
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Yunyan Deng,
Institute of Oceanology, (CAS), China

REVIEWED BY

Jin-Yan Zhang,
Yunnan Agricultural University, China
Shailendra Pratap Singh,
Institute of Science, Banaras Hindu
University, India
Paul M. D’Agostino,
Technical University Dresden,
Germany

*CORRESPONDENCE

Ulf Karsten
ulf.karsten@uni-rostock.de

SPECIALTY SECTION

This article was submitted to
Marine Biology,
a section of the journal
Frontiers in Marine Science

RECEIVED 08 July 2022
ACCEPTED 15 August 2022

PUBLISHED 02 September 2022

CITATION

Borburema HDS, Graiff A, Marinho-
Soriano E and Karsten U (2022)
Photosynthetic performance, growth,
pigment content, and photoprotective
compounds of the mangrove
macroalgae Bostrychia calliptera and
Bostrychia montagnei (Rhodophyta)
under light stress.
Front. Mar. Sci. 9:989454.
doi: 10.3389/fmars.2022.989454

COPYRIGHT

© 2022 Borburema, Graiff, Marinho-
Soriano and Karsten. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 02 September 2022

DOI 10.3389/fmars.2022.989454
Photosynthetic performance,
growth, pigment content, and
photoprotective compounds
of the mangrove macroalgae
Bostrychia calliptera and
Bostrychia montagnei
(Rhodophyta) under light stress

Henrique D. S. Borburema1, Angelika Graiff2,
Eliane Marinho-Soriano1 and Ulf Karsten2*

1Department of Oceanography and Limnology, Biosciences Institute, Federal University of Rio
Grande do Norte, Natal, Brazil, 2Institute of Biological Sciences, Applied Ecology and Phycology,
University of Rostock, Rostock, Germany
Increased solar radiation on the Earth’s surface is expected due to global

change. Mangrove macroalgae can be negatively affected by increased solar

radiation, since some species, such as Bostrychia spp. have been characterized

as typical “shade” plants. Thus, we investigated the effects of increasing photon

flux densities (PFDs: 170, 267, 443, 638, and 1155 µmol photons m–2 s–1) on the

physiological performance of Bostrychia calliptera and Bostrychia montagnei

from a tropical mangrove. Several photosynthesis–related parameters

indicated that both species decreased their photosynthetic performance

under increasing PFDs, with photosynthesis of B. montagnei being more

affected than that of B. calliptera. Bostrychia calliptera exhibited highest

growth under 638 µmol photons m–2 s–1 while at 1155 µmol photons m–2 s–

1 it was inhibited. The highest growth of Bostrychia montagnei was observed

under 267 µmol photons m–2 s–1. Higher PFDs led to growth inhibition. The

phycobiliprotein and chlorophyll a content of B. montagnei was degraded

under increased PFDs. In B. calliptera only chlorophyll a degradation was

observed. The mycosporine-like amino acid contents (photoprotective

metabolites) of both species were degraded under increasing PFDs, which

was more pronounced in B. montagnei. Our results demonstrated that

increased solar radiation on estuarine tropical ecosystems will be detrimental

to the physiological performance of B. calliptera and B. montagnei. Our results

also demonstrated that B. montagnei was more negatively affected by

increased light stress than B. calliptera. This can explain its preferential

occurrence in more shaded microhabitats compared to B. calliptera. Our

data document for the first time light acclimation in the studied macroalgae

and the deleterious effects of increased light stress on the genus Bostrychia.
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Introduction

Global change due to the increasing anthropogenic

emissions of greenhouse gases into the Earth’s atmosphere is

an ecologically serious problem (IPCC, 2019). Fluorinated gases

emitted into the atmosphere, such as chlorofluorocarbons,

hydrofluorocarbons, and perfluorocarbons in addition to being

greenhouse gases lead to stratospheric ozone depletion (IPCC,

2014). The stratospheric ozone forms a filtering layer against

biologically harmful solar radiation on the Earth, mainly

ultraviolet radiation A (320–400 nm) and B (280–320 nm)

(Madronich, 1992; Karsten, 2008). Thus, an increase in

harmful solar radiation on the Earth’s surface is documented

due to the depletion of the stratospheric ozone layer (Thomas

et al., 2012). Enhanced solar radiation on coastal ecosystems can

trigger several detrimental effects on photosynthetic organisms,

for example, DNA alterations, biosynthesis of reactive oxygen

species (ROS), photoinhibition, degradation of photosynthetic

pigments, and changes in the ultrastructure of cells, such as,

increased thickness of cell wall, reduced intracellular spaces, and

destruction of chloroplast internal organization (Van de Poll

et al., 2001; Schmidt et al., 2012; Kaur et al., 2022).

Although light commonly is a primary driver of increases

in macroalgal coverage (Scherrer et al., 2019), excessive

irradiance is an additional stress factor that phototrophic

organisms have to cope with in their respective environments

(Diehl et al., 2019). Macroalgal species that are sensitive to high

irradiance preferentially inhabit shaded habitats, where they

are protected from full sun exposure, and hence are

characterized as typical “shade” plants (Raven et al., 1979;

Coutinho and Yoneshigue, 1988). The red algal genus

Bostrychia Montagne occurs preferentially in tropical and

subtropical mangrove swamps and in temperate salt marshes

(King and Puttock, 1989). In mangrove ecosystems, in the

intertidal zones, Bostrychia species grow as epiphytes on

rhizophores and trunks of Rhizophora L. and Laguncularia

C. F. Gaertn, and on pneumatophores of Avicennia L. (West

et al., 1992; Pedroche et al., 1995). Growing on these biogenic

hard substrates they are protected from full sunlight exposure

by the covering canopy (Karsten et al., 1994a; Karsten et al.,

1996). Bostrychia species grow forming turfs on the mangrove

trees along with other associated red macroalgae, such as

Caloglossa (Harvey) G. Martens and Catenella Greville (King
02
and Puttock, 1989). These macroalgae form an intertidal plant

association termed Bostrychietum (Post, 1936). This algal

association can also be considered an ecological strategy to

decrease the light stress for individual algae, since they grow on

top of each other and accumulate estuarine sediment particles

on the surfaces of the branches. In addition to these ecological

strategies, Bostrychia species synthesize and accumulate

photoprotective secondary metabolites against ultraviolet

radiation (Karsten et al., 1998; Lalegerie et al., 2019;

Orfanoudaki et al., 2019; Karsten et al., 2000; Orfanoudaki

et al., 2020; Gambichler et al., 2021a). These UV–absorbing

compounds form a class of water-soluble metabolites of low

molecular weight chemically assigned as mycosporine-like

amino acids (MAAs) (Karsten, 2008). Bostrychia species can

also occur in intertidal reefs and on rocky shores (King and

Puttock, 1989; Machado et al., 2011), inhabiting crevices,

cavities or other places protected from full solar radiation

(Karsten and Kirst, 1989). Several studies have demonstrated

that Bostrychia species are typical “shade” plants, because of

the low light requirements for photosynthesis (e.g., Karsten

and Kirst, 1989; Karsten et al., 1993; Karsten et al., 1994a;

Karsten et al., 1994b; Sánchez de Pedro et al., 2014). However,

studies reporting the effects of increasing light stress on

Bostrychia species are still lacking in the scientific literature.

Considering future environmental conditions of increased

solar radiation on coastal ecosystems due to global change,

such ecophysiological studies are needed.

In estuarine environments Bostrychia species perform

relevant ecosystem services. Along with microalgae they are

major sources of primary productivity (Karsten et al., 1994a;

Karsten et al., 2000), contributing to the CO2 sequestration in

mangrove swamps (Kieckbusch et al., 2004; Borburema et al.,

2022a). The Bostrychietum is an important microhabitat for

several invertebrates (Garcıá et al., 2016; Vieira et al., 2018;

Borburema et al., 2021), and some Bostrychia species are

recognized as bioindicators of estuarine contamination by

heavy metals (Melville and Pulkownik, 2006; Melville and

Pulkownik, 2007; Rios-Marin et al., 2021). In Brazilian

mangroves, among Bostrychia species, Bostrychia calliptera

(Montagne) Montagne and Bostrychia montagnei Harvey

occur with high predominance (Yokoya et al., 1999; Cunha

and Costa, 2002; Fontes et al., 2007; Machado and Nassar, 2007;

Mendonça and Lana, 2021).
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Currently, in vivo chlorophyll a fluorescence measurements

have been used to estimate the photosynthetic activity of

macroalgae under stress conditions (Figueroa et al., 2014;

Figueroa et al., 2019). Fluorescence measurements are of great

interest for ecological studies, since they are based on a non-

invasive method and suitable to track in vivo stress responses of

macroalgae (Figueroa et al., 2019). Fluorescence techniques have

been extensively used to estimate the photosynthetic

performance of marine phototrophic organisms during the last

20 years (Figueroa et al., 2019). However, the photosynthetic

performance of Bostrychia species was only recently estimated

using fluorescence techniques after species had been subjected to

salt stress (Gambichler et al., 2021b), desiccation stress (Sánchez

de Pedro et al., 2022), ocean acidification (Borburema et al.,

2022a), and to temperature and salinity stress (Borburema et al.,

2022b). Photosynthetic performance of Bostrychia species based

on chlorophyll a fluorescence after specimens have been

subjected to light stress has not yet been explored.

In the present study, we investigated the effects of increasing

photon flux densities on the physiological performance of the

mangrove macroalgae B. calliptera and B. montagnei to address

the following question: How can future environmental

conditions of enhanced solar radiation on coastal ecosystems

due to global change affect these macroalgal species? We

hypothesized that: (i) increase in light will be detrimental to

the physiological performance of the macroalgae, since they are

typical “shade” plants; (ii) B. calliptera will be more tolerant to

increasing light stress than B. montagnei, since B. montagnei

occurs preferentially in more shaded microhabitats compared to

B. calliptera, as documented by Yokoya et al. (1999); and (iii)

both species will increase their MAA contents under increased

light conditions.
Materials and methods

Algal collections and cultures

Thalli of B. calliptera and B. montagnei were collected in the

mangrove swamp of Mamanguape River Estuary Environmental

Protection Area (6°46’15.00”S and 34°56’15.00”W), Paraıb́a

state, Brazil, in September 2021. Both red algae were collected

from rhizophores of Rhizophora mangle L. during low tide. Algal

collection was authorized by ICMBio/Brazil (authorization n°

65168–1), since it was carried out within Brazilian conservation

unit. The algal collection site is located in Northeastern Brazil, a

tropical semi-arid climate region where only two seasons occur,

a dry season from September to February (spring/summer) and

a rainy season from March to August (autumn/winter) (Sassi

et al., 1988). Mean global solar radiation on the algal collection

area over the dry season is higher and varies from 220 to 280 W

m–2, whereas over the rainy season it varies from 140 to 220 W

m–2 (INPE, 2022). The photoperiod is around 12–13 h in both
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seasons and based on historical series (2013–2018), the mean

photosynthetically active radiation (PAR) on the algal collection

area is around 220 W m–2 (INPE, 2022), which corresponds to

about 2935 mmol photons m–2 s–1 (Valiela, 1984). In general, in

Northeastern Brazil, the ultraviolet radiation (UVR) reaches

very high values (Ultraviolet Index from 8 to 10) during most

of the year between 10:30 a.m. and 3:00 p.m. (INPE, 2022).

During the field collection, most of the estuarine sediment

was removed from the thalli with estuary water. Afterward, the

specimens were transported to the laboratory of marine

macroalgae of Federal University of Rio Grande do Norte

(Brazil) in thermally insulated boxes at a temperature of

around 20°C and in darkness. In the laboratory, the remaining

sediment adhered on the thalli was removed by several washing

and spraying with UV–sterilized and filtered seawater. Thalli

parts with filamentous macroalgae were removed by cutting with

scalpels and macrofauna individuals were removed with

tweezers, both under a stereomicroscope. After these

procedures, the macroalgae were transported to the laboratory

of Applied Ecology and Phycology of the University of Rostock

(Germany) in thermally insulated bags at a temperature of

around 20°C and in darkness, for the establishment of unialgal

cultures and light stress experiments, as described below.

The macroalgae (biomass around 5 g L–1) were washed with

deionized water, gently blotted dry with paper towels, and

maintained in continuous immersion in 1 L Erlenmeyer flasks

containing 800 mL of culture medium. The culture medium

consisted of natural seawater (adjusted absolute salinity of 30–32

SA) sterilized by filtering enriched with Provasoli’s solution

(PES/2) (Starr and Zeikus, 1993). The culture medium was

aerated continuously and replaced weekly for nutrient

replenishment. Algae were maintained under a water

temperature of 21–24°C, a photon flux density (PFD) of 160–

190 mmol photons m–2 s–1 provided by cool-white fluorescent

tubes (Osram L36W/840, Lumilux, Germany), and a light: dark

cycle of 16: 8 h (Karsten et al., 1994a). Both red algae remained

in these conditions for a nine–week acclimation period, after

which they were experimentally cultured. Photon flux density

was measured with a quantum photometer (LI–250, LI–COR,

USA) attached to a spherical LI–COR quantum sensor (US–

SQS/L, Walz, Germany).
Experimental design

Vegetative thalli of B. calliptera and B. montagnei were

cultured for 14 days under increasing PFDs of 170, 267, 443,

638, and 1155 μmol photons m–2 s–1. The mean PAR on the algal

collection area is around 2935 mmol photons m–2 s–1, as

described in the previous section. After attenuation by the

covering canopy the mean proportions of incident PAR on the

Bostrychietum of Brazilian mangroves are around 5, 8, and 17%

(Yokoya et al., 1999). These percentages of incident PAR were
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calculated by Yokoya et al. (1999) as the ratio between PAR at

ground level and above the canopy. They varied depending on

the density of the covering canopy. The first three applied PFDs

were established following the PAR proportions revealed by

Yokoya et al. (1999), whereas the last two were established as

increased PFD conditions due to global change. Each PFD was

established in particular chambers of two temperature– and

photoperiod–controlled incubators (one for each species). Each

particular chamber was equipped with LED lights on top, which

were adjusted to produce the target PFDs. For the experiment,

the target PFDs were also measured using the quantum

photometer attached to the spherical LI–COR quantum

sensor. Thalli were cultured in 50 mL transparent culture

flasks (Cellstar®, Greiner Bio–One, Germany) containing 40

mL of culture medium (as described above). The culture

medium was replaced after seven days for nutrient

replenishment. Ten treatments were established (two species ×

five PFDs) and each treatment had four independent replicates

(n = 4). Each replicate consisted of two apical branches (2–3 cm

in primary axis length) with laterals of the macroalgae. The

initial biomass per replicate for B. calliptera and B. montagnei

was of 57 ± 3 mg and 66 ± 5 mg, respectively. The macroalgae

were cultured at a temperature of 25 ± 1 °C (Borburema et al.,

2020) and under a light: dark cycle of 14: 10 h (Borburema et al.,

2022a). The UV radiation of each treatment was measured using

UVA and UVB sensors connected to a data logging radiometer

(PMA2100, Solar light®, USA). The UVA was 0.01 W m–2 in all

treatments and UVB was not detected.
Photosynthetic performance

In vivo chlorophyll a (Chl a) fluorescence measurements were

obtained from one random branch of each replicate (n = 4) using

a Pulse Amplitude Modulated (PAM) fluorometer (PAM–2500,

Walz, Germany) to calculate several photosynthetic parameters of

the macroalgae. Before culturing the red algae under different

PFDs, and every seven days during the experiment, the effective

quantum yield (DF/Fm´) of photosystem II (PSII) was calculated.

The formula DF/Fm´ = (Fm´ - Ft)/Fm´ was used, where Ft is the

current steady–state fluorescence of light–adapted algae and Fm´

is the maximum fluorescence of the algae under actinic light

during a saturating pulse (Schreiber et al., 1995). Ft was measured

under a very low photon fluence rate of red light (0.05 mmol

photons m−2 s−1) and Fm´ during a saturating pulse of 0.5 s.

On the last experimental day, after measuring Ft and Fm´ to

calculate DF/Fm´, the branches were dark–acclimated for 15 min.

Subsequently, light pulses (2, 6, 64, 101, 141, 198, 271, 363, 474,

619, and 785 mmol photons m−2 s−1) were applied in 20 s

intervals to construct relative electron transport rate (rETR)

vs. photon fluence rate (PAR) curves. From the first light pulse

the maximum quantum yield (Fv/Fm) of PSII was calculated

using the formula Fv/Fm = (Fm - Fo)/Fm, where Fm is the
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maximum fluorescence during a saturating pulse on dark–

acclimated algae and Fo is the basal fluorescence (Schreiber

et al., 1995; Suggett et al., 2011). Relative electron transport rates

were calculated by multiplying the DF/Fm´ with the appropriate

PAR values (rETR = DF/Fm´ × PAR) (Schreiber et al., 1995;

Suggett et al., 2011). Relative electron transport rate vs. photon

fluence rate curves were fitted applying the mathematical model

of Walsby (1997), due to the presence of photoinhibition. From

each curve, the maximum relative electron transport rate

(rETRmax), the light utilization coefficient (a) , the

photoinhibition coefficient (b), and the initial saturation

irradiance for photosynthesis (Ik) were calculated.

For each light treatment, complementary energy dissipation

pathways in PSII were investigated. The photochemical pathway

was calculated as Y(II) = (Fm´ - Ft)/Fm´, whereas the non-

regulated non-photochemical quenching of light energy (Y

[NO]) was determined using the formula Y(NO) = Ft/Fm, and

the regulated non-photochemical quenching of light energy (Y

[NPQ]) was calculated using the formula Y(NPQ) = Ft/Fm´ - Y

(NO). The Y(NO) reflects the fraction of energy that is passively

dissipated in form of heat and fluorescence, mainly due to closed

PSII reaction centers, while Y(NPQ) corresponds to the fraction

of energy dissipated in form of heat via the regulated

photoprotective non-photochemical quenching mechanisms

(Scherner et al., 2013). Overall, the total energy is conserved as

Y(II) + Y(NPQ) + Y(NO) = 1.
Relative growth rates

At the end of the experiment, after measuring Chl a

fluorescence, the branches were gently blotted dry with paper

towels to remove excess water and weighed on an analytical

balance to estimate their relative growth rates (RGRs). The RGRs

were calculated using the equation recommended by Yong et al.

(2013): RGR=[(Wt/Wi)
1/t− 1]×100 , whereWi andWt are the initial

and final wet weights, respectively, and t is the culture period.
Biochemical analyses

Algal biomass of each replicate (n = 4) was washed with

deionized water to remove the salt on the branches, gently

blotted dry with paper towels, weighed, and stored in

microtubes for further biochemical analyses. The algal samples

were frozen in liquid nitrogen and kept at -20°C and protected

from light for further analyses of pigment contents and

mycosporine–like amino acids, as described below.

Pigment content
For each replicate (n = 4), a biomass of 55 mg ± 1 of wet

weight (WW) was powdered in liquid nitrogen using mortar and

pestle. Phycobiliproteins – phycoerythrin (PE), phycocyanin
frontiersin.org

https://doi.org/10.3389/fmars.2022.989454
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Borburema et al. 10.3389/fmars.2022.989454
(PC), and allophycocyanin (APC) – were extracted in 1 mL of 50

mM sodium phosphate (Na2HPO4) buffer (pH 5.5) overnight at

4°C and protected from light (Souza and Yokoya, 2016).

Afterward, the samples were centrifuged (Centrifuge 1–14K,

Sigma, Germany) at 12,000×g for 20 min at 4°C. Absorbances

in the supernatants were measured by spectrophotometry

(Spectrophotometer UV–2401 PC, Shimadzu, l = 498.5, 614,

and 651 nm), and the phycobiliprotein concentrations in the

alga (mg g−1 of WW) were determined using the equations

proposed by Kursar et al. (1983):

PE = (155:8 �  A498:5) − (40 �  A614) − (10:5 �  A651)½ � �WW– 1

PC = (151:1 �  A614) − (99:1 �  A651)½ � �WW– 1

APC = (181:3 �  A651) − (22:3 �  A614)½ � �WW– 1

Pellets were resuspended in 1 mL of 90% acetone to extract

Chl a for 1 h at 4 °C and protected from light (Borburema et al.,

2022b). Afterward, the samples were centrifuged at 12,000×g for

15 min at 4 °C. Absorbances in the supernatants were measured

by spectrophotometry (l = 630, 647, and 664 nm), and the

quantification of Chl a in the alga (mg g−1 of WW) was carried

out following the equation below given by Jeffrey and Humphrey

(1975). In addition, the absorbance spectrum of Chl extracts was

measured by spectrophotometry (l = 400–800 nm).

Chl a = (11:85 �  A664) − (1:54 �  A647) − (0:08 �  A630)½ � �WW– 1

Mycosporine-like amino acid content
Algal biomass of each replicate (n = 4) was used for

mycosporine–like amino acid analyses by High Performance

Liquid Chromatography (HPLC) (Karsten et al., 2000).

Macroalgae were lyophilized in a freeze–drier (CDplus,

Christ, Germany) and posteriorly powdered using mortar

and pestle. Mycosporine–like amino acids (MAAs) were

extracted from the powdered algal samples (10 mg of dry

weight – DW) in 1 mL of aqueous 25% methanol (v/v, HPLC

grade) in a water bath (45°C) for 4 hours. During the extraction

time in the water bath, the samples were vortexed regularly

(Vortex–Genie 2, Scientific Industries, USA) to optimize

extraction. Afterward, the samples were centrifuged at

13,000×g for 15 min (Biofuge pico, Heraeus, Germany) and

the methanolic supernatants were transferred to new

microtubes, followed by evaporation to dryness in a Speed

Vacuum Concentrator (RVC 2–25 CDplus, Christ, Germany).

Afterward, the dried pellets were re-dissolved in 1 mL of HPLC

water. Aqueous homogenates were vortexed for 30 s and then

centrifuged at 13,000×g for 15 min. Finally, the aqueous

supernatants were transferred to HPLC vials after passing

through a 0.45 μm filter (WhatmanTM, Germany) prior

injection onto the HPLC column.
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Mycosporine–like amino acids in the samples were analyzed

qualitatively and quantitatively using a 1220 Infinity II HPLC

system (Agilent Technologies, Germany) with a diode array

detector (DAD: 330 nm, range: 240–400 nm). A Phenomenex

Synergie 4m fusion RP column (C18, 4 mm, 250 × 3mm,

Phenomenex, Germany) protected by a guard cartridge (RP-18

4 × 3 mm I.D., Phenomenex) was used to identify MAAs. During

measurements the mobile phase (eluent) was 2.5% methanol (v/

v) plus 0.1% acetic acid (v/v) with a flow rate of 0.5 mL min−1,

150 bar pressure, column temperature at 30 °C, and 10 mL as the

injection volume. The sample chromatograms (Figure S1) were

compared with those from the biological standards of palythine,

asterina–330, shinorine, and porphyra–334 to identify MAAs by

retention time and absorbance spectrum. The area under the

integrated peaks of the samples and reference concentrations of

MAAs in their biological standards were used to quantify MAAs

in the macroalgae (mg g–1 DW). Two unknown mycosporine–

like amino acids were measured, one in B. calliptera and another

in B. montagnei. The unknown MAA measured in B. calliptera

exhibited maximum absorbance spectrum (lmax) at 321 nm and

retention time around 3.7 min, and the unknown MAA

measured in B. montagnei exhibited lmax at 330 nm and

retention time around 3.9 min. These MAAs were designated

as MAA 321 and MAA 330, respectively, and were quantified by

applying the reference concentrations of palythine and asterina–

330, respectively, based on the principle of molar extinction

coefficients, palythine: e320 = 36200 (Takano et al., 1978) and

asterina–330: e330 = 43500 (Gleason, 1993). Additionally, in

both species one unknown mycosporine–like amino acid

(designated as MAA 356) was measured by retention time

(around 11.45 min) and maximum absorbance spectrum (356

nm), but could not be quantified.
Statistical analyses

The physiological responses (RGR, Fv/Fm, a, b, rETRmax, Y

[II], Y[NPQ], Y[NO], pigment and MAA contents) were

compared among PFD treatments for B. calliptera and B.

montagnei by one–way analysis of variance (ANOVA) or

Kruskal–Wallis’ test when residuals did not show normality by

the Shapiro–Wilk’s test and homogeneity of variance by the

Levene’s test (Table S1). When significant differences were found

by one–way ANOVA or Kruskal–Wallis’ test (p< 0.05), Tukey’s

and Dunn’s post hoc tests were applied, respectively. Statistical

comparisons between B. calliptera and B. montagnei were made

applying Student’s t tests or Wilcoxon–Mann–Whitney’s tests,

when residuals did not show normality and homogeneity of

variance. The effective quantum yield (DF/Fm´) of both species

was compared among PFD treatments, time, and species by

three-way repeated measures ANOVA (Table S2).
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Results
Effective quantum yield over time

In both species, effective quantum yield (DF/Fm´) under

increase in PFDs was reduced over time (Figure 1 and Table S2).

The negative effect of increased PFDs was more pronounced on

the DF/Fm´ of B. montagnei than on the DF/Fm´ of B. calliptera
Frontiers in Marine Science 06
(Figure 1 and Table S2). Both species exhibited a similar DF/Fm´
under the lowest PFD of 170 μmol photons m–2 s–1 over

time (Figure 1).
Growth

Bostrychia calliptera increased its mean growth from 170 to

638 μmol photons m–2 s–1 (Figure 2A). Its optimum growth was
B

A

FIGURE 1

Effective quantum yield (DF/Fm´) in photosystem II of Bostrychia calliptera (A) and B. montagnei (B) cultured under different photon flux densities
(PFDs: 170, 267, 443, 638, and 1155 µmol photons m–2 s–1) for 14 days. The effective quantum yield was measured at the beginning of experiment
(time = 0) and every seven days. Symbols are means with standard deviations (bars) based on four replicates (n = 4). Different non-bold and bold
letters indicate statistical differences (p< 0.05) among PFD treatments over time for B. calliptera and B. montagnei, respectively, by three–way
repeated measures ANOVA (Table S2) and pairwise comparisons.
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observed under 638 μmol photons m–2 s–1 (Figure 2A). Under

1155 μmol photons m–2 s–1 its growth was inhibited (Figure 2A).

Bostrychia montagnei showed an optimum growth under 267

μmol photons m–2 s–1 (Figure 2B). Under PFDs from 443 to

1155 μmol photons m–2 s–1 its growth was inhibited (Figure 2B).

Thus, the growth of B. montagnei was more negatively affected

by increasing PFDs than the growth of B. calliptera, differing

between the species (Student’s t test, t = 3.05, df = 37.92, p

= 0.004).
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Maximum quantum yield, rETR vs. PAR
curves and photosynthetic parameters

In both species a linear decrease in maximum quantum

yield (Fv/Fm) was observed under increasing PFDs (Table 1).

Fv/Fm did not differ between B. calliptera and B. montagnei

(Wilcoxon–Mann–Whitney’s test, W = 213.5, p = 0.72). Based

on the relative electron transport rate (rETR) vs. photon

fluence rate (PAR) curves (Figure 3), a clear pattern of
B

A

FIGURE 2

Relative growth rate (RGR, % day–1) of Bostrychia calliptera (A) and B. montagnei (B) cultured under different photon flux densities (PFDs) for 14
days. Columns are means and bars are standard deviations based on four replicates (n = 4). Different non-bold and bold letters above bars indicate
statistical differences (p< 0.05) among PFD treatments for B. calliptera and B. montagnei, respectively, by one–way ANOVA or Kruskal–Wallis’s test
(Table S1) followed by associated post hoc tests.
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decrease in rETRs of the macroalgae under light stress was only

observed in B. montagnei (Figure 3B). This species had

decreased rETRs when cultured from 170 to 1155 μmol

photons m–2 s–1 (Figure 3B), pointing to photoinhibition,

while B. calliptera only had strongly decreased rETRs when

cultured at 1155 μmol photons m–2 s–1 (Figure 3A).

In relation to the photosynthetic parameters calculated from

the rETR vs. PAR curves (Table 1), B. calliptera showed a lower

light utilization coefficient (a) under PFDs of 267, 443, and 638

μmol photons m–2 s–1, while B. montagnei exhibited a lower a
only under 638 and 1155 μmol photons m–2 s–1 (Table 1).

Overall, B. montagnei revealed a higher a than B. calliptera

(0.170 ± 0.06 e photons–1 for B. montagnei and 0.111 ± 0.08 e

photons–1 for B. calliptera), differing between species

(Wilcoxon–Mann–Whitney’s test, W = 75, p< 0.001).

Regarding the photoinhibition coefficient (b), B. calliptera

increased b only under 638 μmol photons m–2 s–1, whereas B.

montagnei increased b under PFD > 170 μmol photons m–2 s–1

(Table 1). Overall, B. montagnei showed a higher b than B.

calliptera (-0.102 ± 0.004 e photons–1 for B. montagnei and

-0.003 ± 0.002 e photons–1 for B. calliptera), differing between

species (Student’s t test, t = 6.16, df = 34.01, p< 0.001). A clear

negative effect of increased PFDs on the maximum relative

electron transport rates (rETRmax) of the macroalgae was only

observed in B. montagnei, which decreased its rETRmax under

638 and 1155 μmol photons m–2 s–1 (Table 1). Bostrychia

montagnei had a lower saturation irradiance for photosynthesis

(Ik) under 443, 638, and 1155 μmol photons m–2 s–1, while the Ik
of B. calliptera was not negatively affected by increased PFDs

(Table 1). Between species, the rETRmax and Ik did not differ

significantly (rETRmax: Wilcoxon–Mann–Whitney’s test, W =

171, p = 0.44; Ik: Student’s t test, t = -0.81, df = 36.53, p = 0.41).
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Complementary energy
dissipation pathways

The use of light energy in the photochemical pathway (Y[II])

of both species decreased under increasing PFDs (Figure 4 and

Table S1). The regulated non-photochemical quenching of light

energy (Y[NPQ]) in both species also decreased under

increasing PFDs (Figure 4 and Table S1). On the other hand,

the non-regulated non-photochemical quenching of light energy

(Y[NO]) increased in both species under increasing PFDs

(Figure 4 and Table S1). The complementary energy

dissipation pathways between B. calliptera and B. montagnei

did not differ significantly (Wilcoxon–Mann–Whitney’s test, Y

(II):W = 211, p = 0.77; Y(NPQ):W = 143, p = 0.12; Y(NO):W =

192.5, p = 0.84).
Pigment content

The pigments phycoerythrin (PE) and allophycocyanin

(APC) in B. calliptera did not vary significantly among PFD

treatments (Figure 5A and Table S1), whereas the phycocyanin

(PC) increased under 443 μmol photons m–2 s–1 in relation to

170 μmol photons m–2 s–1 (Figure 5A). Increased PFD resulted

in a decrease of chlorophyll a (Chl a) in B. calliptera (Figure 5A

and Table S1). In B. montagnei, the PE, PC, APC, and Chl a

contents decreased under increased PFD (Figure 5B and Table

S1). Among species, B. calliptera showed a higher Chl a content

than B. montagnei (302.4 ± 183.4 μg g–1 WW in B. calliptera and

184.4 ± 134.7 μg g–1 WW in B. montagnei) differing statistically

(Wilcoxon–Mann–Whitney’s test, W = 289, p = 0.01). The PE,

PC, and APC contents did not differ between species
TABLE 1 Maximum quantum yield (Fv/Fm) and photosynthetic parameters of the relative electron transport rate vs. photon fluence rate curves of
Bostrychia calliptera and B. montagnei cultured under different photon flux densities (PFDs in µmol photons m–2 s–1) for 14 days.

Species PFD Fv/Fm a (e photons–1) b (e photons–1) rETRmax (µmol e m–2 s–1) Ik (µmol photons m–2 s–1)

B. calliptera 170 0.581 ± 0.033a 0.244 ± 0.093a -0.0021 ± 0.001a 9.78 ± 0.31a 46.17 ± 24.01a

267 0.429 ± 0.029b 0.105 ± 0.000b -0.0024 ± 0.001a 6.26 ± 1.51b 59.39 ± 14.31a

443 0.321 ± 0.047c 0.105 ± 0.000b -0.0023 ± 0.001a 10.95 ± 3.00a 103.81 ± 28.49b

638 0.203 ± 0.023d 0.103 ± 0.007b -0.0083 ± 0.000b 6.92 ± 1.80b 67.57 ± 21.61ab

1155 0.095 ± 0.040e * * * *

B. montagnei 170 0.603 ± 0.045A 0.220 ± 0.031A -0.0050 ± 0.01A 22.20 ± 2.45A 103.17 ± 27.14A

267 0.314 ± 0.017B 0.205 ± 0.100A -0.0114 ± 0.01B 14.13 ± 7.81A 80.37 ± 45.85AB

443 0.271 ± 0.015BC 0.207 ± 0.000A -0.0119 ± 0.00B 6.91 ± 0.89AB 33.28 ± 4.32B

638 0.220 ± 0.034C 0.107 ± 0.000B -0.0124 ± 0.00B 5.43 ± 0.12B 50.38 ± 1.12B

1155 0.134 ± 0.024D 0.107 ± 0.000B -0.0103 ± 0.00B 5.82 ± 0.00B 54.00 ± 0.00B
The light utilization and photoinhibition coefficients are a and b, respectively. The maximum relative electron transport rate and the saturation irradiance for photosynthesis are rETRmax

and Ik, respectively. Values are means with standard deviations based on four replicates (n = 4). Asterisk (*) indicates a PFD treatment for B. calliptera where was not possible to apply the
mathematical model of Walsby (1997) due to the various zeros because of photoinhibition. Different lowercase and uppercase superscript letters indicate statistical differences (p< 0.05)
among PFD treatments for B. calliptera and B. montagnei, respectively, by one–way ANOVA or Kruskal–Wallis’ test (Table S1) followed by associated post hoc test.
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(Wilcoxon–Mann–Whitney’s test, PE:W = 170, p = 0.42; PC:W

= 259, p = 0.11; APC: W = 221, p = 0.58). Only two maximum

peaks of Chl absorbance were observed in the studied

macroalgae, one at 664 nm and another at 410 nm, both from

Chl a (Figures S2-3).
Mycosporine–like amino acid content

In B. calliptera, three mycosporine–like amino acids (MAAs)

were identified and quantified: palythine, asterina–330, and

porphyra–334 (Table 2). In B. montagnei, four MAAs were
Frontiers in Marine Science 09
identified and quantified: palythine, asterina–330, porphyra–334,

and shinorine (Table 2). In each species one unknown MAA could

only be quantified, the MAA 321 in B. calliptera and the MAA 330

in B. montagnei. The main MAA in B. calliptera was the MAA 321,

whereas in B. montagnei was asterina–330 (Table 2). In both species

the MAA content decreased under increased PFD (Table 2). The

negative effect of increased PFDs on the MAA content in B.

montagnei was stronger than on the MAA content in B. calliptera,

since palythine and porphyra–334 were not detected in B. montagnei

under 443, 638, and 1155 μmol photonsm–2 s–1 (Table 2). TheMAA

330 was only quantified in B. montagnei under the lowest PFD (i.e.,

170 μmol photons m–2 s–1) (Table 2). As palythine, asterina–330,
B

A

FIGURE 3

Relative electron transport rate (rETR) vs. photon fluence rate (PAR) curves of Bostrychia calliptera (A) and B. montagnei (B) cultured under
different photon flux densities (PFDs: 170, 267, 443, 638, and 1155 µmol photons m–2 s–1) for 14 days. Symbols are means with standard
deviations (bars) based on four replicates (n = 4). Lines are rETR vs. PAR curves fitted by applying the mathematical model of Walsby (1997).
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and porphyra–334 occurred simultaneously in both species, their

contents were compared between B. calliptera and B. montagnei.

Higher palythine and porphyra–334 contents were registered in B.

calliptera (Table 2), differing from their contents observed in B.
Frontiers in Marine Science 10
montagnei (Wilcoxon–Mann–Whitney’s test, palythine: W = 294,

p = 0.008; porphyra–334: W = 332, p< 0.001). The asterina–330

content did not differ between species (Wilcoxon–Mann–Whitney’s

test, W = 252, p = 0.16).
B

A

FIGURE 4

Complementary energy dissipation pathways in photosystem II of Bostrychia calliptera (A) and B. montagnei (B) cultured under different photon flux
densities (PFDs) for 14 days. Columns are mean proportions of energy dissipation based on four replicates (n = 4). Y(II) is the photochemical
pathway, Y(NPQ) is the regulated non-photochemical quenching of light energy, and Y(NO) is the non-regulated non-photochemical quenching of
light energy. Bostrychia calliptera (A): different regular, italic, and bold lowercase letters indicate statistical differences (p< 0.05) for Y(II), Y(NPQ), and
Y(NO), respectively, among PFD treatments. Bostrychia montagnei (B): different regular, italic, and bold uppercase letters indicate statistical
differences for Y(II), Y(NPQ), and Y(NO), respectively, among PFD treatments. Statistical differences were found applying one–way ANOVA or
Kruskal–Wallis’ test (Table S1) followed by associated post hoc tests.
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Discussion

Increased light conditions on estuarine ecosystems as

described in the introduction will be detrimental to the

physiological performance of the mangrove macroalgae B.

calliptera and B. montagnei. The decline in effective and

maximum quantum yield of both species under increasing

PFDs (Figure 1 and Table 1) demonstrated that both

macroalgae decreased the efficiency with which their PSII

reaction centers captured and utilized excitation energy for
Frontiers in Marine Science 11
photochemistry (Genty et al., 1989). This probably is related to

the closed reaction centers due to high photon availability for the

algal photosynthetic apparatus under increasing PFDs.

Furthermore, the chlorophyll a content of both species was

degraded under increasing light conditions (Figure 5). PSII

quantum yield data are derived from chlorophyll a

fluorescence measurements, as described in the methods

section. Thus, the observed decrease in quantum yield under

increasing PFD can also be explained by the reduction of

chlorophyll a in both species. Flameling and Kromkamp
B

A

FIGURE 5

Pigment content in Bostrychia calliptera (A) and B. montagnei (B) cultured under different photon flux densities (PFDs) for 14 days. Columns are
means and bars are standard deviations based on four replicates (n = 4). PE: Phycoerythrin, PC: phycocyanin, APC: allophycocyanin, Chl a:
chlorophyll a. Bostrychia calliptera (A): different regular, italic, bold, and underlined lowercase letters indicate statistical difference (p< 0.05) for
PE, PC, APC, and Chl a, respectively, among PFD treatments. Bostrychia montagnei (B): different regular, italic, bold and underlined uppercase
letters indicate statistical difference for PE, PC, APC, and Chl a, respectively, among PFD treatments. Statistical differences were found applying
one–way ANOVA or Kruskal–Wallis’ test (Table S1) followed by associated post hoc tests.
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(1998) also reported a decrease in quantum yield of marine algae

under increasing irradiances over time. The negative effect of

increased PFDs on the quantum yield of B. montagnei was more

pronounced than on the quantum yield of B. calliptera

(Figure 1). These results are consistent with findings reported

by Yokoya et al. (1999) who observed a preferential occurrence

of B. montagnei in more shaded microhabitats in Brazilian

mangroves. Our results are also consistent with Cunha and

Duarte (2002) who registered a lower photosynthetic activity of

B. montagnei (measured as photosynthetic oxygen evolution)

under increasing irradiances compared to B. calliptera. In our

study, the quantum yield of the macroalgae cultured under the

lowest light stress condition (i.e., 170 μmol photons m–2 s–1) was

similar to the quantum yield of B. scorpioides (Hudson)

Montagne subjected to lowest desiccation stress (Sánchez de

Pedro et al., 2022). Thereby, quantum yield is a reliable

physiological parameter to access photosynthetic performance

in Bostrychia species. Our growth results (Figure 2) confirm the

higher tolerance of B. calliptera to the rising light stress. This

species increased its growth from 170 to 638 μmol photons m–2

s–1, whereas B. montagnei reached its highest growth under 267

μmol photons m–2 s–1. Under PFDs from 443 to 1155 μmol

photons m–2 s–1 the growth of B. montagnei was inhibited. Light

conditions affect algal growth mainly through its impact on

photosynthesis. The algal growth rate is maximal at saturating

irradiances for photosynthesis and decreases with both rising

and declining PFDs (Kaur et al., 2022).

Based on rETR vs. PAR curves (Figure 3), a clear pattern of

decline in photosynthetic performance under increasing light

stress was evident for B. montagnei. In this species an increase in

light stress was accompanied by a decrease in rETRs, whereas in

B. calliptera the lowest rETR values were only observed under

1155 μmol photons m–2 s–1 (Figure 3). Both species exhibited a

reduction in the use of light energy (a and rETRmax as proxies)
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in photosynthesis and higher photoinhibition (b as a proxy)

under increased light stress. Our results of saturation irradiance

(Ik) for photosynthesis (Table 1) confirmed that both species are

typical “shade” plants, because of the low light requirements for

photosynthesis. Bostrychia calliptera exhibited saturation of

photosynthesis under PAR values from 46.2 to 103.8 μmol

photons m–2 s–1 and B. montagnei under PAR values from

33.3 to 103.2 μmol photons m–2 s–1. These data are congruent

with other studies performed on numerous Bostrychia species in

which they were always characterized as typical “shade” plants

(e.g., Karsten and Kirst, 1989; Karsten et al., 1993; Karsten et al.,

1994a; Karsten et al., 1994b; Sánchez de Pedro et al., 2014). Our

results on photosynthetic performance after culturing the

macroalgae under rising light stress are consistent with

findings reported by Sánchez de Pedro et al. (2014) who

evaluated the photosynthetic performance of Bostrychia

scorpioides under increasing irradiances. In their study, B.

scorpioides also showed a decreased photosynthetic

performance (measured as photosynthetic oxygen evolution)

and a lower use of light energy (a as a proxy) under increased

irradiance. Significant decrease in rETRmax of B. calliptera under

267 μmol photons m–2 s–1 and significant increase in Ik under

443 μmol photons m–2 s–1 (Table 1) may be explained as random

variation, since they did not differ from the values observed at

638 μmol photons m–2 s–1. In our study, although B. calliptera

was more tolerant to the increase in PFDs than B. montagnei, in

general, higher rETRs and a were recorded in the latter species.

Increased algal photosynthetic rates may be a consequence of the

energy expenditures related to biochemical defenses under stress

conditions (McCoy et al., 2019). Macroalgae subjected to light

stress produce intracellular reactive oxygen species (ROS)

(Karsten, 2008). Reactive oxygen species induce damage to

macromolecular structures of the cell, including DNA,

proteins, and phospholipids, which can lead to cell apoptosis
TABLE 2 Mycosporine–like amino acid (MAA) concentrations (mg g–1 DW) in Bostrychia calliptera and B. montagnei cultured under different
photon flux densities (PFDs in µmol photons m–2 s–1) for 14 days.

Species PFD Palythine Asterina–330 MAA 321 Porphyra–334 MAA 330 Shinorine

B. calliptera 170 0.37 ± 0.04a 0.50 ± 0.08a 9.16 ± 0.44a 0.47 ± 010a – –

267 0.29 ± 0.06a 0.38 ± 0.09ab 6.10 ± 1.32b 0.44 ± 0.12a – –

443 0.19 ± 0.04b 0.31 ± 0.08b 4.23 ± 0.76c 0.36 ± 0.05a – –

638 0.05 ± 0.03c 0.08 ± 0.05c 0.83 ± 0.90d 0.11 ± 0.08b – –

1155 – 0.04 ± 0.02c 0.05 ± 0.03d 0.03 ± 0.01b – –

B. montagnei 170 0.35 ± 0.11A* 2.62 ± 0.91A – 0.66 ± 0.12A* 0.09 ± 0.03 0.47 ± 0.09A

267 0.01 ± 0.01B* 0.11 ± 0.07B – 0.01 ± 0.00B* – 0.03 ± 0.02B

443 – 0.11 ± 0.07B – – – 0.05 ± 0.02B

638 – 0.09 ± 0.06B – – – 0.04 ± 0.01B

1155 – 0.01 ± 0.00B – – – –
fro
Values are means with standard deviations based on four replicates (n = 4). Dashes (–) represent PFD treatments where the MAA was not detected. Different lowercase and uppercase
superscript letters indicate statistical differences (p< 0.05) among PFD treatments for B. calliptera and B. montagnei, respectively, by one–way ANOVA or Kruskal–Wallis’ test (Table S1)
followed by associated post hoc tests. Asterisks (*) indicate treatments where the statistical comparison was performed applying the Wilcoxon–Mann–Whitney test.
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(Lesser, 2006). As a response to oxidative stress macroalgae

produce several antioxidant compounds (Araújo et al., 2020;

Borburema et al., 2022b). Thus, the higher photosynthetic

activity recorded in B. montagnei (rETR and a as proxies)

may be related to the energy expenditure for the biosynthesis

of antioxidant defensive compounds.

Complementary energy dissipation pathway results

(Figure 4) confirm the negative effect of rising light stress on

both macroalgal species. The use of light energy by the

photochemical pathway (Y[II]) and the regulated non–

photochemical quenching of light energy (Y[NPQ])

decreased under rising PFDs, whereas the non–regulated

non–photochemical quenching of light energy (Y[NO])

increased. The rise in Y(NO) at the expense of Y(II) and Y

(NPQ) indicates photoinhibition or permanent damage of the

photosynthetic apparatus (Klughammer and Schreiber, 2008;

Graiff et al., 2021). In fact, our pigment content results

(Figure 5) demonstrated that increased light conditions

caused damage of the photosynthetic apparatus of B.

montagnei and B. calliptera. Phycobiliprotein and chlorophyll

a degradation was observed in B. montagnei under increasing

light conditions, as well as chlorophyll a degradation was also

recorded in B. calliptera. Sánchez de Pedro et al. (2014) also

registered a decline in chlorophyll a content of B. scorpioides

under increased irradiance. Pigment downregulation is a

common process reported for many macroalgae under high

PFDs (e.g., Figueroa et al., 1997; Celis-Plá et al., 2015), as less

pigments are needed to catch enough photons to drive

photosynthes i s (Beer e t a l . , 2014) . Never the le s s ,

phycobiliproteins of B. calliptera were not degraded under

increasing PFDs (Figure 5A). These results also support the

higher tolerance observed in B. calliptera to increasing light

stress. Chlorophyll d was not detected in the studied

macroalgae (Figures S2-3). This could be explained as

chlorophyll d in red algae is most likely due to a

contamination of samples with cyanobacteria living in close

association (Murakami et al., 2004; Hurd et al., 2014).

The MAA contents of both species decreased under rising

light intensity (Table 2). This negative effect was more

pronounced for B. montagnei, since at PFDs > 267 μmol

photons m–2 s–1 the MAAs palythine and porphyra–334 could

not be detected anymore and the MAA 330 was only measured

at 170 μmol photons m–2 s–1 (Table 2). The assumed

photodamage of the MAA contents in both Bostrychia species

was accompanied by macroalgal bleaching (Figure S4).

Nevertheless, we expected to register an increase of MAA

content in both species under increasing light stress, since

MAAs are photoprotective UV-sunscreen compounds

(Karsten, 2008). Our results demonstrated that high PFDs

have deleterious effects on the MAA concentrations of the

studied macroalgae. Under low PFDs, a rise from 20 to 40

μmol photons m–2 s–1 induced Bostrychia radicans (Montagne)

Montagne to increase its palythinol content and to synthesize
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other MAAs, such as myscoporine–glycine, shinorine,

porphyra–334, and asterina–330 (Karsten et al., 2000). Maybe

MAA biosynthesis was downregulated in macroalgae under

higher PFDs to save energy for growth (Figure 2), as UVR

levels did not increase with rising light intensity. Our results are

consistent with Karsten et al. (1998, 2000) who also reported

porphyra–334, palythine, and asterina–330 in field samples of B.

calliptera, as well as measured these MAAs and shinorine in field

samples of B. montagnei. In those studies, the dominant MAA in

B. calliptera was palythine, whereas in our study was the

unknown MAA designated as MAA 321 (lmax at 321 nm and

retention time around 3.7 min). In Karsten et al. (2000) one

unknown MAA designated by those authors as MAA–1 (lmax at

334 nm and retention time at 2.5 min) was dominant in B.

calliptera as well. In our study, the dominant MAA in B.

montagnei was asterina–330, whereas in those studies

was palythinol.

In conclusion, our first hypothesis was confirmed, since

increasing PFDs negatively affected the photosynthetic

performance and the pigment and MAA contents of both

species. Our second hypothesis was also confirmed, given that

B. calliptera was more tolerant to the increasing light stress

than B. montagnei. However, our third hypothesis had to be

rejected, since the macroalgal MAA contents did not increase

with rising light stress. The high PFDs established in our

experiments decreased and eventually even degraded these

UV-absorbing compounds. Overall, our results demonstrated

that increased solar radiation on mangrove swamps will be

harmful to the typical “shade” macroalgae B. calliptera and B.

montagnei. The lower tolerance of B. montagnei to the

increasing light stress well explains its preferential

occurrence in more shaded microhabitats, as documented

by Yokoya et al. (1999). Our data support that future

environmental changes of increased solar radiation on

coastal ecosystems wil l have deleterious effects on

Bostrychia species, negatively compromising their relevant

ecosystem services performed in estuarine environments.
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Celis-Plá, P. S. M., Hall-Spencer, J. M., Horta, P. A., Milazzo, M., Korbee, N.,
Cornwall, C. E., et al. (2015). Macroalgal responses to ocean acidification depend
on nutrient and light levels. Front. Mar. Sci. 2. doi: 10.3389/fmars.2015.00026

Coutinho, R., and Yoneshigue, Y. (1988). Diurnal variation in photosynthesis vs.
irradiance curves from “sun” and “shade” plants of Pterocladia capillacea (Gmelin)
bornet et thuret (Gelidiaceae: Rhodophyta) from cabo frio, Rio de Janeiro, Brazil. J.
Exp. Mar. Bio. Ecol. 118, 217–228. doi: 10.1016/0022-0981(88)90074-3

Cunha, S. R., and Costa, C. S. (2002). Gradientes de salinidade e freqüência de
alagamento como determinantes da distribuição e biomassa de macroalgas
associadas a troncos de manguezais Na baıá de babitonga, SC. Notas Técnicas
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