
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Suresh Valiyaveettil,
National University of Singapore,
Singapore

REVIEWED BY

Camilo Dias Seabra Pereira,
Federal University of São Paulo, Brazil
Polina Lemenkova,
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The global accumulation of plastic waste has reached crisis levels. The diverse

and multilayered impacts of plastic on biological health prompts an evaluation

of these effects from a One Health perspective, through which the complexity

of these processes can be integrated and more clearly understood. Plastic

particles ranging from nanometers to meters in size are found throughout

every ecosystem on Earth, from the deepest marine trenches to the highest

mountains. Plastic waste affects all layers of biological organization, from the

molecular and cellular to the organismal, community, and ecosystem-levels.

These effects are not only mediated by the physical properties of plastics, but

also by the chemical properties of the plastic polymers, the thousands of

additives combined with plastics during manufacturing, and the sorbed

chemicals and microbes that are transported by the plastic waste. Using a

One Health framework we provide an overview of the following themes: 1)

ways in which plastic impacts global health across levels of biological

organization, 2) how the effects of plastic interact between layers of biology,

and 3) what knowledge gaps exist in understanding the effects of plastic within

and between biological scales. We also propose potential solutions to address

this growing crisis, with an emphasis on One Health perspectives that consider

the oneness of animals, humans, and the environment.
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Plastic is ubiquitous and interacts
with all aspects of the biosphere

Plastics are ubiquitous in our society. Demand for plastic has

skyrocketed since the 1950s due its inexpensive, strong, durable,

and lightweight properties (Thompson et al., 2009). As a result,

plastic pollution is now found all across the planet, including

along coastlines (Kwon et al., 2014; Courtene-Jones et al., 2021),

in the open ocean (Eriksen et al., 2013; Cózar et al., 2014), the

deep sea (Bergmann et al., 2017; Barrett et al., 2020), soils (Fuller

and Gautam, 2016), and the atmosphere (González-Pleiter et al.,

2021). Current estimates suggest that a minimum of 5.25 trillion

plastic particles are present in the world’s oceans, a number that

is expected to grow (Eriksen et al., 2014). Indeed, the amount of

plastic pollution entering the terrestrial and aquatic

environment is predicted to grow by an additional 710 million

metric tons between 2016 and 2040, even if immediate action is

taken to reduce waste (Lau et al., 2020). These plastics are

degraded by biotic and abiotic processes in the environment,

such as bacterial activity, UV light, temperature, and abrasion,

resulting in smaller fragments with altered surface properties.

These smaller plastics, classified as microplastics (<5 mm) and

nanoplastics (<1 µm), are the most prevalent type of solid waste,

especially in the aquatic environment (Jambeck et al., 2015;

Gigault et al., 2018). Additionally, both types of small plastics

(referred to as micro- and nanoplastics) can be found in

commercial and industrial items.

The ubiquity of plastics in the biosphere has made

interactions with animals and humans inevitable. Vast

numbers of marine species are impacted by plastics (Gall and

Thompson, 2015). Microplastics are found in fish, clams,

mussels, oysters, and crabs destined for human consumption

(Van Cauwenberghe and Janssen, 2014; Li et al., 2015; Rochman

et al., 2015; Karami et al., 2017; Su et al., 2018; Waite et al., 2018),

as well as table and sea salt (Yang et al., 2015; Zarus et al., 2021),

seaweed (Baini et al., 2017), honey (Liebezeit and Liebezeit, 2013;

Liebezeit and Liebezeit, 2015), tea (Hernandez et al., 2019), beer

(Kosuth et al., 2018), and tap and bottled water (Kosuth et al.,

2018; Zuccarello et al., 2019; Kankanige and Babel, 2020).

Microplastics have also been documented in the human body,

(e.g., in lung tissues (Amato-Lourenço et al., 2021), stool

(Schwabl et al., 2019; Ibrahim et al., 2021), blood (Leslie et al.,

2022), and even placentas (Ragusa et al., 2021).

There is perhaps no other single anthropogenic contaminant

that has had such a wide spectrum of direct exposure ranging

across all levels of biology. Plastics disrupt homeostasis at the

individual organismal level via ingestion of plastic debris (Gall

and Thompson, 2015). Plastic pollution can also disrupt

ecosystem functioning by changing and damaging habitats

(Aloy et al., 2011; Carson et al., 2011; Richards and Beger,

2011) and altering the balance of species across ecosystems

(Barnes and Milner, 2005; Goldstein et al., 2012). Such
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changes, in turn, inevitably have unknown effects upon health.

Mitigating plastic impacts on the health of people, animals, and

ecosystems requires an approach that transcends traditional

species-level risk assessments. One such framework is the

concept of One Health (Figure 1). One Health recognizes the

interconnectedness of people, animals, and plants, and how their

individual health is itself dependent on the health of their shared

environment (One Health, 2021). The One Health perspective

calls for a multi-sectoral, transdisciplinary, and collaborative

approach to solving health issues at the local, national, and

global levels (One Health, 2022). While the origins of One

Health research stem from the study of zoonotic diseases, this

framework provides a transdisciplinary lens to (i) examine the

imminent threat to human, animal, and ecosystem health

imposed by plastic pollution, (ii) elucidate socio-economic

ramifications of plastic pollution and (iii) implement

mitigation strategies interlining with the public and

private sectors.

To establish the need for an integrated assessment, here, we

focus on routes of exposure and the health threats at the cellular,

individual organismal, population, and ecosystem levels to

highlight plastic pollution impacts across layers of biological

organization. The goals of this review are to i) summarize our

understanding of how plastic affects layers of biological

organization, ii) provide rationale for the use of a One Health

paradigm to understand and investigate plastic’s consequences

on health, and iii) illuminate gaps in existing knowledge and

research on the impacts of plastics within the One

Health paradigm.
Routes of exposures

Humans and other organisms encounter plastics in a variety

of ways, including ingestion, inhalation, and physical contact

with plastics and plastic additive chemicals (Cox et al., 2020;

World Health Organization, 2022). Humans in the United States

are estimated to consume between 39,000 to 52,000 microplastic

particles per year from food and beverages alone (Cox et al.,

2020) or an average of 0.1-5g of microplastics weekly

(Senathirajah et al., 2021). Plastic ingestion is also well

documented in other species, including zooplankton

(Desforges et al., 2015), fish (Barboza et al., 2020), turtles

(Duncan et al., 2019), seabirds (Wilcox et al., 2015), and

marine mammals (Nelms et al., 2019).

In addition to ingestion, humans and other terrestrial

organisms can also inhale plastics. Micro- and nanoplastics

(MNPs) and plastic fibers are released into the atmosphere via

the washing of synthetic textiles, rubber tires, dried sludge,

agriculture, and city and household dust (Wright and Kelly,

2017; Karbalaei et al., 2018; World Health Organization, 2022).

MNPs can even be generated through simple tasks, such as
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opening and cutting plastic packaging and containers (Sobhani

et al., 2020). While the fate of inhaled MNPs and their

subsequent uptake in lung tissue is currently unknown

(Amato-Lourenço et al., 2021), airborne exposures can occur

both indoors, via household items and clothing, as well as

outdoors from particulate matter (Kasirajan and Ngouajio,

2012; Wright and Kelly, 2017; Catarino et al., 2018).

Occupational exposure, exposure to medical devices, and

contact exposure to items such as personal care products and

plastic toys also contribute to human exposures (Karbalaei et al.,

2018; Zarus et al., 2021).

Exposure to plastics is inexorably associated with exposure

to plastic additives—compounds added to plastic to improve the

functionality of the polymers (Hahladakis et al., 2018; Wiesinger

et al., 2021). Additives include plasticizers, flame retardants, heat

and light stabilizers, antioxidants, lubricants, pigments, antistatic

agents, slip agents, biocides, and thermal stabilizers (Groh et al.,

2019). While these additives are helpful to enhance the

performance of plastics, there is great potential for additives to

contaminate soil, air, water, and food (Hahladakis et al., 2018),

with poorly-understood consequences to the environment and

to health.

In addition to the chemicals intentionally added, plastics can

carry environmental pollutants and microbes. Collected plastic

litter has been associated with diverse bacterial species, including

human pathogens, suggesting that plastic may lead to

transmission of infectious diseases and may contribute to

antimicrobial resistance (Rasool et al., 2021). Plastics
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accumulate persistent organic pollutants and heavy metals

(Thompson et al., 2009; Rochman et al., 2014), though more

work is needed to understand if these “Trojan horse” or “vector”

effects of adsorption are physiologically relevant (Koelmans

et al., 2016). In addition to plastic polymers, we must also

consider the potential exposure to a variety of chemicals and

microbes, when evaluating impacts of plastics on health.
Cross-species comparisons of
cellular and organismal effects
of plastics

Effects of plastics on animal health

The wide ranging effects of plastic have been assessed

multiple organ impacts have been assessed across taxa,

including in fish, phytoplankton, zooplankton, and bivalves

(Figure 2). Due to their small size, MNPs have the potential to

affect organisms on a cellular level (Prinz and Korez, 2020;

Banerjee and Shelver, 2021). For example, in fish, MNPs lead to

formation of reactive oxygen species (ROS) and increased

oxidative stress, inducing cellular damage in liver, blood cells,

gills, digestive tract, and brain (Pitt et al., 2018b; Hu and Palić,

2020; Buwono et al., 2022; Capó et al., 2022; Hoyo-Alvarez et al.,

2022; Rangasamy et al., 2022). In fish, MNPs induced

mitochondrial stress, altered hormonal regulation of energy
FIGURE 1

Plastic impacts every facet of the One Health paradigm. One Health views animal, human, and environmental health as a single, interconnected
entity, with impacts on one sphere affecting all others, both directly and indirectly. Plastic pollution has multiple potential effects on every
aspect of global health.
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metabolism, and catabolic and anabolic processes, which can

limit the ability and flexibility of the organism to respond to

future stresses (Brun et al., 2019; Trevisan et al., 2019; Trevisan

et al., 2020; Wang et al., 2022). Such alterations affect animal

fitness, reproduction, and success (Dreier et al., 2019).

In algae, MNPs can adsorb to cell walls (Nam et al., 2022)

and can increase the formation of ROS, reduce cell viability,

modify the activity of antioxidant enzymes, and promote lipid

peroxidation (Das et al., 2022). These cellular changes are linked

to plastic impacts on organisms’ growth rates and energy

demands. For example, nanoplastics may impact freshwater

algae development rates (Huang et al., 2019) and metabolism,

chlorophyll-a concentrations (Zhang et al., 2018), and maximal

quantum yield of photosynthetic system II (Das et al., 2022),

although direct effects of plastics are not always evident (Seoane

et al., 2019).

MNP exposure also affects growth, reproduction, and fitness

of many invertebrates. For example, MNP exposure studies in

copepods [e.g., Calanus finmarchicus (Cole et al., 2019),Daphnia

magna (An et al., 2021), and Artemia parthenogenetica)] (Wang

et al., 2019), in clams [Corbicula fluminea (Oliveira et al., 2018)],

and mussels [Mytilus galloprovincialis (Avio et al., 2015; Abidli

et al., 2021)] show effects on mitochondrial gene expression,

prey preference, lipid content, molting, feeding rates, filter

feeding, survival, growth, and reproduction. In mussels

(Mytilus edulis), high-density polyethylene exposure resulted

in the accumulation of microplastics in the digestive gland,

inflammatory reactions, and lysosomal membrane damage

(von Moos et al., 2012). On the other hand, oysters exposed to

polystyrene microplastics had a 3% higher algal consumption

rate and an 11% higher absorption efficiency of organic matter

from ingested food rates (Sussarellu et al., 2016), possibly
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caused by the detected digestive interference of microplastics.

Sampling of gametes from oysters (Crassostrea gigas) showed

that exposure to 2 mm and 6 mm polystyrene particles led to a

38% drop in oocyte counts and a 23% decrease in the mobility

rate of spermatozoa. The offspring produced by artificial

fertilization using gametes from exposed parents had a 20%

reduction in D-larval yield, an 18% reduction in larval size at 17

days post-fertilization, and a 6-day delay in the time necessary to

complete metamorphosis (Sussarellu et al., 2016). These results

demonstrate that small plastic particles can affect the health of

bivalves at the subcellular and physiological levels.

The intestinal microbiota of vertebrates is critical for health,

and disturbance to the microbiota leads to increased risk of

disease; however, few studies have investigated the impact of

plastic exposure on the gut microbiome. One study exposed

male zebrafish to polystyrene microplastics and observed greater

mucus levels and significant changes to the species richness and

diversity of microbiota in the polystyrene microplastic-exposed

zebrafish (Jin et al., 2018). In another study, adult zebrafish

(Danio rerio) co-exposed to titanium dioxide nanoparticles and

the plasticizer bisphenol A (BPA) shifted the intestinal microbial

community (Chen et al., 2018).

Exposure to MNPs can cause disruption in the immune and

antioxidant systems, as well as the nervous and reproductive

systems. For example, mussels exposed to a combination of 2

and 6 mm polystyrene microplastics exhibited disturbance of

cellular homeostasis in hemocytes, infiltration of these cells into

digestive system tissues, and changes in the activity or gene

expression of antioxidant enzymes in gills and digestive glands

(Paul-Pont et al., 2016). Sheepshead minnows (Cyprinodon

variegatus) exposed to irregularly-shaped microplastics led to
FIGURE 2

The impacts of plastic across all levels of biological organization. Micro- and nanoplastics (MNPs) affect molecular and cellular responses, tissue
and organ systems, and physiological/behavioral responses in multiple species. Adapted from Trevisan et al., 2022.
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upregulation of Cxcr5 and Tnfsf13b, both of which are involved

in B cell development (Choi et al., 2018). Other studies have

demonstrated increased inflammation in fish when fed

irregularly-shaped microplastics (Jiang et al., 2016; Tao et al.,

2016). In contrast, exposure to PVC microplastics in gilthead

seabream (Sparus aurata L.) did not alter humoral or cellular

immunity, but produced cellular and oxidative stress. These

results agree with altered albumin, total proteins and globulin

levels observed in juvenile Clarias gariepinus serum after virgin

microplastic ingestion (Karami et al., 2016).

At the level of the nervous system, exposure of MNPs have

also been to affect fish behavior, including reduced swim speed

and erratic swimming (Barboza et al., 2018); reduced locomotor

activity (Chen et al., 2017); reduced predator avoidance behavior

and dysregulated circadian rhythm locomotion (Sarasamma

et al., 2020); increased shoal formation and feeding time and

less exploration (Mattsson et al., 2017); and reduced predatory

performance (Carlos de Sá et al., 2015; Wen et al., 2018).

Alterations to locomotory behavior (Bergami et al., 2016) and

burrowing kinetics (Silva et al., 2020) have been observed in

brine shrimp larvae and polychaeteas upon exposure

to nanoplastics.

Ingested MNPs at the lower micron range (<5 µm) can cross

the gastrointestinal barrier, reaching the blood and potentially

moving to other body compartments (Roch et al., 2020). Very

small MNPs can also cross other biological barriers, including

the egg chorion (usually particles smaller than a few hundred

nm) and the blood brain barrier (particles smaller than a few

dozen µm) (Guerrera et al., 2021). This potential for

translocation across tissue barriers poses an additional threat

to multicellular organisms, as multiple physiological systems

could potentially be affected by the plastic particles. Early

developmental stages can be particularly susceptible to the

translocation of plastics to different organs, as many of these

biological barriers are not fully developed, thereby facilitating

the distribution of plastic to multiple organs (Pitt et al., 2018a).

Another source of concern, particularly in fish and other

marine organisms, is the transfer of plastics through the food

web and between generations. MNPs can interact with

phytoplankton and zooplankton, which can then be consumed

by small fish and passed up the food chain (Benson et al., 2022).

Dietary exposure of fish to MNPs can reduce growth rate, cause

liver damage, impair swimming performance, and create

behavioral abnormalities (da Costa Araújo et al., 2020; Kim

et al., 2022). Recent research has also revealed that the

translocation of plastics to the gonads of fish can result in the

cross-generational transfer of these particles to the offspring, as

well as developmental and physiological damage (Pitt et al.,

2018b; Zhao et al., 2021). Because most plastic particles are

hydrophobic, oocytes may be important targets for the

bioaccumulation of MNPs due to their larger size and higher

lipid content, suggesting that female fish may be important

vectors for the cross-generational transfer of plastics (Pitt
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et al., 2018b). The interaction of plastic particles with blood

proteins, such as vitelogenin, which has already been found with

polystyrene nanoplastics, can promote the transportation of

plastics to the female gonads and oocytes (Rossi et al., 2014), a

topic that requires further investigation.

It is clear from these studies that plastics induce substantial

effects on the biology and fitness of these keystone species.

Crustacean zooplankton, such as copepods, daphnids, and

brine shrimp, play a key role in community structure and act

as a critical connection in the trophic web between primary

producers and secondary consumers. Bivalves are primary

consumers at the base of the food chain that also offer habitat,

can improve the diversity and complexity of coastal ecosystems,

link the benthic and pelagic systems through their filter-feeding

activity, and are an essential nutrient source for other species.

Fish are an important food source globally, and play a large role

in the ocean food web. Microalgae are vital to the productivity of

aquatic environments and play a crucial role in community

structure. Plastic exposure could alter the health and abundance

of this critically important group of species. While the ecological

repercussions of such changes to coastal ecosystems still need to

be determined, the ubiquity and volume of plastics and their

numerous negative impacts across species call for an urgent need

to better understand these consequences and how to

combat them.
Effects of plastics on humans

While it is evident that humans have regular exposure to

plastics and their byproducts, the impact of these exposures on

human health is not currently well understood. Research to date

suggests that the potential health effects of exposure to plastics

include respiratory irritation, dyspnea, decreased lung capacity,

coughing, obesity, increased phlegm production, cardiovascular

disease, asthma, and cancer (Wright and Kelly, 2017; Karbalaei

et al., 2018; World Health Organization, 2022). It has also been

postulated that MNPs may cause inflammation, immune

dysfunction, neurotoxicity, neoplasia, and changes in

metabolism (Wang et al., 2020; Banerjee and Shelver, 2021;

Coffin et al., 2022; World Health Organization, 2022).

Furthermore, as observed in fish, human ingestion of

microplastics has the potential to impact gut health. Exposure

to microplastics can cause inflammation in the gut and

destruction of the gut epithelium, which can lead to intestinal

leakage and could pose a significant health threat (Huang et al.,

2021). This inflammation is thought to be driven by an increase

in oxidative stress in intestinal epithelial cells. Additionally,

microplastics can reduce the mucus layer in the intestines,

which serves as an important chemical barrier in the gut

(Huang et al. , 2021). Studies have also shown that

microplastics affect the microbiota in the gut, which can
frontiersin.org
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destabilize the intestinal microenvironment (Yong et al., 2020;

Huang et al., 2021).

Much of the research that has explored the health impacts of

plastics and plastic additives in humans has focused on the

effects of BPA and phthalates. BPA and phthalates are known

endocrine disrupting chemicals, and therefore affect

development and reproduction. In men, this can manifest as

declined reproductive capacity or increased risk of testicular and

prostate cancer, whereas in women this can manifest as

increased risk for endometriosis, reproductive related cancers,

and impaired ovarian function and menstrual cycling (Meeker

et al., 2009; Kim and Kim, 2020). Exposure to endocrine

disrupting chemicals in utero may contribute to diseases of the

testis, prostate, kidney, immune system, and cause tumors

(Basak et al., 2020). Additionally, exposure to phthalates is

positively correlated with shorter gestational age at delivery

and worse in vitro fertilization outcomes (Latini et al., 2003;

Machtinger and Orvieto, 2014; Basak et al., 2020). BPA levels in

blood have also been shown to be associated with impaired

thyroid functioning (Kwon et al., 2020).

BPA and phthalates may also have neurological impacts by

inducing changes in the neuroendocrine system and

inflammatory signaling (Solleiro-Villavicencio et al., 2020;

Nadeem et al., 2021). For example, BPA can pass through the

blood-brain barrier, and BPA exposure is linked with

neuropsychological dysfunction, neurobehavioral disorders,

and neurodegenerative disease (Wang H. et al., 2019).

Exposure to BPA and phthalates is also associated with

alterations to the cardiovascular system and metabolism, with

studies showing a positive relationship between BPA and

phthalates and cardiovascular disease, type 2 diabetes, and

increased blood pressure (Lang et al., 2008; Gong et al., 2013;

Haq et al., 2020; Mariana and Cairrao, 2020). BPA has also been

shown to have epigenetic impacts, such as affecting DNA

methylation in first trimester trophoblast cells, sperm cells,

prostate carcinoma cells, and neuroblastoma cells (Manikkam

et al., 2013; Senyildiz et al., 2017; Basak et al., 2018; Fatma

Karaman et al., 2019). It has also been demonstrated that BPA

can cause epigenetic alterations that impact cardiac development

and metabolic dysfunction (Lombó et al., 2015; Junge et al.,

2018). Many of the above studies examined correlations between

BPA and phthalate concentrations in humans and the increased

risk of certain health impacts, which highlights the potential

health effects of exposure to environmentally-relevant doses of

these chemicals.

While the vast majority of research on the health impacts of

plastics has focused on BPA and phthalates, recent studies have

identified more than 10,000 substances related to the

manufacture of plastics, including over 2,400 substances that

are identified as substances of potential concern (Hahladakis

et al., 2018; Groh et al., 2019; Wiesinger et al., 2021). Clearly, the

current research has focused on only a small fraction of the

additives to which we are likely exposed on a regular basis,
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health risks posed by plastics. When these studies expand

beyond just a few chemicals, clear exposures are identified. For

example, a study that tested estrogenic and androgenic activity

in the saliva from children exposed to 18 toys found nine of the

18 toys to have estrogenic effects (Kirchnawy et al., 2020). Of the

nine toys that induced an estrogenic response, seven could not

be explained by analysis for 41 known endocrine disrupting

chemicals, suggesting that other unknown plastic additives

existed in these toys with potential to threaten human health.

Furthermore, the ability for plastic additives to leach out of

plastic remains a matter of continued debate. Several studies

have examined the leachability of certain additives from items

such as plastic water bottles, kitchen utensils, and plastic water

pipes with mixed results. While some studies have found

estrogenic activity in drinking water resulting from plastic

bottles and pipes (Wagner and Oehlmann, 2011; Liu et al.,

2017), others have determined that the levels of leached additives

are below those that would pose a threat to human health

(Corea-Téllez et al., 2008; Aneck-Hahn et al., 2018; Wang C.

et al., 2019). However, these studies fail to consider the

cumulative exposure that an individual may have across

sources and over time. When added together, the total

exposure to these chemicals may very well exceed the

acceptable thresholds; however, current research has yet to

quantify such cumulative exposures . The effect of

simultaneous co-exposures to these chemicals on human

health is also poorly understood, despite the fact that human

exposures to complex mixtures of compounds are well

documented (Meeker et al., 2009). Furthermore, these studies

do not account for the possibility for increased leaching over

time, since factors such as UV exposure, mechanical abrasion,

hydrolysis, and oxidation cause plastics to break down and

release chemicals (Walker et al., 2021). With plastic

production and use steadily on the rise, human exposure to

plastic will continue to increase. Further, efforts towards waste

reduction are driving growth in the reuse of plastic materials,

which may also increase health risks due to potential increased

chemical leaching (Muncke et al., 2020).

There is also evidence that the impacts of plastic on human

health are not readily reversible, given that exposure to plastic

additives may continue even after removal of plastics from one’s

environment. For example, BPA was detected in 23 out of 29

urinary samples from workers in a hazardous waste incinerator,

despite the implementation of BPA regulations after a certain

time (González et al., 2019). Additionally, an intervention study

that removed all sources of plastics from a family’s household

failed to lead to a clear reduction of phthalate metabolites in

urine in all family members even after two months (Hutter et al.,

2016). It has also been shown that in office spaces where

phthalate-containing materials or sources have been removed,

phthalates were still present in dust in non-negligible

concentrations (Hutter et al., 2006). This underscores how
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widespread plastics and plastic additives are in our environment

and how difficult it is to avoid such exposures, even with local

mitigation or rigorous avoidance strategies.

A recent report released by the World Health Organization

highlights the urgent need for improved research on the health

effects of MNPs, as research to date is “incomplete and

insufficient for an assessment of human risk” (World Health

Organization, 2022). While research on the health impacts of

plastic is lagging woefully behind human consumption of plastic

products, it is clear that plastics have the potential to affect

human health in multiple ways. The physical properties of

plastics have the potential to damage organs, such as the

gastrointestinal and respiratory systems, and chemical

exposures from these plastics can have systemic effects,

ranging from cellular effects on oxidative stress and apoptosis,

to impacts on reproduction, development, metabolism, and even

intergenerational effects through epigenetic modifications. As a

result, there is an “overwhelming consensus” that measures

should be taken to mitigate exposure to MNPs (World Health

Organization, 2022).
Disparities exist in causes and
consequences of plastic exposure

As with many societal challenges, the impacts of plastic

pollution are not distributed evenly across populations. Since the

late 1980s, high-income countries have been the primary

exporters of plastic pollution, accounting for 87% of all

exports (Brooks et al., 2018). Six of the top 20 plastic polluters

are high-income countries (United States, Japan, Kuwait, Oman,

Argentina, and Italy) (Law et al., 2020) These exports are

primarily to lower-income countries in Asia and the Pacific

(Brooks et al., 2018). The waste-management infrastructure in

the countries receiving these exports cannot handle the excess

burden of the exports, which contributes to the disproportional

impacts of plastic pollution in these countries (Ncube et al.,

2021). The excess burden of plastic waste in specific

communities is further compounded by housing shortages and

unemployment, both of which can lead to circumstances where

humans are prompted to deliberately stay in these areas to better

adapt to the more urgent challenges of poverty. For example, the

Smokey Mountain in the Philippines, an unregulated dumpsite

no less than 20 meters high, housed 30,000 homeless or

scavenging Filipino families for 40 years before it was closed in

the 1990s (Galarpe, 2015)

Plastic pollution exacerbates the climate-instigated

downturn of agriculture and fishery industries that serve as the

primary economic activities for certain societies. For example,

approximately 10% of the world’s population relies heavily on

marine environments for their diet and livelihood, with the vast

majority (95%) from developing nations (Food and Agriculture

Organization, 2014; Taylor et al., 2019). Low-lying Pacific
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islands with limited arable land bear the brunt of the plastic

crisis. Tuvalu, for instance, clings to “blue economy” policies

contingent on the use of marine resources to keep their economy

and people afloat (International Organization for Migration and

International Labour Organization, 2021). These circumstances

make the island nation among the hardest hit by plastic

accumulation in marine environments and the climate effects

of plastic production and incineration. The disproportionate

impact of plastic waste on specific communities should be

interrogated through a holistic exploration of geo-economic,

environmental, structural, and socio-political underpinnings.
Ecosystem-wide effects of plastic

Ecosystem health, function, and services are critically linked

with human physical health as well as societal, cultural, and

economic well-being (Summers et al., 2012). The various

consequences of plastic across all levels of biological

organization from cells to populations portend a grim future

with respect to the constitution of the natural world, inclusive of

humans, and can be exemplified by sentinel species. Among

these sentinel species, many marine apex predators, such as

marine mammals, have long life spans, amplify trophic

information across multiple spatiotemporal scales, and share

food resources of commercial and subsistence importance to

humans, making them efficacious harbingers of negative impacts

to both individual- and population-level animal and human

well-being (Bossart, 2011; Hazen et al., 2019). Trophic transfer of

microplastic particles to marine mammals from contaminated

prey who have consumed microplastics is thought to be the

primary route of microplastic exposure for both filter and

raptorial predators (Zantis et al., 2022). The direct link

between humans and marine mammals is self-evident: as top

predators with shared resources, exposure to microplastics in

humans via consumption is concerning. However, a larger

question of indirect consequences looms: does plastic pollution

threaten whole ecosystem collapse?

Whether or not plastic threatens the functionality of whole

ecosystems is poorly studied (Bucci et al., 2020); however, the

potential downstream consequences of plastic to marine

mammals and the ecosystems they inhabit are not difficult to

imagine, particularly when contextualized through a framework

of population consequences of disturbance (Ocean Studies

Board et al., 2017; Bucci et al., 2020). Interaction with

macroplastic, such as ingestion or entanglement, can lead to

physiological and behavioral changes that induce acute or lethal

consequences impacting vital rates and subsequently population

dynamics (Ocean Studies Board et al., 2017). Similarly, both

micro and macroplastics may have chronic, sublethal impacts on

individual health, which may also lead to alterations in vital rates

(Ocean Studies Board et al., 2017). As instrumental players in

nutrient cycling (Roman et al., 2016), the reduction of a whale
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population, for example, may result in a catastrophic depletion

of energy at lower trophic levels that rely on whale excrement

and carcasses. This disruption to energy availability at the lower

trophic levels could potentially reverberate up each trophic level,

including those with cultural, subsistence, and commercial

importance to humans, resulting in whole ecosystem

remodeling or collapse. Indeed, marine mammals are of great

cultural and subsistence importance to indigenous communities

(Huntington et al., 2016). For most of the contemporary global

human population, marine mammals serve as clear sentinels for

a variety of environmental and ecological threats (Bossart, 2011;

Hazen et al., 2019). But for some native peoples who consume

them, the meat from contaminated marine mammals may have

direct consequences to users’ health. Ingestion of plastic by

whales, seals, sea lions, and polar bears is well documented

and may either translocate to, or leach toxic substances into,

consumable tissues (Law, 2017; Zantis et al., 2021). Plastic

consumed by marine mammals therefore threatens a critical

life line, and a way of life, for several indigenous communities

world-wide.

Of course, many factors influence the proper functioning of

an ecosystem, and processes like emigration/immigration, prey-

switching, shifts in species assemblages and niche partitioning

among others may all affect the ultimate ecosystem-level

consequence of disturbances resulting from plastic exposure.

In addition, ecosystems contend with many anthropogenic

stressors apart from plastic. Consequently, the interactions

between exposure to plastic and climate change, habitat loss/

degradation, exploitation, etc. need to be explored, and

safeguarding regular and proper functioning of ecosystems

from plastic pollution is critical to optimal human, organism,

and environmental vitality.
Solutions, adaptations, and future
research efforts

As human demand for plastic continues, new solutions will

be needed that span the entirety of societal structure, including

novel technological innovations to degrade or recycle plastic,

campaigns directed at consumer behavior, and implementation

of bold policies at all levels of government. These solutions must

be implemented across the entire lifecycle of plastic, from

reducing the amount of new plastic entering the environment

to removing existing plastic pollution. Technological

innovations that are underway for clean-up and remediation

efforts include a variety of plastic capture approaches. These

tools are summarized in “The Inventory,” a summary of 52

inventions, such as ocean plastic skimmers, beach cleaning

robots, and river and ocean debris filters, that are focused on

preventing plastic leakage or collecting marine plastics

(Schmaltz et al., 2020). Although these technologies are a
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necessary component of our efforts to mitigate plastic

pollution, their scalability and effectiveness to date does not

match the enormity of the plastic pollution problem.

Another novel approach to prevent plastic pollution is the

utilization of plastic-degrading bacteria as a mechanism to create

a “circular economy of plastic”. As plastic has increased in the

environment over the past century, microorganisms have

evolved enzymes to degrade plastic [reviewed in (Sheth et al.,

2019)]. While there may be hundreds of bacterial strains that

have evolved plastic-degrading properties, none have been able

to do so rapidly; however, further refinement of these naturally-

evolved enzymes has led to increasingly-efficient microbially-

mediated plastic bioremediation systems (Tournier et al., 2020;

Lu et al., 2022). In addition to these substantial improvements in

bacterially-mediated degradation of plastic, it will be important

to process plastic waste into forms that are readily and fully

biodegradable, such as through amorphization of micronization.

Concomitant with the development of new technologies,

governments around the world are increasingly using policy,

laws, and ordinances to target the plastic pollution issue. Policies

can target plastic pollution in a variety of ways through the

implementation of regulatory, economic, and educational

instruments. A recent review of plastic policies around the

world found that international policies primarily focus on

plans and future actions, while national and subnational

policies most frequently use plastic bans to achieve a reduction

in plastic pollution (Diana et al., 2022). Despite this increasing

trend, substantial gaps still remain across the policy space,

including the types of plastic targeted by these policies. For

example, within national policies throughout the world,

macroplastics were the most common plastic type targeted,

followed by plastic bags (Diana et al., 2022), while only 3 of

the 147 national policies to date solely target microplastics.

Furthermore, only 5% of national policies have effectiveness

studies in the peer-reviewed literature, highlighting the need for

more evidenced-based policy development in the future (Diana

et al., 2022). Finally, notably lacking from global policy is a

binding global treaty targeting plastic pollution (Karasik et al.,

2020). Despite an increasing trend of policy implementation to

combat plastic waste, progress has been stymied by the COVID-

19 pandemic, which prompted a pause in many policies around

the world due to safety concerns regarding reusable materials

(Karasik et al., 2020). Existing policy limitations, compounded

by COVID-19 impacts, call for improved and coordinated policy

efforts globally.

To help guide global policy efforts, a planetary boundaries

approach has been proposed to first define the limits of waste

production that ensure that Earth remains a “safe operating

space” for humanity (Folke et al., 2021). To date, planetary

boundaries have been defined for climate change, genetic

diversity, land-system change, freshwater use, biochemical

flows (phosphorus and nitrogen), ocean acidification, and the

depletion of stratospheric ozone depletion (Steffen et al., 2015).
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However, experts have not yet defined planetary boundaries for

plastics or other novel entities. Quantifying the planetary

boundary for plastic pollution can help society to understand

whether or not plastic pollution is driving large-scale and

irreversible harm to the planet and identify measures to

prevent exceeding the boundary. By changing ecosystems,

generating greenhouse gasses, and impacting the health of

people and animals, it remains unclear whether plastic

pollution could reach levels that would render the planet

inhospitable. Recent efforts have sought to characterize the

dangerous pathways that plastic could lead to such irreversible

impacts in order to better understand the cumulative and

planetary impacts of plastic pollution (Diana et al., 2022).

These efforts are the first step towards defining a limit for

plastic pollution, which can then facilitate the development of

global policy to keep society within the identified boundary.

Finally, in addition to improved technologies and policies

that target plastic pollution, increased research on the impacts of

plastic are also needed. A recent review of studies examining

impacts of plastic pollution highlighted several important gaps

in research to date (Bucci et al., 2020). Observational or

manipulative field experiments have largely focused on

macroplastics (97%), while manipulative laboratory

experiments have largely focused on microplastics (96%). Of

the experiments that researched microplastics, the majority used

polyethylene and polystyrene, and only a few investigated other

polymer types such as PVC, PET, polypropylene, and others.

Finally, 76% of all studies focused only on the marine

environment, whereas relatively little research has been

conducted on freshwater and terrestrial ecosystems.

Understanding the effects of different plastic types, different

sizes and shapes of plastics, as well as the effects in different

ecosystems is critical to gaining a complete understanding of the

health impacts of plastic pollution globally.
Conclusions

Mounting evidence suggests that plastic can impact multiple

layers of biological organization, from molecular and cellular to

organismal and population levels. These impacts are wide-

ranging, inducing alterations to inflammation and oxidative

stress, metabolic function, neurologic function, behavior,

reproduction and development, and the microbiome. These

effects are mediated both by the physical impacts of ingested

or absorbed plastic particles and by the chemicals and microbes

present in or on the plastics.

Despite the growing body of research on the impacts of

plastics on global human, animal, plant, and overall ecosystem

health, many questions remain. For one, more systematic and

comprehensive studies are needed to account for the widespread
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differences in polymer type, plastic particle size, and additive

mixtures. Additionally, there is a notable lack of research that

integrates cell, organismal, population- and ecosystem-level

impacts of plastic pollution, and little is understood about the

cumulative exposure to plastics and additives over time across

these levels of biology. Furthermore, the pace of global policy

response and the adoption of plastic-reducing technologies is

lagging substantially behind the rate of plastic consumption and

production. A One Health approach can help address these

knowledge gaps by providing a framework in which to integrate

across biological scales, promote transdisciplinary partnerships,

and engage stakeholders from diverse perspectives in an effort to

mitigate and prevent the accelerating global plastic pollution

crisis for the protection of all life on Earth.
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Valero, M. A., and Vázquez-Moreno, F. (2008). Estimated risks of water and
saliva contamination by phthalate diffusion from plasticized polyvinyl chloride.
J. Environ. Health 71, 34–9, 45. Available at: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5633929/

Courtene-Jones, W., Maddalene, T., James, M. K., Smith, N. S., Youngblood, K.,
Jambeck, J. R., et al. (2021). Source, sea and sink–a holistic approach to
understanding plastic pollution in the southern Caribbean. Sci. Total Environ.
797, 149098. doi: 10.1016/j.scitotenv.2021.149098

Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., and Dudas, S.
E. (2020). Correction to human consumption of microplastics. Environ. Sci.
Technol. 54, 10974. doi: 10.1021/acs.est.0c04032
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