can also be

applied directly without the need for sea-land boundary data.

The use of DEM data can effectively utilize elevation

information, thus avoiding the influence of land features with

similar spectral characteristics on floating raft extraction and

does not lose the floating raft targets in the river channels in

coastal areas.
4.2 Limitations

This study shows that there is a significant difference

between the spectral reflectance of the marine water bodies

and the floating raft target, so DRRI can effectively identify

and detect the target from the marine background. The DRRI

index in the decision tree algorithm is designed based on the
FIGURE 8

Location of verifying area and the identification results in Sandu Gulf.
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difference in reflectance variation in the red-green band and red

edge-NIR band. A small percentage of local water bodies

adjacent to floating rafts will be classified as floating rafts

limited by the spatial resolution. This may lead to

misclassification in the region with a higher density of rafts.

Constructing the DRRI index needs four bands: red band, green

band, red-edge band, and NIR band, which limit the use of

different sensors, such as Landsat TM/OLI, SPOT, GF-2, etc., so

this algorithm needs to consider the data availability.

The study area of this paper is in the Pearl Bay area of

Fangchenggang City, Guangxi Province, and the decision tree

algorithm has a good extraction effect for the rafts used for fish

culture in this area and was also evaluated to be effective in

another coastal area. There may be lower precision for the raft of

different materials or purposes in other areas.

Equally, the tide level may have some influence on the

results, and the images processed in this study are remote

sensing images taken at high tide, so the possible influence of

the intertidal zone on the extraction of the floating raft has not

been considered.
5. Conclusion

Obtaining the distribution of mariculture floating rafts has

great potential significance for marine environmental pollution

prevention and control as well as macroscopic control. In this

study, the DRRI raft identification index was proposed using the

10m and 20m multispectral remote sensing digital image of

Sentinel-2A. Decision tree, random forest, and support vector

machine methods were used for classification comparison

experiments, leading to the extraction of raft information in

the study area. The decision tree method based on statistical

analysis has the highest accuracy.

The following conclusions can be obtained from

this experiment.

There is a certain difference between the spectral features of

water bodies and floating rafts in the study area, and this can be

used to extract floating rafts accurately from the background of

marine water bodies. The construction of the DRRI floating raft

extraction index is used to amplify the difference between the

two and improve the category differentiability. This forms a key

feature for floating raft information extraction.

This paper innovatively uses DEM data in the floating raft

extraction process, thereby improving the spatial adaptability of

the algorithm, and the DEM elevation information can be used

to effectively screen out features on land with spectral

characteristics similar to those of the floating raft.

The decision tree method, random forest method, and

support vector machine method constructed in this

experiment all display desirable levels of accuracy. The overall

accuracy of all methods was more than 90%, among which the
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decision tree classification method had the highest accuracy of

98.20%. This indicates that the Sentinel-2A multispectral remote

sensing images obtain desirable classification results of floating

rafts. Sentinel-2A has a high temporal and spatial resolution

and is easy to acquire and is useful for learning about the spatial

distribution of floating rafts, marine fishery production, and

the assessment of the damage to aquaculture areas after

marine disasters.
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