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Extending the Monod model of
microbal growth with memory

Mohammad M. Amirian1*, Andrew J. Irwin1* and Zoe V. Finkel2

1Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada, 2Department
of Oceanography, Faculty of Science, Dalhousie University, Halifax, NS, Canada
Monod’s model describes the growth of microorganisms using a hyperbolic

function of extracellular resource concentration. Under fluctuating or limited

resource concentrations this model performs poorly against experimental data,

motivating the more complex Droop model with a time-varying internal

storage pool. We extend the Monod model to incorporate memory of past

conditions, adding a single parameter motivated by a fractional calculus

analysis. We show how to interpret the memory element in a biological

context and describe its connection to a resource storage pool. Under

nitrogen starvation at non-equilibrium conditions, we validate the model with

simulations and empirical data obtained from lab cultures of diatoms

(T. pseudonana and T. weissflogii) and prasinophytes (Micromonas sp. and O.

tauri), globally influential phytoplankton taxa. Using statistical analysis, we show

that our Monod-memory model estimates the growth rate, cell density and

resource concentration as well as the Droop model, while requiring one less

state variable. Our simple model may improve descriptions of phytoplankton

dynamics in complex earth system models at a lower computational cost than

is presently achievable.

KEYWORDS

fractional calculus, Monod-memory, Droop model, cell size, phytoplankton,
microbial growth
1 Introduction

Phytoplankton growth models are critical components of ocean ecosystem models

that link the supply of inorganic resources and light to the primary production of

particulate organic material, enabling predictions of biomass distributions, resource

contributions to food webs, and biogeochemical fluxes. Growth models are generally

formulated in terms of resource acquisition, biomass accumulation, and cell division, but

the complexity of these phenomena must be greatly simplified to be incorporated in an

ecosystem model. Models require choices about the appropriate number of state variables

and parameters and each investigator must select functions to describe key processes.

Specific models are designed for a particular purpose, including their ability to represent
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2022.963734/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.963734/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.963734&domain=pdf&date_stamp=2022-12-01
mailto:M.amirianmatlob@dal.ca
mailto:A.Irwin@dal.ca
https://doi.org/10.3389/fmars.2022.963734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.963734
https://www.frontiersin.org/journals/marine-science


Amirian et al. 10.3389/fmars.2022.963734
key phenomena, and simpler models are usually preferred over

more complex ones if they capture the phenomena of interest.

The Monod model, which is widely used in biogeochemical

models, describes phytoplankton growth as a function of

extracellular resource concentrations and assumes fixed

cellular composition (Fasham et al., 1990; Follows and

Dutkiewicz, 2011; Aumont et al., 2015; Dutkiewicz et al., 2020;

Henson et al., 2021; Follett et al., 2022). In this approach, growth

rate is a function of resource concentration defining whether

resources are limiting or in excess, according to the half-

saturation constant, and a maximum growth rate, or

equivalently a maximum resource uptake rate. Resources are

converted into biomass at a constant yield. A consequence of the

constant yield is that the model does not describe an internal

physiological state of cells. The model may perform poorly when

the resource concentration changes rapidly relative to the

desired time scale of prediction as it does not account for

resources taken into the cell which are not yet used for growth

or the possibility of variable cell quotas (Moore et al., 2001;

Flynn, 2010; Akoglu, 2020; Tsakalakis et al., 2022). When

predictions are computed over time scales that are long

relative to external fluctuations and cell generation times, this

simplification may have little effect, but internal storage,

acclimation, and external fluctuations are known to be

important for determining population size, competitive ability,

and stoichiometry (Tozzi et al., 2004; Finkel et al., 2007; Finkel

et al., 2010; Wu et al., 2014; Irwin et al., 2015).

Phytoplankton vary their composition in response to

changing resource conditions, which can be described by the

more complex Droop model (Droop, 1968). The Droop model is

a widely-used solution to many problems that may arise using

the constant quota Monod model. Droop model adds a second

state variable per species to track the internal physiological state

of the cell, described as a variable cell quota (Pahlow and

Oschlies, 2013). The effect of variable internal storage is to

record a memory of past environments to the cell, so that

growth rate does not simply depend on the current external

nutrient conditions. In the Droop model, resources are taken

into the cell as in the Monod model, but the growth rate depends

on resources inside the cell rather than the extracellular

resources in the Monod model. This added complexity allows

phytoplankton described by the Droop model to better respond

to changing conditions. The cost is a doubling of the number of

state variables per species and the need to provide additional

parameters to describe the dynamics of this internal resource

pool. Although the parameters in the Monod and Droop models

are straightforward to interpret, they are not necessarily easy to

quantify. The key parameters minimum cell quota (Qmin) and

maximum uptake rate (Vmax) are extrapolations from a series of

experiments and can’t be directly observed, which may cause

mis-estimation of parameter values (Shuter, 1978; Irwin et al.,

2006; Mei et al., 2009; Finkel et al., 2016). Even the maximum
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growth rate presents challenges, as it is difficult to know in a

laboratory if all the relevant experimental conditions are optimal

for growth. Common solutions to these challenges are to

estimate parameters from a combination of lab data and

numerical tuning exercises to suit an application (Irwin and

Finkel, 2018) or identify successful species from ecological

simulations (Follows et al., 2007). Some researchers have

explored the use of variable quotas in biogeochemical models

by a parameterization of uptake (Moore et al., 2001) and agent-

based models of individual cells instead of population-level

averages (Hellweger and Kianirad, 2007). Incorporating

variable quota has an impact on stoichiometry, productivity,

and ecosystem-level biogeochemical cycles, but the consensus

appears to be that the effect is minor relative to the

computational cost and model complexity (Kwiatkowski et al.,

2018; Anugerahanti et al., 2021). The Monod and Droop

equations are two fundamental models that describe the

phytoplankton growth function, but other models have been

developed to study the effects of multiple limiting resources. One

approach subdivides the cell into compartments each with

distinct resource costs and roles in resource acquisition and

growth (Shuter, 1979). These models have been used to describe

the effect of co-limitation of light and nitrogen on growth or

nitrogen and iron on diazotrophy as well as the effects of

temperature on the metabolic activity and cellular composition

(Geider et al., 1998; Nicholson et al., 2018). These models are

considerably more complex than the simpler approach taken by

Monod, Droop and our new model presented here.

We propose a new model for phytoplankton growth, which

combines characteristics of the Monod and Droop models. Our

model combines the fixed composition of the Monod model

with a more complex growth function that approximates a

memory of the past history of extracellular conditions,

allowing the growth rate to change as resources are depleted

and mimicking the predictions of the Droop model. We use a

fractional calculus extension of ordinary differential equations to

include the past, in acclimation time scale, in addition to the

current state of the system into the dynamical equations (Matlob

and Jamali, 2019; Eftekhari and Amirian, 2022). Here we provide

a theoretical justification for the model formulation, explore the

mathematical, physical and biological interpretation of its

parameters and equilibrium conditions, suggest a way to

measure the cell memory empirically, and demonstrate its

performance compared to Monod and Droop models with

both simulations and experimental data from the laboratory.
2 Methods

The Monod model describes the growth rate of microorganisms,

µ (d−1), as a saturating function of the concentration of the limiting

resource in the growth medium, R (mol L−1),
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m(R) = mmax
R

Km + R

� �
(1)

where µmax (d−1) is the asymptotic maximum growth rate

and Kµ(mol L−1) describes the concentration at which the

growth rate is half its maximum. While the growth of cells is a

complex process arising from a multitude of enzymatic

processes, a common approach is to describe growth as an

enzymatic process using the Michaelis-Menten model with a

single resource as substrate. This parameterization

approximately describes growth rates at a range of steady-state

nutrient concentrations (Henriques and Balsa-Canto, 2021).

Many modifications and extensions have been added,

including changes to describe growth rate inhibition at high

resource concentrations and the costs of maintenance

metabolism (Kovarova-Kovar and Egli, 1998; Lee et al., 2015).

Notation for all models is summarized in Table 1.

The Droop model describes growth as a two-step process

where resources are first taken into the cell and then used for

growth (Droop, 1968; Grover, 1991; Verdy et al., 2009). Resource

uptake, r (mol cell−1 d−1), is commonly written with the same

functional form as growth rate in the Monod model,

r(R) = Vmax
R

Kr + R

� �
(2)

where Vmax (mol cell−1 d−1) is the asymptotic maximum

uptake rate and Kr (mol L−1) describes the concentration at

which the uptake rate is half its maximum. Resources taken into

the cell form an internal pool, called the quota, Q (mol cell−1),

which is used to predict the growth rate. The growth rate is a

saturating function shifted to the right to establish a minimum

cell quota, Qmin (mol cell−1), at which growth rate is 0,

m(Q) = mmax 1 −
Qmin

Q

� �
(3)

This two-step process partially decouples growth from

resource uptake. In particular, unlike the Monod model, this

formulation allows for continued growth for a time after external
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resources are depleted. The internal resource pool acts as the

cell’s memory in the sense that the growth rate now depends on

stored resources and not on the concentration of resources

outside the cell. The Droop model of growth allows for a

variable quota in contrast to the constant quota (or yield of

cells produced per resource consumed) of the Monod model.

The minimum cell quota can be estimated from a regression of

cell quota over a wide range of growth rates under balanced

growth conditions. The minimum quota is determined by

extrapolating the regression line to zero growth rate, so it is

desirable to have quota estimated from some cultures with very

slow growth rates, which can take considerable experimental

effort. Balanced growth at slow growth rates and low cell quotas

can be difficult to maintain, making minimum cell quota

challenging to quantify experimentally, while the average yield

is much easier to estimate.

Both the Monod and Droop models are typically used to

describe balanced growth, such as observed in a continuous

culture at equilibrium. The Droop model describes some non-

equilibrium growth rates well, including resource starvation and

resupply, even under conditions where the Monod model

performs poorly. Here we develop a simple alternative model

that describes growth rate under changing resource conditions

as well as balanced growth. Our model formulation is motivated

by the storage effect of Droop’s variable quota. We use a memory

analogy and make growth rate dependent on past resource

conditions. We do this in a particularly simple way to arrive at

a parameterization of the growth rate with no explicit

dependence on past conditions. Our formulation modifies and

extends the concept of half-saturation constant to incorporate

the impact of changing uptake rate and quota needed for cell

division that occurs over nutrient concentrations ranging

roughly from Kµto Kr, sometimes called the acclimation range

(Morel, 1987; Smith et al., 2009).

We reinterpret growth rate in the Monod model (Eq. 1) as

the solution of a differential equation describing the change in

growth rate with the change in the dimensionless resource-

availability ratio N = R/(Kµ+ R),
TABLE 1 List of state variables and parameters in Monod, Monod-memory, and Droop models.

Symbol Units Description

State variables R mol L-1 Resource concentration

Q mol cell-1 Cell quota

X cell L-1 Cell density

Parameters µmax d-1 Maximum growth rate

K mol L-1 Saturation constant for growth (Kµ, Monod,
K, Monod-memory) or uptake (Kr, Droop)

a – Memory element for growth function (Monod-memory)

Vmax mol cell-1 d-1 Maximum uptake rate (Droop)

Qmin mol cell-1 Minimum cell quota (Droop)
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dm
dN

= mmax (4)

The ratioN is always between 0 and 1. The initial condition µ

(N = 0) = 0 ensures that growth rate is 0 when no resources are

available. The solution is µ = µmaxN in agreement with Eq. (1).

Growth rate increases asymptotically to its maximum as R ! ∞

(N ! 1, µ(1) = µmax). A non-zero growth rate at N = 0 can be

accommodated by changing the initial condition resulting in

models given in (Marr et al., 1963; Pirt, 1965; Van Uden, 1967;

Boethling and Alexander, 1979; Rittmann and McCarty, 1980;

Sancho et al., 1997).

We add a memory of past conditions by modifying this

differential equation. We write it in the form of an integral

equation, mðNÞ = D−1
0,Nmmax + m(0), then general ize the

integration to the Riemann-Liouville fractional integral,

defined for a function f as follows,

D−a
0,t f (t) =

1
G (a)

Z t

0
(t − t)a−1f (t)dt (5)

where a > 0 and G is the gamma function (Matlob and

Jamali, 2019). Note that this definition is equal to the ordinary

Riemann integral when a = 1. After making this change Eq. (4)

is transformed to

m(N) = D−a
0,Nmmax + m(0), a > 0 (6)

Setting 0< a ≤ 1, the Riemann-Liouville operator defines a

convolution of µmax with a power-law weight function Na−1/

G(a). This function gives more weight to µmax as the resource-

availability ratio goes toward zero,N! 0, such that the weighted

sum increases with decreasing a (Figure S1), modulating growth

rate in the face of nutrient limitation and starvation. The growth

rate depends on an average of resource concentrations outside

the cell, including potentially less-limiting concentrations from

the recent past, instead of just current resource concentrations

outside the cell. We refer to a as the memory element (or cell

memory) following previous interpretations in the literature

(Amirian et al., 2020; Khalighi et al., 2022). The appropriate

value of a for a particular species will be determined by statistical

data analysis incorporating a population model, presented

below. We restrict the value of a to the interval (0, 1]. If a is

greater than 1, the qualitative change in the weight function in

Eq. (5) alters its interpretation so that the memory concept does

not hold.

The integral equation (Eq. 6) can be solved explicitly

(Matlob and Jamali, 2019), so the memory of past nutrient

concentrations can be included in the growth function without

requiring the computational burden of tracking past nutrient

conditions. The solution and our proposed Monod-memory

model for growth rate is

m(R) =
mmax

G (1 + a)
R

K + R

� �a
, 0 < a ≤ 1 (7)
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where we have assumed a growth rate of zero when resources

are completely depleted, µ(0) = 0. This growth function is very

similar to the original Monod function, with two changes. A

scaling factor of 1/G(1 + a) inflates the realized maximum

growth rate relative to the value of µmax by up to roughly 13%

when a ≈ 0.45 and has almost no influence on µmax when a is

approximately 0 or 1 (Figure S2). The memory element a
reshapes the original saturating function of the resource

availability ratio (Figure S3). As a result, the constant K is no

longer a half-saturation constant: where R = K, resource

limitation reduces the growth rate by a factor 2−a, which is

larger than 1/2 when 0< a< 1. Half-saturation of growth rate

(µ = µmax/2) occurs when the resource concentration is given by

R =
2

G (1 + a)

� �1=a
−1

" #−1
K   =

def
 M(a)K (8)

meaning that K decreases with increasing a due to the

increase in the memory function, M(a), decreasing the uptake

rate accordingly. We name the K parameter the memory-half-

saturation constant, as the acclimation range concept is

incorporated in the growth function. If a = 1, half the

maximum growth rate is achieved at R = K, which means K is

then the half-saturation constant described in the Monod model.
2.1 Population dynamics

To describe the change in a population over time, we embed

the growth rate equations into a set of differential equations

describing the dynamics of resource concentration and cell

density. The state variables are resource concentration in the

growth medium R (mol L−1), cell quota Q (mol cell−1), and cell

density X (cells L−1). For both the Monod and Monod-memory

growth functions we assume a constant cell quota. Fresh media is

supplied at a rate d ≥ 0 (d−1) with resource concentration Rs(mol

L−1). Media, including cells and resources at well-mixed

concentrations are washed out at the same rate. The system of

equations is

dR
dt

= d(Rs−R)−rX

dX
dt

= (m−d)X:

(9)

The Monod and Monod-memory models do not model

quota or resource uptake explicitly. The quantity of resource

consumed by the production of new cells (rX) is typically

described in terms of the yield or its reciprocal the quota. We

describe resource depletion by growing cell populations as

resource uptake as described in the Droop model and note this

is equal to resource consumption (growth rate times quota) at

equilibrium (r = µQ), where Vmax = µmaxQ. The Monod-

memory model has a different expression for the growth rate
frontiersin.org
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that incorporates the memory element, a, regulating the growth
against nutrient limitation or starvation so that the cell has the

opportunity to grow for a time after the resources have

been depleted.

We contrast the fixed-quota Monod and Monod-memory

models with the variable internal stores Droop model (Grover,

1991), which adds an equation to describe the change in cell quota

resulting from the combination of the uptake of resources from

the media r (mol cell−1 d−1) and consumption from growth,

dR
dt = d(RS−R)−rX

dQ
dt = r−mQ

dX
dt = (m−d)X:

(10)

Here the growth rate depends on cell quota (Eq. 3) and

resource uptake into the internal storage pool is a Michaelis-

Menten function (Eq. 2).

There are three different equilibrium points, depending on

the dilution rate. In a batch culture with no dilution (d = 0) the

equilibrium state is R = 0, µ = 0 and the final number of cells is a

function of the initial conditions. With a large dilution rate (d >

µmax), washout occurs and no cells remain (X∗ = 0, R∗ = Rs).

Intermediate dilution rates lead to equilibrium rates (R∗, X∗, Q∗)

depending on the parameters and the model. For Droop model

R* =
mmax(Q* − Qmin)

Vmax − mmax(Q* − Qmin)

� �
K ,   

X* =
d
r
(Rs − R*),   Q* =

mmax

mmax − d
Qmin

For Monod-memory model

R* =
(dG (1 + a)=mmax)

1=a

1 − (dG (1 + a)=mmax)
1=a

 !
K ,   X* =

d
r
(Rs − R*)

The equilibrium for the Monod model is the same as the

Monod-memory model with a = 1.
2.2 Simulated populations

Batch Culture. We simulated a batch culture (no dilution

with fresh media, d = 0) using the Droop model (Eq. 10) with

initial values for resource concentration, cell quota, cell density

(R0,Q0,X0) = (2.5,2,2.5) and parameters (µmax,Vmax,Qmin,K,d) =

(2,3,0.1,10,0). We multiplied the output (R,Q,X,µ) by the

exponential of independent samples from a Normal random

variable with mean 0 and variance 0.1 to simulate measurement

error and avoid a perfect match to the Droop model. These

quantities are all positive, so the exponential of a Normal

random variable was used to avoid generating non-physical

negative values. Simulated data plus measurement error are

shown as red dots in Figure S4. Parameters for all three
Frontiers in Marine Science 05
models were estimated by maximum likelihood estimation

using these simulated data.

Double-Batch Culture. To test model performance when

resources were resupplied, we extended the batch culture

simulation using the same parameters and initial state

variables. When cell quota was close to its asymptotic stable

value, Qmin = 0.1, we re-supplied the same amount of nutrient

from the initial culture, R0 = 2.5, in a pulse maintaining zero

dilution rate. We included the same amount of error, N(0, 0.1),

to the generated data as used for the batch culture simulation.
2.3 Experimental data

We tested the three population models with data obtained

from four phytoplankton cultures grown in the lab: diatoms

(Thalassiosira pseudonana and T. weissflogii) and prasinophytes

(Micromonas sp. and Ostreococcus tauri). These species vary in

cell volume by roughly a factor of 1000 from the smallest

photosynthetic eukaryote (O. tauri, 1.8 µm3) to a medium-sized

diatom (T. weissflogii, 1630 µm3). Larger cells, particularly

diatoms, are known to have greater capacity to store ‘surplus’

resources, in terms of their total mass and relative to their

minimum cell mass, compared to smaller cells. Cultures were

acclimated to replete conditions for 8 generations and then

transferred to N-free media to induce nitrogen stress and

followed in a batch culture (Liefer et al., 2019). Observations of

cell density (cells L−1), dissolved inorganic nitrogen in the media

(µmol L−1), and cell N quota (µmol cell−1) were collected during

nutrient-replete, balanced exponential growth (t = 0) and four

additional points spanning the late-exponential and stationary

phase. Growth rate (d−1) was computed from daily cell counts in

steady-state exponential growth and for each sampling day in the

N-starved batch culture. Further experimental details and results

are available in (Liefer et al., 2019). We analyzed the data from

each replicate and each species separately and computed average

parameters from the three replicates.
2.4 Quantifying the memory element

Here we give a biological meaning to the memory element,

a, and suggest a way to calculate it from experimental data

through equating our Monod-memory growth function

(Tsakalakis et al., 2022) to Droop’s (Aumont et al., 2015) and

solving for the a parameter. We scale the maximum growth rate

in Droop, µmax, to be equal to the fraction µmax/G(1 + a) in our

model, obtaining

R
K + R

� �a
≈ 1 −

Qmin

Q

� �
(11)
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We estimate an average value for a by noting that Q and R

are state variables generated by population dynamics models,

taking logs and finding the expectation over the computed time

series, obtaining

a ≈
E log 1 − Qmin

Q

� �h i
E log R

K+R

� �� 	 (12)

where E stands for the expectation. Using the Taylor expansion

log (1 − x) = −o∞
n=0

xn

n
, with anO(( Qmin

Q )2) error, a∝ E[Q]−1. Re-

writing the fraction part of Eq. (12) in the form of uptake function

(Follett et al., 2022), we can see a ∝ E½log ( r(R)
Vmax

)�−1. The memory

element, a, depends on both cell quota, Q and uptake rate r(R),
coupling the internal storage information to the current external

nutrient in the environment. The values of Q and r are positively

correlated (since at equilibrium r = µQ) so a decreases with

increasing Q (Verdy et al., 2009). In general, larger cells have

greater uptake rates and longer memory (Eq. 12). For cells with

short memory (a close to 1), the reverse is true. Our formulation of

the growth function enables us to transfer the impact of internal

storage into Monod’s model with the memory element, a. This
preserves some of the information about cell storage described by

variation inQwhen we project from a 3-dimensional space (X,Q,R)

to a 2-dimensional plane (X,R). This agrees with the commonly

known interpretation of the Riemann-Liouville fractional integral in

mathematics, projecting function information from a higher to

lower dimension (Podlubny, 2002) and explains our reasoning for

selecting this operator.

The memory element, a, can be calculated by Eq. (12), the

ratio of the mean log of growth rate over maximum growth rate

to the mean log of uptake rate over maximum uptake rate. To

emphasize this interpretation we rewrite the equation as

a =
mean  log (Growth Rate over Maximum Growth Rate)f g
mean  log (Uptake Rate over Maximum Uptake Rate)f g

(13)

We seek a simple way to modify the Monod model so that

our new model explains the empirical data as well as the Droop

model. Our approach exploits a simple but broad relationship

between the memory element and physiological changes in the

cell. One may calculate the value of a from either the steady-

state (Burmaster, 1979) or short-term case (Morel, 1987; Smith

et al., 2009). In such scenarios we may expect to derive a

somewhat different value than our general formula (Irwin

et al., 2015), as the acclimation range could be different in

these cases (Morel, 1987; Smith et al., 2016; Ward et al., 2017).

To test the above equation, we performed 200 independent

batch-cultured simulations using the variable quota Droop model

with parameters and initial values drawn from ranges given in

Table S1 for each taxon. For each replicate, we calculated the value
Frontiers in Marine Science 06
of a using Eq. (13). Then we applied our statistical method to each

replicate individually to estimate the parameters for our Monod-

memory model (Eq. 7) using maximum likelihood. We scaled the

state variables of the Monod-memory model, R and X, to unit

variance to give equal weight to each in the maximum likelihood

calculation. For a few simulations (less than 10%) the optimization

did not converge, so they were not considered further.
2.5 Statistical analysis

We estimated parameters for models using maximum

likelihood estimation with a loss function in the residual

function form, L(q, q̂ ) = |q − q̂ |, following the standard

normal distribution with zero mean, where L, q and q̂ are log-

likelihood, the observational data and predicted values,

respectively. The optim function (Nocedal and Wright, 2006)

was used to maximize the log-likelihood function using R

statistical software (R version 4.0.5). We used deSolve function

with ode45 method (Soetaert et al., 2010) to solve the ordinary

differential equations numerically as part of this computation.

We compared the performance of all models using mean

squared error (MSE).
3 Results

3.1 Batch-culture simulations

We tested the population dynamic models with constant

(Eq. 9) and variable (Eq. 10) quota, estimating model parameters

(Table S2) and mean squared error (MSE) for each state variable

(Table S3). Monod’s model (blue line) fails to explain changes in

the growth rate and substrate concentration, while the Droop

variable quota model (green line) and Monod-memory model

(black line) closely follow the trend in the data (red dots, n = 30,

Figure 1 for t< 5, Figure S4). The MSE for the Droop model,

which was used to generate the simulated data, is somewhat

smaller than the MSE for the Monod-memory model; both are

clearly superior to the MSE for the Monod model.

We extended the Droop model batch simulation by

resupplying resources in a pulse in stationary phase at time t =

5 to increase R to the same concentration as the initial conditions

(red dots, n = 50, Figure 1). The Monod-memory model tracked

the resource substrate concentration as well as the Droop model.

The Monod-memory predicted cell density and growth rate that

were too large relative to the simulation and Droop model, with

an error comparable to the Monod model.

The simulated and predicted increase in cell quota (Droop

model) were in agreement, but quite small relative to the initial

phase of the batch culture (t< 2).
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3.2 Analysis of empirical data

Echoing results from the simulations, Monod’s model failed to

explain important variation in the growth rate and substrate

concentration for all four species (Figures 2 and S5-S7). For
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Thalassiosira pseudonana (Figure 2) and Micromonas sp. (Figure

S6), Monod-memory and Droop models performed similarly in

estimating the substrate concentration, cell density, and growth rate.

Despite estimating substrate concentration and cell density slightly

better (Table S5), the Droop model overestimated the maximum
FIGURE 2

Comparison of estimated population dynamics fit to experimental data collected on Thalassiosira pseudonana in batch culture (Liefer et al.,
2019). MSE value and the optimum coefficients are given in Tables S5, S4.
FIGURE 1

Comparison of simulated population dynamics with resupplied nutrients at time t = 5. Parameters are chosen from Table S2.
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growth rate, while this is not the case in ourMonod-memorymodel

(Table S4). Our model predicted growth rate better than the Droop

model. For Ostreococcus tauri (Figure S7), the Monod-memory

model resulted in better estimates of substrate concentration, cell

density, and growth rate compared to Droop’s model (Table S5),

while the reverse is the case for Thalassiosira weissflogii (Figure S5).

In both cases, the Droop model overestimated the maximum

growth rate (Table S4).
3.3 Quantifying the memory element

The a parameter can be estimated either empirically or

statistically (Eqs. 12, 13). Both methods yielded similar results

with onlyminor deviations from each other (Figure S8). Estimated

mean values and standard deviation are given in Table 2. Cell

memory depends upon cell size (Figure 3 and Table S4). Cells with

small values of a have long memories and continue to grow at

large fractions of their maximum growth rate long after external

nutrients have been drawn down to lower levels. Thus, taxonomic

differences between prasinophytes and diatoms may be reflected

in estimated parameter values, particularly the memory element a
as a consequence of differences in cell volumes. The correlation

matrix for diatoms (T. pseudonana and T. weissflogii) and

prasinophytes (Micromonas sp. and O. tauri), showed that the

model parameters correlation matrix for diatoms was different

compared to prasinophytes (Figure 4). Cell memory was

negatively correlated with maximum uptake rate in smaller-

sized prasinophytes, while this correlation was positive (or zero)

in the relatively larger-sized diatoms.

The maximum growth rate was estimated to be two times more

than the value measured in the lab for T. pseudonana and T.

weissflogii and three times more for Micromonas sp., and O. tauri
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using the Droopmodel. Unlike Droop’s results, these values are close

to each other for our model (Figure S9), so in this context, it seems

that the Monod-memory model provided a better estimate of µmax.
4 Discussion

Our model combines the relative simplicity of the Monod

model with the added flexibility of the Droop model. We

obtained our formulation by modifying a differential equation

to use a fractional integration, so that resource uptake and

growth depends on the change of resource concentration

outside the cell. This effectively creates a memory of past

nutrient concentrations without requiring the computational

burden of tracking past nutrient conditions. Growth rates

change as resources are depleted, mimicking the predictions of

the Droop model and describing the transition from limiting to

saturating nutrient conditions better than the Monod model.

Growth doesn’t stop as soon as resource concentration becomes

strongly limiting because of an implicit storage pool in the

model. This pool is not modeled over time, but its average

impact on growth rate is estimated by the memory parameter, a.
Our model simplifies the evolution of the system from a

trajectory in the 3-dimensional space, (X,Q,R) by projection into

the 2-dimensional plane (X,R). The effect of the projection on the

dynamical system is described by the memory parameter a and the

Riemann-Liouville fractional integral operator. This is a practical

application of the geometric interpretation for the Riemann-

Liouville operator proposed by Igor Podlubny which projects the

dynamical behavior of a system from a higher to a lower

dimensional space (Podlubny, 2002). For 0< a ≤ 1, the power-

law weight function in the Riemann-Liouville convolution integral

gives more weight to the maximum growth rate, µmax, as the
FIGURE 3

The memory element, a, (squares with 95% confidence interval) is negatively correlated with average quota and uptake rate for the four
phytoplankton taxa studied. Replicates for each tax a are generated from 200 independent fits of the Monod-memory model to Droop model
with parameters and initial values drawn from ranges given in Table S1 for each taxon. Note natural log scales on both axes.
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resource-availability ratio decreases such that the weighted sum

increases with decreasing a, modulating the growth in the face of

nutrient limitation or starvation (Figure S1). We quantified the

memory parameter by statistical parameter estimation using the

dynamical model for a continuous culture. We showed that this

estimate can be approximated by the simpler and intuitive ratio of

themean log of growth rate divided bymaximum growth rate to the

mean log of uptake rate divided by the maximum uptake rate,

computed over the duration of the experiment (Eq. 13, Figure S8).

The Monod model fails to explain transient changes in growth

rate under nutrient starvation and limitation as it equates resource

uptake and resource used for growth (Anugerahanti et al., 2021).

The Droop and Monod-memory models both estimated the cell

density, substrate concentration and the growth rate well. However,
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our Monod-memory model with constant quota estimated the

growth rate 8% and 21% better for Micromonas sp. and T.

pseudonana, respectively (Table S5). In all cases, the Droop

model overestimated the maximum growth rate, by a factor of

approximately 2 compared to than the maximum value measured

in the lab for T. pseudonana, T. weissflogii and approximately 3 for

Micromonas sp. and O. tauri. We did not observe this

overestimation with the Monod-memory model. This

overestimation is a known consequence of the Droop

formulation, where the maximum growth rate is achieved

asymptotically as Q ! ∞. For this reason, some researchers call

the parameter m
0
max) (Grover, 1991). In an environment where the

resource concentration changes rapidly relative to the desired time

scale of prediction, the Monod model approximation is only
FIGURE 4

A comparison of the correlation between parameters estimated using the Monodmemory model for each of four taxa, demonstrating
differences between prasinophyte (left column) and diatoms (right) with smaller differences between taxa within these groups (top and bottom).
TABLE 2 Estimated mean values and standard deviation for the Monod-memory (Eq. 7) parameters.

Taxon â ± SD µ̂max ± SD K̂ ± SD V̂ max ± SD

T. pseudonana
T. weissflogii
O. tauri
Micromonas

0.058 ± 0.0012
0.046 ± 0.0027
0.303 ± 0.0250
0.440 ± 0.0448

0.704 ± 0.0251
0.567 ± 0.0163
0.753 ± 0.0198
0.571 ± 0.0159

0.125 ± 0.0063
0.102 ± 0.0099
0.344 ± 0.0371
1.266 ± 0.1308

3.005 ± 0.1074
2.236 ± 0.0654
2.038 ± 0.0142
2.355 ± 0.1537
f

Aˆindicates the value was estimated by maximum likelihood.
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reasonable if the cell has a very small storage to rely on for growth.

Despite these limitations, the Monod model is usually preferred

over the more complex Droop model, as the implementation of the

Droop model presents difficulties in large ecosystem simulations

due to a doubling of the computational cost and difficulty in

defining the equations to track changes in inter-cellular nutrient

concentrations (known as the challenge of advecting quotas)

(Kwiatkowski et al., 2018).

Our Monod-memory model does not track changes in cell

quota, Q, instead it relies on the average Q to convert resources

into cells. If total mass is computed from resources in the media,

cell density, and average Q, the model will not conserve mass.

Estimated cell quota can be computed for any time in the

simulation and used to compute total mass of the system. The

Monod-memory growth function (Eq. 7) is a consistent estimator

of the Droop growth function (Eq. 3), yielding a reasonable

reconstruction of variable quota over time by solving Eq. (12)

for Q. Mass is conserved if we use the computed variable quota

instead of an average quota.

The Monod-memory growth equation is a modified

hyperbolic Monod-type function of extracellular resource

concentration, combining the characteristics of the Monod and

Droop models, thereby taking the cell size concept into account

without the extra computational cost of the Droop model. Our

mathematical, physical and biological interpretations show that

cells with larger storage pools have longer memory (smaller a).
The memory element can either be estimated statistically or be

measured empirically by dividing the mean log of growth rate over

maximum growth rate by the mean log of uptake rate over

maximum uptake rate (Eq. 13). Simulations under nitrogen

starvation at non-equilibrium in batch culture and statistical

comparisons show that our model estimates the growth rate,

cell density and resource concentration as well as the complex

two-step Droop model. We anticipate that the Monod-memory

model may be a good compromise between the limitations of the

Monod model and the added complexity and computational

challenges of the Droop model.
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