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Isolation, identification,
molecular docking analysis,
and cytoprotection of seven
novel angiotensin I-converting
enzyme inhibitory peptides
from miiuy croaker byproducts-
swim bladders

Wang-Yu Zhu1*†, Yu-Mei Wang2†, Shi-Kun Suo2,
Shuo-Lei Zheng2 and Bin Wang1,2*

1Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China, 2Zhejiang Provincial
Engineering Technology Research Center of Marine Biomedical Products, School of Food and
Pharmacy, Zhejiang Ocean University, Zhoushan, China
For efficiently utilizing the processing byproducts of miiuy croaker to prepare

novel angiotensin I-converting enzyme (ACE) inhibitory (ACEi) peptides, in vitro

gastrointestinal (GI) digestion method was screened and employed to prepare

swim bladder hydrolysate with the highest ACEi activity. Subsequently, seven

novel ACEi peptides were isolated from the hydrolysate and identified as

DEGPE, EVGIQ, SHGEY, GPWGPA, GPFGTD, SPYGF, and VIGPF with

molecular weights of 545.49, 544.58, 591.55, 583.63, 592.59, 569.60, and

531.63 Da, respectively. SHGEY and SPYGF exhibited remarkable ACEi activity

with IC50 values of 0.86 ± 0.12 and 0.37 ± 0.06 mg/mL. Molecular docking

experiment illustrated that the significant ACEi activity of SHGEY and SPYGF

with the affinity of -8.7 and -9.7 kcal/mol mainly attributed to effectively

combining with the ACEi active sites by hydrophobic interaction,

electrostatic force and hydrogen bonding. Moreover, SHGEY and SPYGF

could significantly up-regulate the nitric oxide (NO) production and decrease

the endothelin-1 (ET-1) secretion in human umbilical vein endothelial cells

(HUVECs), but also abolished the negative impacting of norepinephrine to the

levels of NO and ET-1. Furthermore, SHGEY and SPYGF showed significant

protection to HUVECs against H2O2 damage by increasing superoxide

dismutase (SOD), glutathione peroxidase (GSH-Px) activity to lower the

contents of reactive oxide species and malondialdehyde. Consequently, ACEi

peptides derived from miiuy croaker swim bladders, especially SHGEY and

SPYGF, are health-promoting ingredients for functional products as a

supplementary treatment to hypertension and cardiovascular diseases.

KEYWORDS

miiuy croaker (Miichthys miiuy), swim bladder, angiotensin I converting enzyme,
peptide, molecular docking experiment, cytoprotection
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Introduction

Hypertension seriously affects the morbidity and mortality

of cardiovascular and renal diseases (Kharazmi-Khorassani

et al., 2019; Abedin et al., 2022). Because of the different

lifestyles and genetic factors, the number of people with high

blood pressure is now about 1.3×106, but this number is

expected to rise to 1.56 ×106 by 2030 (Mabhida et al., 2021).

The current and future situation will have a serious implication

on human health and place a great strain on the finances of

countries around the world (Abdelhedi and Nasri, 2019;

Mabhida et al., 2021). The renin-angiotensin system bears

crucial roles in maintaining blood pressure homeostasis and

keeping the balance between fluid and salt (Zheng et al., 2022).

Angiotensin (Ang) I-converting enzyme (ACE) is the key

protease in participating the regulating of blood pressure

through the renin-angiotensin system (Xu et al., 2021; Qiao

et al., 2022), and its function is converting Ang I to Ang II for the

inactivation of vasodilator bradykinin, which further induce the

increase of blood pressure (BP). Then, inhibiting ACE activity is

an ideal method in hypertension treatment (Fan et al., 2019;

Chakraborty and Roy, 2022). Therefore, the chemosynthetic

ACE inhibitors (captopril (Cap), lisinopril, enalapril, etc.) have

been widely used in treating heart failure and hypertension in

the clinical (Fan et al., 2019; Chakraborty and Roy, 2022), but the

disturbing thing is those synthetic ACE inhibitors display some

serious adverse symptoms, such as headache, impaired taste

perception, dizziness, chronic dry cough, nausea, and

hyperkalemia (Lee et al., 2010; Lee and Hur, 2017; Abedin

et al., 2022). Therefore, researchers are focusing on searching

safer ACE inhibitors from natural resources as the alternatives of
Abbreviations: ACE, angiotensin I-converting enzyme; ACEi, angiotensin-I-

converting enzyme inhibitory; GI, gastrointestinal; MMP1, Asp-Glu-Gly-

Pro-Glu (DEGPE); MMP2, Glu-Val-Gly-Ile-Gln (EVGIQ); MMP3, Ser-His-

Gly-Glu-Tyr (SHGEY); MMP4, Gly-Pro-Trp-Gly-Pro-Ala (GPWGPA);

MMP5, Gly-Pro-Phe-Gly-Thr-Asp (GPFGTD); MMP6, Ser-Pro-Tyr-Gly-

Phe (SPYGF); MMP7, Val-Ile-Gly-Pro-Phe (VIGPF); ET-1, endothelin-1;

NO, nitric oxide; BP, blood pressure; Ang, angiotensin; Cap, captopril; SHRs,

spontaneously hypertensive rats; HUVECs, human umbilical vein endothelial

cells; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; ROS,

reactive oxygen species; GSH, glutathione; TNBS, 2,4,6-Trinitrobenzene

sulfonic acid; FAPGG, N-[3-(2-Furyl)acryloyl]-Phe-Gly-Gly; NE,

norepinephrine; SD, standard deviation; GPC, gel permeation

ch r oma t o g r a phy ; MTT , 3 - ( 4 , 5 -D ime t h y l t h i a z o l - 2 y l ) - 2 , 5 -

diphenyltetrazolium bromide; CAN, acetonitrile; MSCH, protein

hydrolysate of miiuy croaker swim bladder prepared using in vitro GI

digestion processing; RP-HPLC, reversed-phase high performance liquid

chromatography; MW, molecular weight; Q-TOF, quadrupole time-of-

flight; DH, degree of hydrolysis; HEPES, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid; Nrf2, nuclear factor erythroid 2-related

factor 2; HO-1, heme oxygenase-1; PI3K, phosphatidylinositol-3-kinase;

Akt, protein kinase B; eNOS, endothelial NO synthase.
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synthetic ACE inhibitors to control hypertension (Abedin

et al., 2022).

Presently, some natural ACE inhibitors have been isolated

from diversified biological resources, and ACE inhibitory (ACEi)

peptides drew great public attention due to their safe and

effective therapeutic properties on hypertension (Pujiastuti

et al., 2019; Abedin et al., 2022; Chakraborty and Roy, 2022).

In the experiments on spontaneously hypertensive rats (SHRs),

corn germ ACEi peptide with IC50 of 0.83 mg/mL could

markedly lower the systolic BP, adjust the level of relaxing and

contracting factors derived by endothelium in serum, and

suppress the ACE activities in different organs (Guo et al.,

2020). PPLLFAAL with IC50 of 28 mmmol/L could remarkably

reduce the systolic BP and diastolic BP of SHRs after intravenous

administration (Su et al., 2021). Similarly, LGF and GLFF from

leaf hydrolysate of Moringa oleifera exhibited double inhibitory

activity of ACE and renin and significantly reduced the systolic

and diastolic BP of SHRs (Ma et al., 2021). VIPVPFF from yeast

hydrolysate with IC50 of 10.27 mM could increase the nitric oxide

(NO) levels, upregulate approximately 15-fold expression of

GUCY1A1 gene, and activate several hypertension-related

pathways in human umbilical vein endothelial cells (HUVECs)

(Huang et al., 2021). Moreover, many ACEi peptides, such as LY,

RALP, GHS (He et al., 2019a), EMFGTSSET (Pei et al., 2022),

IWHHT (Gu et al., 2019), and VPP (Chakrabarti et al., 2017),

show multi-activities, especially antioxidant and antiphlogistic

activities. The multiple activities of those ACEi peptides should

play synergistic roles with their ACEi activity in the control of

hypertension (Majumder and Wu, 2015; Fan et al., 2019).

Globle fish production reached around 179 million tons and

approximately 50% of these catches become byproducts during

factory processing (Manikkam et al., 2016, Sila and Bougatef,

2016; Sheng et al., 2022). Those fish byproducts will lead to

serious environmental problems if they can’t be handled

properly (Zhang et al., 2019; Yang et al., 2019a). To make full

use of these fish byproducts, many ACEi peptides were prepared

from different processing byproducts, such as tuna black muscle

and bone (Lee et al., 2010; Qiao et al., 2022), smooth-hound

viscera (Abdelhedi et al., 2017; Abdelhedi et al., 2018), cuttlefish

muscle (Balti et al., 2015), Nile tilapia skeleton (Borges-

Contreras et al., 2019), rainbow trout viscera (Vásquez et al.,

2022) [34], and Alaska pollack skins (Yang et al., 2021). Those

sea-food derived ACEi peptides exhibit high potential

application value in diet or clinical treatment on anti-

hypertension (Abdelhedi and Nasri, 2019; Fan et al., 2019).

Miiuy croaker (Miichthys miiuy) is an important species of the

Sciaenidae family, which is a popularmarine economic fish (He et al.,

2019b; Geng et al., 2021). In China, miiuy croaker is the most

commonmaterials used to produce dried croaker, but fish scales and

viscus are discarded as byproducts in the process. Therefore, collagen

and antioxidant peptides were prepared from those byproducts (Li

et al., 2018; Zhao et al., 2018a; Zhao et al., 2018b). Moreover,

FPYLRH from miiuy croaker showed notably cytoprotective effect
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against H2O2-injuried HUVECs by activating the intracellular

antioxidant system to remove excess reactive oxygen species (ROS)

(Cai et al., 2019). However, there was no literature on ACEi peptides

produced using miiuy croaker swim bladders. Therefore, to make

more efficient use of this resource, the objectives of this study were to

(i) isolate ACEi peptides from swim bladder hydrolysate of miiuy

croaker, (ii) identify the sequences and characterize the properties of

isolated ACEi peptides, and (iii) evaluate the cytoprotective activity of

the isolated ACEi peptides.
Materials and methods

Materials and chemical reagents

Miiuy croaker (M. miiuy) was provided by Zhejiang Hailisheng

Group Co. Ltd. (China). HUVECs were purchased from Shanghai

Cell Bank, Chinese Academy of Sciences (Shanghai, China). The

assay kits of NO (Product no. A013-2-1), endothelin-1 (ET-1)

(Product no. H093), superoxide dismutase (SOD) (Product no.

A001-3-2), glutathione peroxidase (GSH-Px) (Product no. A005-1-

2), and malondialdehyde (MDA) (Product no. A003-4-1) were

purchased from Nanjing Jiancheng Bioengineering Institute Co.,

Ltd. (China). 2,4,6-Trinitrobenzene sulfonic acid (TNBS), Sephadex

G-25 resin, Alcalase, 3-(4,5-dimethylthiazol-2yl)-2,5-

diphenyltetrazolium bromide (MTT) (CAS no. 298-93-1),

Neutrase, Cap, DMSO, acetonitrile (ACN), norepinephrine (NE),

Glutathione (GSH), trypsin (enzyme activity ≥200000 U/g, CAS no.

9002-07-7), pepsin (enzyme activity ≥200000 U/g, CAS no. 9001-75-

6), papain, N-[3-(2-Furyl)acryloyl]-Phe-Gly-Gly (FAPGG) (CAS no.

64967-39-1), Dulbecco’sModified EagleMedium (DMEM) (Product

no. 11995), and ACE were purchased from Sigma-Aldrich

(Shanghai) Trading Co., Ltd. (China). ACEi peptides of MMP3-

MMP7 (purity > 95%) were synthesized in Shanghai Apeptide Co.

Ltd. (China).
Preparation of swim bladder hydrolysate
of miiuy croaker

The degreasing process of miiuy croaker swim bladder was

performed according to the described method (Chi et al., 2014;
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Zhao et al., 2018b). The swim bladders were homogenized and

mixed with isopropanol at a material/ratio of 1:4 (w/v) for 6 h,

and the solution was replaced each 2.0 h. Lastly, the solution was

centrifuged at 6 000 g for 20 min and the resulted solid was air-

dried at 35°C.

The hydrolytic process was performed on the previous

methods (Chi et al., 2014). The dispersions of degreased swim

bladders (1%, w/v) was treated by supersonic processing for 30

min and hydrolyzed respectively using four proteases under

optimal conditions (Table 1).

The in vitro GI digestion method (pepsin-trypsin system)

was carried out on the described method (Zhao et al., 2019a).

The dispersions of degreased swim bladders (pH 1.5, 1%) were

treated by supersonic processing for 30 min and firstly degraded

by pepsin for 2 h, and the pH was adjusted to 7.0 and further

degraded by trypsin for 2 h.

After digestion, the solutions were placed in 95°C for 15min and

centrifuged at 8 000 g for 20 min. The supernatant was lyophilized

and stored in -20°C freezer. The protein hydrolysate prepared using

in vitro GI digestion processing was referred to as MSCH.
Purification of APs from SCH

MSCH (100.0 mg/mL) was fractionated by 1, 5 and 10 kDa

ultrafiltration membrane and four fractions including MSCH-1

(< 1 kDa), MSCH-2 (1-5 kDa), MSCH-3 (5-10 kDa), and

MSCH-4 (> 10 kDa) were prepared.

MSCH-1 solution (5 mL, 50.0 mg/mL) was fractionated with

Sephadex G-25 column (3.6 × 150 cm) eluted with ultrapure

water under the flow rate of 0.8 mL/min. Each eluate (2.4 mL)

was collected by monitoring absorbance at 220 nm. Three

subfractions (MSCH-1a, MSCH-1b, and MSCH-1c) were

isolated from MSCH-I.

MSCH-1b solution (20 mL, 100.0 mg/mL) was finally

separated by RP-HPLC on a Zorbax 300SB-C18 column (4.6 ×

250 mm, 5 mm) with a linear gradient of ACN (5% ACN in 5

min; 5-25% ACN in 10 min; 25-50% ACN in 10 min; 50-100%

ACN in 10 min; 100% ACN in 5 min) containing 0.06%

trifluoroacetic acid at 1.5 mL/min flow rate. The eluate

absorbance was monitored at 220 and 280 nm. Seven ACEi

peptides (MMP1 to MMP7) were collected and lyophilized.
TABLE 1 Hydrolysis parameters of different proteases and in vitro GI digestion method.

Protease Temperature (°C) Enzyme dosage (g enzyme/100 g defatted swim bladder) Time (h) pH value

Alcalase 50 2 4 2.0

Trypsin 37 2 4 7.0

Papain 50 2 4 6.0

Pepsin 37 2 4 7.0

Neutrase 60 2 4 8.0

in vitro GI digestion 37 Trypsin 1+ Pepsin 1 2 2.0
fro
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Identification of sequences and
molecular weights (MWs) of
ACEi peptides

The sequences of MMP1 to MMP7 were analyzed using an

Applied Biosystems 494 protein sequencer (Perkin Elmer, USA)

(Zhao et al., 2018b). A quadrupole time-of-flight (Q-TOF) mass

spectrometric device (Micromass, Waters, USA) in the

combination of an ESI source were employed to determine the

MWs of MMP1 to MMP7 (Chi et al., 2014).
Determination of ACEi activity

The ACEi activity was determined according to the previous

protocol by Zhao et al. (Zhao et al., 2019b). In brief, 50 mL
FAPGG solution as substrate (1 mM) in HEPES-HCl buffer (0.5

mM, pH 8.3, containing 300 mM salt) were mixed with 40 mL
sample (5, 10, 20, 40mg/mL) and 10 mL of ACE solution. The

mixture was pre-incubated at 37°C for 5 min. Then, 50 mL of 1.0

mol/L FPAGG solution were added into the mixture to initiate

the reaction and incubated at 37°C for 30 min. The control was

prepared using 80 mM HEPES-HCl buffer containing 300 mM

NaCl (pH 8.3) instead of the sample. The sample group and

control group were run in the same manner. After that, measure

the absorbance of the sample solution at 340 nm. All samples

were measured as described above, respectively. The IC50 value

was defined as the concentration of inhibitor required to inhibit

50% of the ACE activity. The ACEi activity was calculated by the

following equation:

ACEi activity ( % ) = (1 − B0 − B30=A0 − A30)� 100

A0 and B0 represent the initial absorbance of the control

group and the sample group; A30 and B30 represent the

absorbance after 30 minutes for the control group and the

sample group.
Determination of degree of
hydrolysis (DH)

DH (%) was measure according to the previous method

(Wang et al., 2013a). The hydrolysate (50 mL) was mixed with

0.5 mL of 0.2 M phosphate buffer, pH 8.2 and 0.5 mL of 0.05%

TNBS reagent. TNBS was freshly prepared before use by diluting

with deionized water. The mixture was incubated at 50°C for 1 h

in a water bath. The reaction was stopped by adding 1 mL of 0.1

M HCl and incubating at room temperature for 30 min. The

absorbance was monitored at 420 nm. L-Leucine was used as a

standard. To determine the total amino acid content,

hydrolysate was completely hydrolyzed with 6 M HCl with a

sample to acid ratio of 1:100 at 120°C for 24 h. DH (%) was
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calculated using the following equation:

DH ( % ) = ½(At − A0)=(Amax − A0)� � 100

where At was the amount of a-amino acids released at time t,

A0 was the amount of a-amino acids in the supernatant at 0 h,

and Amax was the total amount of a-amino acids obtained after

acid hydrolysis at 120°C for 24 h.
Molecular docking experiment of MMP3
and MMP6

This assay of MMP3 and MMP6 was performed on the

previous method (Zheng et al., 2022; Suo et al., 2022a) and

commissioned to Shanghai NovoPro Biotechnology Co., Ltd

(China). The crystal structures of human ACE-lisinopril

complex (1O8A.pdb) and captopril were acquired from the

RCSB PDB Protein Data Bank (PDB code: 1UZF). The

interaction between ACE and MCO was analyzed to

determine the position and size of the binding pocket using

Chimera software. All non-standard residues in the 1UZF

model were deleted, and AutodockTools were used to

convert PDB files into PDBQT files (adding Gasteiger charge

and setting key distortion). Peptide molecules were converted

into SMILES format by PepSMI tool, and 3D models were

drawn by Discovery Studio program and energy minimization

was done using steepest descent and conjugate gradient

techniques. Molecular docking and free energy calculation

were carried out using flexible docking tool of Autodock

Vina. Finally, the interaction between ACE and peptide

molecules was analyzed by Chimera software. According to

the binding-energy value and scores of MMP3 and MMP6,

their best ranked docking poses in the active site of ACE

were acquired.
Effects of MMP3 and MMP6 on HUVECs

HUVEC culture and cytotoxic assessment using
MTT assay

The cytotoxic assay was carried out according to the

previous method (Zhao et al., 2019b). HUVECs were cultured

at a density of 1 × 104 cells/cm2 to confluence in DMEM at 37°C

in a humidified 5% CO2 atmosphere. The cytotoxicity of MMP1-

MMP7 on HUVECs was measured using MTT assay (Zhao

et al., 2019b). In short, HUVECs in 96-well plates at a density of

1 × 104 cells/cm2 were separately treated with 20 mL samples at

50 and 200 mM, respectively, and cultured for 24 h. Then, 20 mL
MTT solution (5 mg/mL) were put in and incubated for 4 h. In

the end, DMSO was joined in each well plate and the absorbance

(A) at 490 nm was measured. The cell viability was calculated:

Cell viability (%) = (Asample/Acontrol) × 100.
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Evaluation of NO and ET-1 production
HUVECs were cultured in 96 well-plates at a density of 1 ×

104 cells/cm2 and treated with Cap (1 mM), NE (0.5 mM) or ACEi

peptides (100 and 200 mM for MMP3 and MMP6) for 24 h, or

incubated with both 200 mM ACEi peptide (MMP3 and MMP6)

and NE (0.5 mM) for 24 h. The NO and ET-1 contents of

HUVECs were determined after 24 h according to their assay

kits as manufactures’ protocol (Zhao et al., 2019b; Suo

et al., 2022b).
Cytoprotection of MMP3 and MMP6 on
H2O2-damaged HUVECs

Protection on H2O2-damaged HUVECs
The cytoprotective assay was carried out on the described

methods (Cai et al., 2019; Wang et al., 2021b). In short,

HUVECs were cultured in a 96-well plate at a density of 1 ×

104 cells/cm2 for 24 h. Soon afterwards, the supernatant was

cleared away and 20 µL of peptide sample (MMP3 or MMP6)

with the final concentrations of 100 and 200 mM were joined

in the sample groups, respectively. ACEi peptides (MMP3

and MMP6) were removed after 8 h and H2O2 with the final

concentration of 400 µM was added in and incubated for

24 h.

Measurement of levels of ROS, MDA, SOD,
and GSH-Px

The ROS content was detected on the previous method and

indicated as % of blank control (Cai et al., 2019); the levels of

MDA, SOD, and GSH-Px were detected using their assay kits in

accordance with the manufacturer’ protocols and expressed as

U/mg prot (Cai et al., 2019).
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Data analysis

All data are expressed as the mean ± standard deviation (SD)

(n = 3) and analyzed by SPSS 19.0. Significant difference analysis

was employed ANOVA test with Dunnett or Tukey Test

(P < 0.05, P < 0.01, or P < 0.001).
Results and discussion

Preparation of swim bladder hydrolysate
of miiuy croaker (MSCH)

The proteins of miiuy croaker swim bladder were

separately hydrolyzed using four proteases and in vitro GI

digestion method. Figure 1A manifested that the DH of

hydrolysate produced using in vitro GI digestion method

was 27.26 ± 1.38%, which was remarkedly higher than those

of other hydrolysates produced using Alcalase, Neutrase,

pepsin, and trypsin, respectively (P < 0.05). In addition, the

ACEi activity of five hydrolysates showed a similar trend

(Figure 1B). At 3.0 mg/mL, the hydrolysate produced using

in vitro GI digestion method showed the highest ACEi

activity (51.37± 2.06%), followed by the hydrolysates

prepared using Alcalase, Neutrase, trypsin, and pepsin,

respectively (P < 0.05).

Enzymatic hydrolysis method is a popular process to

produce protein hydrolysates because of its multiple significant

properties, such as easy to control, environmentally friendly, and

no residual chemical reagents (Chi et al., 2015a; Chi et al., 2015b;

Sila and Bougatef, 2016). The biological functions of protein

hydrolysates are closely contacted with the chemical structures

and composition of bio-peptides, which is dramatically affected
A B

FIGURE 1

Degree of hydrolysis (%) (A) and ACEi activity (%)(B) of swim bladder hydrolysates of miiuy croaker using four proteases and in vitro GI digestion
method. All values are means ± SD (n = 3). a–d Same letters indicate no significant difference (p < 0.05).
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by the specificity of protease (Wang et al., 2013b; Chi et al.,

2015c). Therefore, single and multiplex enzyme hydrolysis are

frequently applied to generate hydrolysates from diverse protein

sources (Lan et al., 2019; Yang et al., 2019b). Then, in vitro GI

digestion method is mostly employed as an inexpensive,

effective, easy to operate and safe method to prepare the

protein hydrolysates (Vieira et al., 2016; Zhao et al., 2019a).

Therefore, the swim bladder hydrolysate produced by in vitro GI

digestion method was named as MSCH and chosen for

further purification.
Preparing ACEi peptides from MSCH

MSCH was fractionated into MSCH-1, MSCH-2, MSCH-3,

and MSCH-4 using ultrafiltration method. The ACEi activity of

MSCH-I was 62.97 ± 2.39% at 3.0 mg/mL, and its inhibiting

ability was prominently higher than those of MSCH (51.37±

2.06%), MSCH-2 (49.13 ± 2.35%), MSCH-3 (46.74 ± 1.82%), and

MSCH-4 (21.96 ± 1.09%) (P < 0.05). Proteins and large MW

peptides are difficult to approach and combine with the active

site of ACE, leading to decreased inhibitory activity (Fan et al.,

2019). Therefore, ultrafiltration process often serves to collect

small MW bioactive peptides from protein hydrolysates

(Abdelhedi et al., 2017). The current findings agreed with the

reports that the lowest MW fractions of hydrolysates from

Moringa oleifera leaf (Ma et al., 2021), tuna black muscle

(Qiao et al., 2022) and frame (Lee et al., 2010), smooth-hound

viscera (Abdelhedi and Nasri, 2019), Antarctic krill (Zhao et al.,

2019b), Cyclina sinensis (Yu et al., 2018), and Takifugu flavidus

skin (Su et al., 2021) presented the highest ACEi activities. Then,

MSCH-I was selected for the next step isolation.

Using gel permeation chromatography of Sephadex G-25,

MSCH-1 was divided into three peptide fractions (MSCH-1a,

MSCH-1b, and MSCH-1c) and their ACEi rates were displayed

at Figure 2. At 3.0 mg/mL, the ACEi rate of MSCH-1b was 76.25
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± 3.61%, which was markedly stronger than those of MSCH-1

(62.97 ± 2.39%), MSCH-1a (43.57 ± 1.59%), and MSCH-1c

(35.24 ± 2.21%), respectively (Figure 2B) (P < 0.05). Gel filtration

is a popular method to collect fractions with a particular MW

dimension from a complex mixture and is generally applied in

group isolation of protein hydrolysates from different sea food,

such as by-catch shrimp waste (Joshi et al., 2020), miiuy croaker

muscle (He et al., 2019b), skipjack tuna byproducts (Yang et al.,

2019a; Wang et al., 2022a), red stingray (Dasyatis akajei)

cartilages (Pan et al., 2019), rainbow trout viscera (Vásquez

et al., 2022), Antarctic krill (Zhao et al., 2019b), and three-spot

seahorse (Shi et al., 2020). In the experiment, MSCH-1b

displayed the best ACEi activity, but it does not obtain the

lowest MW. These finding suggested that some other influence

factors besides MW, such as amino acid composition and linking

sequences, also significantly affect the ACEi ability of peptides

(Sila and Bougatef, 2016; Abdelhedi et al., 2017; Fan et al., 2019).

Finally, MSCH-1b was purified by RP-HPLC. According to

the RP-HPLC profiles of MSCH-1b at 220 and 280 nm

(Figure 3), seven ACEi peptides with retention time of 8.49

min (MMP1), 14.47 min (MMP2), 17.75 min (MMP3), 21.52

min (MMP4), 24.50 min (MMP5), 28.41 min (MMP6), and

33.25 min (MMP7) were concentrated on their HPLC peaks and

freeze-dried (Table 2).
Peptide sequences and MWs
determination (MMP1- MMP7)

By employing Protein/Peptide Sequencer, the sequences of

seven ACEi peptides (MMP1- MMP7) were identified as Asp-

Glu-Gly-Pro-Glu (DEGPE, MMP1), Glu-Val-Gly-Ile-Gln

(EVGIQ, MMP2), Ser-His-Gly-Glu-Tyr (SHGEY, MMP3),

Gly-Pro-Trp-Gly-Pro-Ala (GPWGPA, MMP4), Gly-Pro-Phe-

Gly-Thr-Asp (GPFGTD, MMP5), Ser-Pro-Tyr-Gly-Phe

(SPYGF, MMP6), and Val-Ile-Gly-Pro-Phe (VIGPF, MMP7),
A B

FIGURE 2

Chromatogram profiles of MSCH-1 isolated by Sephadex G-25 (A) and ACEi activity of prepared subfractions (MSCH-1a to MSCH-1c) from
MSCH-I at 3.0 mg/mL (B). All values are means ± SD (n = 3). a-e Same letters indicated no significant difference (p < 0.05).
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respectively, and their MWs were determined as 545.49, 544.58,

591.55, 583.63, 592.59, 569.60, and 531.63 Da, respectively

(Figure 4), which agreed well with their theoretical

MWs (Table 2).
ACEi activity and molecular
docking analysis

Table 2 indicated that the IC50 values of MMP3 and MMP6

on ACE were 0.86 ± 0.12 and 0.37 ± 0.06 mg/mL, which were

notably lower than those of other five ACEi peptides (P < 0.05).

Additionally, the IC50 vales of MMP3 and MMP5 were lower

than those of ACEi peptides from protein hydrolysates of

Arthrospira platensis (PTGNPLSP: 1.54 mg/mL) (Wang et al.,

2021a), Sepia officinalisn (VGLYP: 3.23 mg/mL) (Balti et al.,

2015), Oncorhynchus keta (GLP: 2.91 mg/mL) (Lee et al., 2014),
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Salmo salar (YP: 1.54 mg/mL) (Neves et al., 2017), Katsuwonus

pelamis muscle (IPK: 2.47 mg/mL; FEM: 2.18 mg/mL) (Qiao

et al., 2022; Zheng et al., 2022),Okamejei kenojei (MVGSAPGVL

3.09 mg/ml) (Ngo et al., 2015), Ctenopharyngodon idella (VAP:

1.71 mg/ml) (Chen et al., 2012), and stone fish (EVLIQ: 1.44 mg/

mL) (Auwal et al., 2019). The ACEi capabilities of MMP3 and

MMP6 indicated that they might serve as active ingredients

added in BP lowering products.

Molecular docking experiment of MMP3 and MMP6 was

carried out to analyze their ACEi mechanisms (Figure 5).

Figure 5A indicated that MMP3 (SHGEY) formed hydrogen

bonds with Ala354, His353, Glu376, Ser284, His383, His387, and

Tyr523 residues of ACE, therein, MMP3 (SHGEY) formed

hydrogen bonds with S1 pocket (Ala354) and S2 pocket

(His353). Additionally, MMP3 (SHGEY) interacted with

Glu384, Glu411, Lys454, and Lys511 residues through

hydrophobic effect, and contacted with Val380 and Val379
A

B

FIGURE 3

Elution profiles of sub-fraction MSCH-1b by RP-HPLC at 220 nm (A) and 280 nm (B).
TABLE 2 Amino acid sequences, molecular weights (MWs), and ACEi activity (IC50 value) of seven isolated ACEi peptides (MMP1- MMP7) from
swim bladder hydrolysate of miiuy croaker (MSCH).

Retention time (min) Amino acid sequence Observed MW/Theoretical MW (Da) ACEi activity(IC50, mg/mL)

MMP1 8.49 Asp-Glu-Gly-Pro-Glu (DEGPE) 545.49/545.50 2.79 ± 0.42 a

MMP2 14.47 Glu-Val-Gly-Ile-Gln
(EVGIQ)

544.58/544.60 4.06 ± 0.37 b

MMP3 17.75 Ser-His-Gly-Glu-Tyr (SHGEY) 591.55/591.57 0.86 ± 0.12 c

MMP4 21.52 Gly-Pro-Trp-Gly-Pro -Ala (GPWGPA) 583.63/583.64 2.18 ± 0.24 d

MMP5 24.50 Gly-Pro-Phe-Gly-Thr-Asp (GPFGTD) 592.59/592.60 1.65 ± 0.13 e

MMP6 28.41 Ser-Pro-Tyr-Gly-Phe (SPYGF) 569.60/569.61 0.37 ± 0.06 f

MMP7 33.25 Val-Ile-Gly-Pro-Phe (VIGPF) 531.63/531.64 1.32 ± 0.17 g
All values are means ± SD (n= 3). a-g Same letters indicated no significant difference (P > 0.05).
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residues through electrostatic force. Figure 5B confirmed that

MMP6 (SPYGF) formed hydrogen bonds with Tyr523(S1),

His513(S2), Glu411, and Arg522 residues of ACE, therein,

MMP6 (SPYGF) established hydrogen bonds with S1 (Tyr523)

and S2 (His513) pockets. Furthermore, MMP6 (SPYGF)

interacted with His387 residue through hydrophobic effect,

and contacted with Trp357, Pro407, and His410 residues

through electrostatic force. Molecular docking assay proved

that MMP3 and MMP6 exhibited better ACEi activity

attributing to the effectively interacting with the active sites of

ACE by different forces, especially hydrophobic interaction,

electrostatic force, and hydrogen bonding.
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In addition, the affinity of MMP3 and MMP6 with ACE was

-8.3 and -9.2 kcal/mol, which was close to those of YLLLK (-8.2

kcal/mol), GVQEGAGHYALL (-7.0 kcal/mol) (Zarei et al.,

2019), YSK (-7.9 kcal/mol) (Wang et al., 2017), SP (-5.7 kcal/

mol), VDRYF (-9.7 kcal/mol) (Zheng et al., 2022), PMHIR

(-10.37 kcal/mol), and PQVSTPTL (-6.64 kcal/mol) (Li

et al., 2022).

Molecular size greatly affects the affinity between peptide

and ACE, which further remarkedly influences ACEi ability of

antihypertensive peptides (Abdelhedi and Nasri, 2019; Fan et al.,

2019). Crystallographic studies proved that potent ACEi

peptides with 2 to 12 amino acid residues are easy to link to
A B

D

E F

G

C

FIGURE 4

Mass spectrogram of seven ACEi peptides (MMP1- MMP7) from protein hydrolysate of miiuy croaker swim bladders (MSCH). (A) MMP1;
(B) MMP2; (C) MMP3; (D) MMP4; (E) MMP5; (F) MMP6; (G) MMP7.
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the acting site of ACE (Chen et al., 2012). Similarly, VPP and IPP

could be easier access the ACE channel and effectively

coordinate with Zn2+ with higher interaction scores than

larger peptides (Abdelhedi et al., 2018). In addition, Su et al.

proved that peptides with four to nine amino acid residues could

passively pass through cell membranes to play their functions in

cells (Su et al., 2021). In the experiment, MMP3 (SHGEY) and

MMP6 (SPYGF) are pentapeptides, and the MWs increase their

access to the active site of ACE, which was proved by their

affinities with ACE (-8.7 and -9.7 kcal/mol for MMP3 and

MMP6, respectively).

The amino acid composition and sequence could be more

relevant with the ACEi activity of peptides than the MWs

(Auwal et al., 2019). The C-terminal amino acids have been

wildly discussed because of their crucial functions on the

antihypertensive peptides (Fan et al., 2019). The aromatic

(Tyr, Phe, and Trp) and branched-chain (Val, Leu and Ile)

amino acids were in favor of combining with the C-terminal

active site of ACE (Sun et al., 2017). Therefore, Tyr and Phe at

the C-terminus of MMP3 and MMP6 are critical for their

affinities with ACE. Ser was regarded as conducing to the high

ACEi activity of EMFGTSSET because it could establish three

hydrogen bonds with ACE residues Ala-356 and Tyr-523 (Pei

et al., 2022). Also, molecular docking was found hydroxyl group

of Ser residue played vital effects in the ACEi capability of SP

because it could form hydrogen bond with the His383 residue of
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ACE (Zheng et al., 2022). Therefore, Ser residues of MMP3 and

MMP6 could significantly strengthen their ACEi activity.

Furthermore, ACEi peptides with reasonable proportion of

hydrophilic and hydrophobic amino acids can helpfully bind

with the active center of ACE to control its function (Yea et al.,

2014; Auwal et al., 2019). In MMP3 and MMP6, MMP6 has a

more reasonable ratio of hydrophobic and hydrophilic amino

acids, and this should be the main reason that MMP6 showed

more ACEi activity than MMP3.
Effects of MMP3 and MMP6 on HUVECs

The effects of MMP3 andMMP6 on the viability of HUVECs at

100-400 mM were shown in Figure 6A. At the designed

concentration, the viability of MMP3 group was ranged from

98.67 ± 2.08% to 101.25 ± 0.98%, and the viability of MMP6

group was ranged from 98.81 ± 1.67% to 102.18 ± 1.52%. In normal

tissues, the cell proliferation and death generally keep an

appropriate balance, and the active substances with strong

inhibiting ability on cell proliferation indicate their possible

toxicity risk to the body, and are deemed to be inadequacy to

developing healthy products with non-antitumor functions (Zhao

et al., 2019b; Qiao et al., 2022). These data suggested that MMP3

and MMP6 didn’t show significant cell toxicity in HUVECs and

should suite to developing anti-blood pressure health products.
A

B

FIGURE 5

Molecular docking result of MMP3 (A) and MMP6 (B) with ACE (A1) 2-D details of ACE and MMP3 interaction. (A2) 3-D interaction details for
MMP3; (B1) 2-D details of ACE and MMP6 interaction; (B2) 3-D interaction details for MMP6.
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According to Figure 6B, the NO contents in MMP3 and

MMP6 groups were significantly increased than control group

(35.06±1.86 mmol/gprot) (P < 0.001), and the NO contents of

MMP3 and MMP6 groups increased to 48.91 ± 2.46 and 51.38 ±

2.56 mmol/gprot at 200 mM. However, the NO contents in

HUVECs treated with MMP3 and MMP6 were lower than

that (60.82±2.67 mmol/gprot) of Cap treated group (P <

0.001). Moreover, NE could significantly decrease the content

of NO (24.67±1.15 mmol/gprot) than control group (P < 0.001),

but the NO content negative decreased by NE was separately

compensated to 39.75 ± 1.83 and 42.26 ± 1.85 mmol/gprot in

MMP3 and MMP6 group at 200 mM (P < 0.001).

Figure 6C indicated that the ET-1 secretion of HUVECs was

negatively affected by MMP3 and MMP6, and the ET-1 levels of

MMP3 andMMP6 groups reduced to 98.39 ± 3.65 and 95.38 ± 3.36

pg/mL at 200 mM. On the contrary, NE could significantly increase

the ET-1 secretion (152.69 ± 5.38 pg/mL) than control group

(125.39 ± 4.69 pg/mL) (P < 0.001), but the decrease of ET-1

secretion influenced by NE was partially restored by MMP3 and

MMP6 treatment and decreased to 110.79 ± 4.28 and 105.72 ± 4.92

pg/mL at 200 mM (P < 0.001). The ET-1 secretion of HUVECs was

significantly decreased to 93.54 ± 3.15 pg/mL by 0.5 mM Cap

treatment than control group (125.39 ± 4.69 pg/mL) (P < 0.001).

Hypertension is a complicated chronic disease which leads to

endothelial dysfunction by influencing the production of NO and

ET-1 in endothelial cells, which further causes apoptosis and arterial

vasoconstriction. Therefore, HUVECs are widely applied to analyze
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vascular endothelium characters and the key biological pathways on

endothelium function and cardiovascular diseases. In pathologic

situations, NO deficiency will give rise to the risk of cardiovascular,

and improving the production of endothelial NO represents a good

therapeutic approach for atherosclerosis (Abdelhedi and Nasri, 2019;

Fan et al., 2019). Therefore, some ACEi peptides, such as KYIPIQ

(Lin et al., 2020), IPIPATKT (Chen et al., 2021), WF (Zhao et al.,

2019b), GRVSNCAA, TYLPVH (Zhang et al., 2021),

IVTNWDDMEK, VGPAGPRG (Wang et al., 2022b), SP (Zheng

et al., 2022), MKKS and LPRS (Qiao et al., 2022), play their

hypotensive activity by enhancing the production ofNO inHUVECs.

Literatures reported that increasing in Ang-II and ET-1

could cause endothelial abnormalities, which are closely

correlated with hypertension and coronary heart disease (Jiang

et al., 2021). Decreased production of ET-1 in the renal medulla

can elevate systemic blood pressure (Kohan, 2008). ACEi

oligopeptides of SP, YRK, MKKS, FQK, FAS, and LPRS from

tuna muscle and Antarctic krill displayed same function of

bringing down the ET-1 level (Zhao et al., 2019b; Qiao et alo,

2022). VIEPR and VVLYK from oil palm kernel expeller could

dose-dependently inhibit the secretion of intracellular ET-1 in

EA.hy926 cells (Zheng et al., 2017). GRVSNCAA and TYLPVH

from Ruditapes philippinarum gave play to their function of

lowering blood pressure through markedly lowering ET-1

generation (Zhang et al., 2021). Umami Peptide IPIPATKT

from Sanhuang chicken hydrolysate could reduce the ET-

1content in the insulin-resistant-HepG2 (IR-HepG2) and
A B

C

FIGURE 6

The effects of MMP3 and MMP6 on the cell viability (A), NO production (B), and ET-1secretion (C) of HUVECs, respectively. Captopril (Cap) was
designed as a positive control. All values are means ± SD (n= 3). ***P < 0.001 VS Control; ##P < 0.01 and ###P < 0.001 VS Cap; ▲▲▲P < 0.001
VS Norepinephrine (NE).
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HUVEC models (Jiang et al., 2021). Moreover, IPIPATKT

displayed hypotensive and decreased glucose level effects in

SHRs and C57BL/6N mice. According to the finding, ACEi

peptides of MMP3 and MMP6 prominently promote NO

production while restrict ET-1 secretion in HUVECs.

Moreover, MMP3 and MMP6 can reverse the negative effects

of NE on NO and ET-1 production in HUVECs.
Cytoprotective effects of MMP3 and
MMP6 on H2O2-induced HUVECs

Figure 7A presented the cytoprotective effects of MMP3 and

MMP6 on the H2O2-induced HUVECs at 100 and 200 mM.

MMP3 and MMP6 revealed the dose-dependently protective

effects on the H2O2-damaged HUVECs, and the cell viability of

MMP3 and MMP6 groups at 200 mM were increased to 65.37 ±

2.49% and 70.03 ± 1.82%, respectively, which were significantly

higher than that of model group (48.96 ± 3.46%) (P < 0.001).
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However, the cell viability of MMP3 and MMP6 groups was

lower than that of the GSH group (78.63 ± 2.68%) (P < 0.001).

Then, MMP3 and MMP6 could give a strong protection to

H2O2-induced HUVECs by increasing their viability.

Figure 7B indicated that the ROS levels were markedly lowered

after pretreating with MMP3 and MMP6 compared with model

group (231.85 ± 5.62%) (P < 0.001). At 200 mM, the ROS levels of

MMP3 and MMP6 groups were observably dropped to 158.92 ±

3.16% and 142.37 ± 4.36% of the control group, respectively.

However, the ROS levels of MMP3 and MMP6 groups were

higher than that of the GSH group (120.75 ± 3.98%) (P < 0.001).

In addition, MMP6 showed the higher ability on scavenging ROS

than MMP3 at the determined concentrations.

Figure 7C and Figure 7D showed the activity of SOD and GSH-

Px incubated with MMP3 and MMP6 at 100 and 200 mM was

gradually increased. At the concentrations of 100 and 200 mM, SOD

activity in MMP3 group was 143.59 ± 3.08 and 170.66 ± 5.32 U/mg

prot, and the SOD activity in MMP6 groups was 165.38 ± 3.96 and

190.53 ± 4.67 U/mg prot. Moreover, the SOD activity inMMP3 and
A B
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FIGURE 7

Effects of MMP3 and MMP6 on the cell viability (A), ROS (B), SOD (C), GSH-Px (D), and MDA (E) of H2O2-induced HUVECs. All values are means
± SD (n= 3). GSH was designed as a positive control. *** P < 0.001 < 0.01 VS control; ### P < 0.001 VS model; ▲▲▲ P < 0.001 VS GSH.
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MMP6 groups was markedly higher than that of the model group

(112.69 ± 3.57 U/mg prot) (P < 0.001). The changes of GSH-Px

activity showed the same trend with the levels of SOD (Figure 7D).

At the concentrations of 100 and 200 mM, the GSH-Px activity in

MMP3 group was 46.58 ± 2.01 and 53.27 ± 2.85 U/mg prot, and the

activity in MMP6 group was 50.39 ± 1.39 and 59.87 ± 1.88 U/mg

prot. GSH-Px activity of peptide groups were observably higher

than that of the model group (36.98 ± 1.23 U/mg prot) (P < 0.001).

Figure 7E revealed that the MDA levels were markedly

lowered after pretreating with MMP3 and MMP6 compared

with model group (33.19 ± 1.52 nmol/mg prot) (P < 0.001). At

200 mM, the MDA levels of MMP3 and MMP6 groups were

dramatically decreased to 19.53 ± 0.76 and 18.75 ± 0.13 nmol/

mg prot, respectively. MMP6 showed stronger ability on

decreasing MDA content than MMP3, but it ability was still

lower to that of GSH (16.85 ± 0.96 nmol/mg prot).

Oxidative stress is bound up with apoptosis, cell migration,

hypertrophy, inflammation, angiogenesis, and endothelial

dysfunction with reference to vascular remodeling of

hypertension-related diseases (Sinha and Dabla, 2015). ROS is

known as the mediums of angiotensin II-induced blood pressure,

and inhibition of ROS content is contributed to normalizing

endothelium function and decreased vascular inflammation and

reaction, which further reduce blood pressure and prevent the

hypertension development (Sinha and Dabla, 2015). For another,

MDA is a key peroxidation product of the cell membrane lipid and

serves as a well-known indicator for estimating the oxidative

damage degree (Wang et al., 2021b). Presently, some food-

derived peptides showed ACEi and antioxidant activities, such as.

TPCPPQ, YSKA, and VLSTSFPPK from Pixian broad bean (Li

et al., 2021), rice bran (Wang et al., 2017), and Kluyveromyces

marxianus (Mirzaei et al., 2018), respectively. Moreover, some

bioactive peptides showed significant protective function in

Angiotensin II or H2O2-induced cell models. Zheng et al. found

that ACEi peptides of VIEPR, LPILR, ADVFNPR and VVLYK

from Oil palm kernel expeller could exert antihypertensive effect

through scavenging excessive ROS and protect vascular endothelial

cells from excessive ROS-induced damage (Zheng et al., 2017).

Umami peptides of CC, CCNK, and HCHT played their

cytoprotective effects by reducing the ROS content (Hao et al.,

2020). ACEi peptides IVTNWDDMEK and VGPAGPRG could

protect HUVECs against H2O2 damage by up-regulating the

expression of nuclear factor erythroid 2-related factor 2 (Nrf2)/

heme oxygenase-1 (HO-1) to decrease the production of ROS

and MDA (Wang et al., 2022b). ACEi peptide EMFGTSSET

(IC50 15.08 mM) from Isochrysis zhanjiangensis has excellent

effect in regulating hypertension by reducing the contents of

ROS, cytokines, and adhesion factors in Ang II-induced

HUVECs (Pei et al., 2022). FNLRMQ from Takifugu

bimaculatus skin could alleviated the viability and facilitated

apoptosis of Ang-II-induced HUVECs by regulating

phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/
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endothelial NO synthase (eNOS) and Nrf2/HO-1 signaling

pathways (Cai et al., 2021). FPYLRH, FWKVV, and FMPLH

could promote the bioactivity of SOD/GSH-Px to bring down

the oxidative damage of DNA and the production of ROS and

MDA in H2O2-induced HUVECs (Wang et al., 2020).

Moreover, the antioxidant mechanisms of bioactive peptides,

such as FEIHCC (Chen et al., 2020), IVTNWDDMEK,

VGPAGPRG (Wang et al., 2022b), KVLPVPEK (Tonolo

et al., 2020), MHQPHQPLPPTVMF (Qin et al., 2021),

APKGVQGPNG (Rahman et al., 2018), ICRD, LCGEC (Han

et al., 2020), and VHVV (Tsai et al., 2020), indicated that they

could regulate the Nrf2 pathway in cell model to induce the

overexpression of antioxidases to decrease the damage of ROS.

The current results suggested that the protective activities to

H2O2-damaged HUVECs of MMP3 and MMP6 were similar to

those previous reported peptides, and the acting mechanism

should be connected with activating Nrf2 pathway to improve

intracellular antioxidase bioactive.
Conclusion

In a conclusion, the swim bladder hydrolysate of miiuy

croaker with high ACEi activity was produced using in vitro

GI digestion processing, and seven novel ACEi peptides were

isolated from the hydrolysate and identified as DEGPE, EVGIQ,

SHGEY, GPWGPA, GPFGTD, SPYGF, and VIGPF,

respectively. SHGEY and SPYGF displayed noticeable

hypotensive activity through inhibiting ACE activity,

increasing NO production and decreasing ET-1 secretion in

HUVECs, and protecting HUVECs from H2O2-induced

oxidative damage. Moreover, SHGEY and SPYGF exhibited

significant ACEi activity attributing to their effective

interaction with the active sites of ACE by hydrogen bonding,

electrostatic force and hydrophobic interaction. Therefore, this

study not only develops technical support for utilizing miiuy

croaker swim bladders to produce novel ACEi peptides, but also

contributes to dispose the environmental pollution problems of

fish byproducts. More importantly, seven novel ACEi peptides,

especially SHGEY and SPYGF, might be used as natural

functional ingredients for developing noticeable hypotensive

products. However, the antihypertensive activities and

mechanisms of SHGEY and SPYGF in animal models should

be performed in future experiments, which will provide better

insight into their potential in the management of hypertension.
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Miranda, J., Hernández-Santos, B., Juárez-Barrientos, J. M., et al. (2019).
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