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Using a three-dimensional (3D) hydrodynamic model, this study explored the

seasonal hydrodynamic transport structure in the Pearl River Estuary and illustrated

the intrinsic connectivity under multiscale motions from a Lagrangian perspective.

Generally, the surface Lagrangian residual current (UL) is uniformly southwestward/

southeastward in summer/winter, with a stronger intensity in the lower estuary.

The bottom UL features in the southeastward direction in the upper estuary and

northwest direction in the lower estuary. The fluvial–tide interaction line advances

southeastward and northwestward in summer and winter, respectively. The UL

captured the major transport processes and was in good agreement with the

mean surface sediment transport patterns. In the transition region between Lantau

Island andNeilingding Island, where it is largely affected by the interaction between

the periodic tidal current and river discharge, the spatially averaged UL showed

intensified intratidal variations and had a larger difference with the locally

temporally averaged Eulerian residual current. The remarkable Lagrangian

coherent structures that illustrated the transport paths and transport

convergence regions were identified, which are generally consistent with the

bottom sediment depocenters. Based on the Lagrangian connectivity analysis, it

was revealed that a barrier between the western and eastern estuaries existed,

which was weakened by the strong river discharge during summer. Two

convergence regions near the Macau and Hong Kong waters were identified,

where the sediment and pollutants easily settled. The study demonstrated the

importance of the Lagrangian view in understanding the hydrodynamic process

and transport structure in the estuary–shelf regions.

KEYWORDS

hydrodynamical transport structure, Lagrangian analysis, circulation connectivity,
residual current, pearl river estuary
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Introduction

Estuaries, as key locations between the open sea and rivers,

often sustain large populations, economies, and valuable

ecosystems (Gill et al., 2001; Gillanders et al., 2003; Wang

et al., 2015). The water motion inside estuaries and the

associated mass transport have a great influence on estuarine

and marine ecosystems. Because they are jointly driven by

atmospheric forcings, tides, riverine discharge, and coastal

currents over the adjacent shelf circulation, the hydrodynamic

structure and transport pattern in the estuary–shelf system are

naturally complicated. Given the multiscale motion in coastal

estuaries, the residual current usually ultimately determines the

long-term transport patterns of materials such as sediments,

phytoplankton, and pollutants in estuarine areas (Stacey et al.,

2001; Xing et al., 2012; Li et al., 2014; Xuan et al., 2016).

The Pearl River Estuary (PRE) is located in southern China

(112°45′–113°50′E, 21°31′–23°10′N) and links the Pearl River,

the second largest river in China in terms of discharge (annual

average discharge: 10,000 m3/s), and the northern South China

Sea (NSCS). The triangle-shaped PRE narrows northward in the

upper estuary, and the width of the PRE gradually increases to

approximately 60 km at the lower estuary, where the shelf is

connected (Figure 1). Water motion inside the estuary is jointly

driven by winds, tides, and riverine discharges (Lai et al., 2018;

Liu et al., 2020). Moreover, the circulation in the lower estuary

can be directly modulated by the strong shelf current in the

NSCS. The multiscale motion determines the mass transport,
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alters its connectivity with the adjacent shelf waters, and plays a

critical role in determining the water renewal and

biogeochemical processes inside the estuary (Li et al., 2020; Li

et al., 2021). Thus, the PRE is a valuable model site for providing

new knowledge on residual current and mass transport in a

complex environment. However, previous studies have primarily

focused on the mean Eulerian current. The intrinsic mass

transport structure may be blurred by oceanic currents and

how different regions are connected by complicated physical

motions, as well as the associated timescales and mass transports

remain less understood.

Lagrangian tracking is an effective way to analyze the

transport processes in estuaries, which helps to determine the

origin and fate of specific water masses (Feng et al., 1986;

Jonsson et al., 2004; Ju et al., 2009; Muller et al., 2009; Liu and

Chua, 2016). As a combination of the Lagrangian and Eulerian

methods, Lagrangian coherent structures (LCSs) can be

identified from fluid motions, which represent the strongest

repelling or attracting material lines, thus distinguishing water

masses with different motion characteristics and the barriers

between different circulation regions. It has proven to be a

valuable and appropriate tool for simplifying the transport and

mixing in fluid flows and diagnosing the transport properties of

materials (Branicki and Wiggins, 2010; Wei et al., 2013). Many

methods have been proposed to identify LCSs, and finite-time

Lyapunov exponents (FTLEs) are widely used (Wei et al., 2013;

Berta et al., 2014; Wei et al., 2018). The ridges in the FTLE fields

can be used as barriers to mass transport and identify the LCSs in
FIGURE 1

(A) Location and topography of the Pearl River Estuary (PRE). QAI: Qi’ao Island, NLI: Neilingding Island, LTI: Lantou Island, LXI: Longxue Island.
(B) The monthly PRE river discharge (104 m3/s). (C, D) The seasonal mean wind speed (m/s) during summer (June–August) and winter
(December–February). Atmospheric forcing data were provided by the ERA5 atmospheric reanalysis data from the European Center for
Medium-Range Weather Forecasts (ECMWF), and the monthly averaged riverine discharge data were provided by Chu et al. (2022).
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the flow field (Haller and Yuan, 2000; Haller, 2015; Wei

et al., 2018).

To illustrate the transport structure and further understand

the hydrodynamic intrinsic connectivity among different

subregions in the PRE and the adjacent shelf region, the

Lagrangian investigations were conducted in this study using

the results from a climatological three-dimensional (3D)

hydrodynamic model. The remainder of this paper is

organized as follows. Section 2 introduces the numerical

model and methodology for particle tracking. In Section 3, the

seasonal hydrodynamic transport structure is revealed and

compared with the net mean surface sediment transport

pattern. Then, the intrinsic connectivity among the various

subdomains of the PRE is illustrated based on the Lagrangian

coherent structures (LCSs) and transport proportion matrix.

This paper is summarized in Section 4.
Methodology

Numerical model

The Regional Ocean Model ing System (ROMS)

(Shchepetkin and McWilliams, 2005) was used to simulate

hydrodynamics in the study area. The model domain was

bounded by the latitudes of 18.67°N and 24.66°N and the

longitudes of 110.19°E and 120.45°E, which covers the PRE

and the shelf region of the NSCS to resolve the multiscale

interactive processes in the PRE and the adjacent shelf. The

horizontal grid spacing was approximately 400 m. We used the

terrain-following s-ordinate (Song and Haidvogel, 1994) to

discretize the water column into 30 levels, and a higher

resolution was used in both the surface and bottom boundary

layers. To better illustrate the representative characteristics of

the multiscale motions, we conducted process-oriented studies

with climatologically averaged monthly atmospheric forcing and

river discharges (Figures 1B–D). Atmospheric forcing data,

including wind, heat flux, and precipitation, were provided by

the ERA5 atmospheric reanalysis data from the European Center

for Medium-Range Weather Forecasts (ECMWF) and applied to

force ocean circulation using the bulk flux computation

algorithm (Fairall et al., 2003). Monthly averaged riverine

discharge data were provided by Chu et al. (2022). The

subtidal flows and hydrographic properties were extracted

from the numerical simulation of the Northern South China

Sea, which has been used successfully in the water exchange and

interannual variability of shelf circulation (Cai et al., 2022; Deng

et al., 2022). To better represent the climatological seasonality of

the shelf circulation, we applied the monthly averaged shelf

circulation as the subtidal forcing along the southern, western,

and eastern open boundaries of the computational domain. The

harmonic constants of tides in the computational domain were

computed and validated by Zu et al. (2008) using Oregon Tide
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Inverse Software (Egbert and Erofeeva, 2002). The tidal current

was included along the open boundaries using the advanced

dual-wave transmission-permitting algorithm proposed by Liu

and Gan (2016; 2020). The major constituents of the semidiurnal

(M2, S2, K2, and N2) and diurnal (K1, O1, P1, and Q1) tides and

the M4 tide were applied along the open boundary to impose

tidal forcing in the computational domain. The simulation well

captured the hydrodynamic and circulation featured in this

region as illustrated in previous investigations and observed

data. We exported the ocean current data with an interval of

20 min in summer (June–August) and winter (December–

February) to better resolve the motions determined by

complicated forcings. The saved data will be used in the off-

line Lagrangian tracking and following analysis.
Lagrangian particle tracking

In this study, the net residual current in the PRE regions was

examined based on off-line particle tracking using the

Lagrangian TRANSport model (LTRANS v.2b), which is a

popular off-line three-dimensional particle tracking module

(e.g., North et al., 2011; Henry et al., 2018; Pearson et al.,

2019; Liang et al., 2021). Using the high-frequency ocean

current data retrieved from the validated hydrodynamic

model, it was developed to simulate the movement of passive

tracers, particles with sinking or floating behavior, such as

sediment or oil droplets, and planktonic organisms, such as

oyster larvae. It includes the fourth-order Runge–Kutta scheme

for particle advection and reflective boundary conditions on

solid walls, specific particle behavior routines, and

settlement algorithms.

From the Lagrangian perspective, the transport processes are

tracked by following fluid particles to identify the trajectories

starting from or arriving at a given point. The transport

equations were discretized along a moving frame of reference,

and the particle positions and velocities were also considered

between the Eulerian grid points. The Lagrangian residual

velocity (Zimmerman, 1979; Feng et al., 2008) is expressed as

U
*

L
x
*

0
, t0; t

� �
=

x
*

t0 + tð Þ− x
*

t0ð Þ
t

(1)

where   x
*
(x, y, z)   is a three-dimensional position vector in

the Cartesian coordinate system, t0 is the initial time for an

arbitrary water parcel to be tracked, x
*

0
is the initial position

vector, and t is the tracking period. In this study, the particles

were released at each grid inside the PRE and tracked for 25 h to

indicate the net motion after approximately one diurnal tidal

cycle. The movement pattern over a longer period can be

understood by the accumulation of the U
*

L
( x
*
, t; t0). The

numerical experiments also indicated that a longer tracking

period did not change the major transport pattern (figure not
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shown). As illustrated in the previous numerical and theoretical

investigations (e.g., Feng et al., 1986; Feng et al., 2008; Muller

et al., 2009; Liu et al., 2012; Liu et al., 2021), U
*

L
in the generally

non-linear system highly depended on the initial time, even in a

purely periodic, single tidal constituent–driven barotropic

system. To remove the dependence of the residual current on

the initial release time and illustrate the mean seasonal transport

pattern, the particles were released every 2 h within 3 months of

summer and winter.
Lagrangian coherent structures

To identify LCSs, the FTLE was calculated, which involved

the simulation of the particle paths in an advection flow. FTLE

fields represent the finite time average of the maximum

expansion or contraction rate of a pair of passive advection

fluid materials. It can be calculated as (e.g., Wei et al., 2018)

st
t0 (x0) : = tj j−1In║ ∂x0 x(t0 + t ; t0, x0)║ (2)

where║ ║ denotes the spectral norm. Consider an arbitrary

fluid particle located at x0 in the study area at time t0 after being

transported by the flow for a time interval t , the particle is

moved to x(t0+t;t0,x0) at time t=t0+t . The latter is obtained by

integrating the particle trajectory equation (1). Repelling and

attracting LCSs are then defined (Haller and Yuan, 2000;

Shadden et al., 2005; Haller, 2011) as maximizing the ridges of

the FTLE field computed forward (t > 0) and backward (t < 0) in

time, respectively.

The high values in FTLE fields are associated with the LCSs

that are defined as the ridges of the FTLE field. In the region

where the FTLE < 0, fluid particles tend to converge, and

pollutants converge here. In the region where the FTLE > 0, a

higher value means a higher separation rate between two

neighboring particles; the positive line in the FTLE can be

regarded as the material transport path (e.g., Shadden et al.,

2005; Liang et al., 2014).
Results and discussion

Estuarine circulation

The seasonally averaged features of the representative

hydrodynamic conditions revealed in the simulation during

summer and winter were examined in the study area, which

captured the mean features of circulations neighboring the PRE,

as illustrated in previous studies (e.g., Zu and Gan, 2015; Liu and

Gan, 2020; Cai et al., 2022). In summer, strong gravity

circulation was observed in the lower estuary, where the

surface current flowed southeastward and the bottom current

flowed northwestward (Figures 2A, C). In the upper estuary,
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induced by strong river discharge in the wet season, both the

surface and bottom currents flowed seaward. Driven by the

southwesterly monsoon, coastal upwelling with northeastward

along-shore currents formed over the NSCS shelf. Sea surface

temperature and salinity generally showed the characteristics of

shelf upwelling, forming a northeastward-extending belt of cold

salty water in the coastal seas to the east of the PRE (Figures 3A, C).

In winter, when weaker discharges occur, the gravitational

circulation was generally preserved but with weakened intensity

(Figures 2B, D). Compared with summer conditions, bottomwaters

invaded further landward in the estuary, while the seaward flowwas

still observed in the surface layers. Because of the extensive

northeasterly wind, the shelf current flowed southwestward with a

larger magnitude than that in the summer (Figures 2B, D). Affected

by the monsoon, buoyant water flowed southwestward in the

estuary and was arrested by the southwestward shelf current after

leaving the estuary, forming a cold salt wedge estuary

(Figures 3B, D).
Seasonal Lagrangian transport structure

For simplicity, we first checked the seasonally averaged UL

with a different release time at the surface and bottom layers

(Figures 4A–D). In general, the surface UL inside the PRE was

uniformly southwestward/southeastward in summer/winter

(Figures 4A, B) and stronger (approximately 20 cm/s) in the

lower PRE than that in the upper PRE. Over the shelf, owing to

the different monsoon directions, the surface UL flowed in a

northwest/southeast direction (Figures 4A, B). Unlike the

surface residual current, the bottom residual currents exhibited

more complicated distributions. In summer, intensified fluvial

dynamics occupied the region from the northwestern estuary to

the northwest of Neilingding Island. The runoff from the

northwest was transported southward along the west bank of

the estuary and to the east of Qi’ao Island, forming a weak

clockwise pattern around Qi’ao Island (Figure 4C). In winter,

buoyant waters mainly rushed out of the estuary along the

western bank of the PRE due to the reduced runoff and

changes of wind direction (Lai et al., 2015), whereas saline

shelf water occupied the lower estuary neighboring the eastern

bank (Zheng et al., 2014), and the fluvial–tide interaction line

advanced northwest. Then, the residual currents from the lower

east channel resulted in a significant northwestward bottom

residual current until it reached the north of Qi’ao Island and

deflected southward by the plume, forming a counterclockwise

pattern around Qi’ao Island (Figure 4D). In the lower PRE, the

bottom UL tended to flow northwestward (Figures 4C, D).

Because the UL indicates the averaged motions of different

spatial locations on the trajectory, compared with the time-

averaged Eulerian residual current at fixed location (UE ) the

upper UL had a similar pattern but was not locally intensified
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over the deep channels (Figure 2), and the magnitude of the

upper layer UL was weaker than that of UE . In the bottom layer,

the discrepancies mainly occurred in the region to the north of

Lantau Island, where the UL featured onshore intrusion, which is

opposite to Eulerian one. In the upper and lower estuaries, where

the deep layer motions were dominated by relatively stable river

discharge and shelf current, the UL and UE shared a

similar pattern.

The UL represented the mean transport pattern of particles

driven by the hydrodynamical motions, and as illustrated in

previous investigations, the mean bottom residual currents can

explain the major surficial sediment transport pattern (STP)

over the estuary (Liu et al., 2012; Zhang et al., 2013). Thus, the

STP in the PRE from various published papers (Xiao, 2012; Shi

et al., 2015; Li and Li, 2018; Zhang et al., 2019; Chu et al., 2020;

Wei et al., 2021) were combined to give the long-term mean

transport pattern and to validate the transport pattern of the

bottom UL (Figure 4E). Although the calculated UL ignored the

sedimentation and resuspension processes, it was in good

agreement with the mean STP, which also proved that the

model and simulated UL captured the major transport

processes in the PRE. Being similar to the bottom UL , the

sediments were transported southward in the upper PRE and

northward in the lower PRE in both summer and winter.
Frontiers in Marine Science 05
Seasonally, the STP varied in spatial ranges that sediment

transported further southward/northward in summer/winter.

In the middle of the estuary, with fluvial–tide interactions, the

STP showed a complicated structure. As also shown in the

bottom UL , the STP near Qi’ao Island was counterclockwise

in winter and clockwise in summer (Zhang et al., 2013; Wei

et al., 2021). Around the west bank of the lower PRE, which was

reported to be a depositional center (Yang et al., 2019), both the

UL and STP had an overall westward transport trend and

convergence pattern. However, it was also noted that the

bottom UL showed a relatively large difference with the STP

around the northeast of Neilingding Island, possibly due to the

sand mining activities that were declared in our previous study

(Chu et al., 2020).

To further illustrate the intraseasonal variability of the UL ,

the depth-averaged temporal standard deviation (STD) of the

residual current in the zonal and meridional directions was

calculated for summer and winter as follows (Liu et al., 2012):

STDu =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1on
i=1(uLi − uL)

2
q

and

STDv =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1o
n
i=1 vLi − vLð Þ2

r
(3)

where uL and vL are the UL in the zonal and meridional

directions, respectively, and n is the number of UL obtained from
FIGURE 2

(A, C) Horizontal map of the seasonally averaged surface and bottom currents in summer calculated by the numerical model in this study; the
arrow and color represent the direction and magnitude (m/s) of the velocity, respectively. (B, D) Same as (A, C), except that they represent
winter conditions. The black lines are 10–30 m isobaths.
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tracking using Equation 1. The high STDv /STDu values

represent regions where the uL /vL is sensitive to the initial

time. Inside the estuary, the temporal variability of the UL is

dominated by motions in the north–south direction with high

STDv Figures 5C, D). The high STDv occurred mainly in the

region between Lantau Island and Neilingding Island in both

summer and winter, where strong fluvial–tide interactions and

UL featured opposite directions to the UE (Figure 4). The time

series of the UL and the sea level illustrated that the high STD is

mainly induced by the intratidal (period of ~25 h) and spring–

neap tidal variabilities (not shown). A larger STDv also existed

along the western coast of the estuary near Macau in winter,

where buoyant water was arrested. Over the shelf, the current

has a larger component in the west–east direction, and the

temporal variability is mainly controlled by the STDu

(Figures 5A, B).

The bottom UL was used as an example to illustrate its

intratidal variability and dependence on initial time. The

surface UL showed a similar dependence on the initial time.

In summer, the UL with the initial time (t0 ) at high tide

generally moved southward in the PRE, with a high magnitude

of approximately 0.1 m/s (Figure 6A). For the UL at low tide,

the UL changed to the northward direction in the lower estuary,

but in the upper estuary, it remained in the southward

direction due to the strong river discharge (Figure 6C). To
Frontiers in Marine Science 06
the north of Qi’ao Island and Neilingding Island, the eastward

UL occurs associated with the convergence of the southward UL

from the upper estuary and northward UL from the lower

estuary. Given the reduced fluvial dynamics in winter, when

water parcels are released at high tide, the bottom UL is

transported northward in most areas of the PRE, except for

the convergence pattern near Qi’ao Island (Figure 6B). In

contrast, the bottom UL at low tide features a stronger

intrusion over the entire estuary with a magnitude larger

than 0.1 m/s (Figure 6D).

The background colors indicate the UL magnitude.
Lagrangian coherent structures and
transport connectivity

To explore the intrinsic transport structure and how

different regions are connected, the LCSs were examined based

on the FTLE in the bottom layer, where they had a more

complicated structure and explained the major transport

pattern, such as for sediment in the PRE regions. It was

calculated following the methods of Onu et al. (2015) and Wei

et al. (2018). The high-value ridge lines of the FTLE generally act

as transport barriers and can be used to identify LCSs in the

flow field.
FIGURE 3

(A, B) Horizontal maps of the sea surface salinity (SSS, PSU) in summer and winter calculated by the numerical model in this study, respectively.
(C, D) Same as (A, B), except for the sea surface temperature (SST, °C).
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In summer, high freshwater discharge enters the estuary

through the four northwest outlets, and the associated sediment

input accounts for the majority of the annual riverine sediment

supply. The northwest forms the main transport path for

materials, corresponding to the patches of highly positive

FTLE values (L1, Figure 7A). An obvious highly positive FTLE

can also be found in the southwest of Shenzhen Bay to the south

of Middle Shoal (L2, Figure 8A). Along these ridge lines, fluid

particles with high dispersion are the main material transport

barriers. The negative FTLE regions present the convergence of

residual currents, mainly around the southeast of Qi’ao Island,

southeast of Macau, and northeast of Shenzhen Bay. These

regions indicate fluid particle consolidation, such that the

material tends to deposit under weak hydrodynamic

conditions. It is interesting to note that the negative FTLE

regions correspond well to the depocenters of the PRE

revealed in previous investigations (Figure 7C). The riverine

sediments from the three western outlets (i.e., Jiaomen,

Hongqili, and Hengmen outlets) were trapped at the west

shoals due to low bottom shear stress (Zhang et al., 2019),

forming two depocenters around the northwest of Qi’ao Island

and east of Macau water (Figure 7C). Meanwhile, the sediments

released near the tidal channel (Humen outlet) were more

deposited at the east shoal, i.e., the northwest of Shenzhen

Bay (Figure 7C).
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Similarly, during the winter, the positive FTLE values in the

upper PRE correspond to river outlet channels (L1). In the

middle estuary, a belt of the FTLE ridge existed from the west of

Qi’ao Island to Shenzhen Bay in the eastern part (Figure 7B). In

the lower estuary, L3 and L4 from the continental shelf to the

west coast of the estuary (Figure 7B) indicated the possible

material transport from the shelf to the estuary. The negative

FTLE value is mainly around the east shoal, south of the west

shoal, and northwest of Lantau Island in winter. In contrast to

summer, the freshwater discharges and sediment loads decrease

sharply in winter seasons in the PRE; thus, salt intrusion is

enhanced and brings more marine sediments into the estuary,

and the estuarine turbidity maximum zones will shift, as well as

the depocenters. Sediments from the open sea via the southwest

of Lantau Island, forming two major depocenters around Macau

and the north of Lantou Island, consisting of fluvial and marine

sediments (Figure 7D).

Generally, the sediment source-to-sink process in the PRE

corresponded well with the spatial distribution of the FTLE.

Following its distribution, the sediment mainly enters the PRE

from the northwest outlets and the south open sea, supplying the

sediment source to the PRE, which consists of the fact that the

sediment in the PRE is composed of terrestrial sources and

marine sources (Wu and Zhao, 1982; Liu et al., 2007; Li et al.,

2016; Wu et al., 2018; Chu et al., 2020). The terrestrial sediments
FIGURE 4

(A, B) The surface UL (m/s) averaged in the summer (June–August) and winter (December–February). The colors indicate the magnitude, and
the arrows indicate the direction. (C, D) Same as (A, B), except for the bottom UL . The transparent arrows indicate the mean pattern of the UL

the Schematic map of the core transport path of the surface of the PRE sediment in summer and winter; the direction of coastal current is
summarized by Xiao (2012); Li et al. (2014); Shi et al. (2015); Li and Li (2018); Zhang et al. (2019); Chu et al. (2020), and Wei et al. (2021).
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were mainly derived from the Pearl River basin and drained

through the three river-dominated outlets in the west. Due to the

decline of the elevation slope and the backwater effect of the tidal

current, the coarser sediment deposited around the west shoal

and the finer particles continued to move toward the southeast

through the west channel, eventually entered the adjacent shelf,

or were intercepted around Lantou Island. The “source-to-sink”

process of these terrestrial sediments can be consistent from the

FTLE ridge, i.e., L1 (Figures 7A, B) to the negative FTLE center

in the upper PRE region. For the marine sediments, they mainly

entered the estuary through the east channel and the south of

west channel. Some of them stayed close to the bay mouth under

the control of shelf current, while some moved northwestward

and were deposited in the west shoal when they encountered

runoff (Li, 2017; Chu et al., 2020). This can be demonstrated

from the FTLE ridge of L2–L4 (Figure 7) and the negative FTLE

regions near Macau and Hong Kong waters.

The summer and winter results are consistent with previous

predictions from a large number of complex sediment analyses

(Wu and Zhao, 1982; Li, 2017; Yang et al., 2019; Chu et al.,

2020), but Lagrangian analysis provides a similar answer in a

more concise manner, thus providing a very useful method for

interpreting predicted surface sediment transport and detecting

the “source-to-sink” processes of estuarine sediments.
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The FTLE field showed the different transport pattern

between the east and west sides of PRE with reduced the

exchanges. The zonal FTLE ridge (e.g., L2) separated the

upper and middle estuary, and the lower estuary can be

directly modulated by the strong shelf current. Thus, based on

the structure illustrated from the FTLE, we divided the PRE into

six subregions (Ri, i=1,2,…,6), including the shelf (Shelf), Macau

water (Macau), Hong Kong water (HK), northwestern estuary

(NW), Shenzhen water (SZ), and northeastern estuary (NE)

(Figure 8B). These regions were generally separated by the ridges

of the bottom FTLE. To quantitatively explore connectivity, the

fluid transport proportions were established between these

subregions (i.e., boxes in the fluid domain) within a given time

interval. This transport ratio could be obtained from a

Lagrangian perspective by following the trajectories of fluid

particles and recording their initial and final positions (i.e.,

starting and ending subregions, Figure 8A). In this study, the

particles were released uniformly inside each subregion and

tracked for 30 days. The calculation with a different tracking

time showed that it generally provided a reasonable and

relatively stable connection pattern in the PRE, which was

consistent with the basic transport pattern in the FTLE and UL.

For each subregion (Ri), the flow proportion among these

subregions can be given by the percentage (Pij) of particles
FIGURE 5

(A, B) The distribution of STDu n summer and winter, respectively; (C, D) are same as (A, B) but for STDv .
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transported from the starting subregion Ri to the ending

subregion Rj (NRi!Rj to the total number of particles released

(NRi )as follows:

Pij =
NRi−Rj

NRi
� 100% (NRi−Rj ≤ NRi) (4)

Since the PRE was divided into six subregions, a 6 × 6

transport matrix Pij was defined to represent the connectivity

between them. The results are illustrated in (Figures 8C, D),

where the x-axis represents the subregions that release the

particles, and the y-axis indicates the subregions that receive

the particles. Thus, the value of Pij indicates the distribution of

particles in ending subregions (region j on y-axis) after leaving

the releasing subregion (region i on x-axis).

During winter, the majority of the shelf water was trapped by

the strong shelf current, while part of it (~40%) intruded into the

estuary and mainly stayed within the Macau region (Figure 8D).
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Inside the estuary, there was a transport barrier, from a

Lagrangian perspective, between the western and eastern sides

of the PRE, particularly in the upper estuary, although they were

spatially close. The NW and Macau particles moved

predominantly on the western side without entering the

eastern side. Similarly, the particles released from the eastern

side (SZ and NE) mainly remained within the eastern estuary,

and only a small part (~20%) of SZ water enters the NW region

(Figure 8D). This is consistent with the fact that the east and

west sides of the PRE are controlled by different dynamics (Mao

et al., 2004). In addition, the two subregions, HK and Macau,

appear to be convergence zones, which have low FTLE values

and weak connections with other subregions. Although they

were directly adjacent to the strong shelf current, most (~60%) of

the water remained inside the original region after 1 month.

Consistent with previous studies, sediment and pollutants settled

easily in these areas and have previously been reported as
FIGURE 6

The bottom UL (in m/s) corresponding to the initial tidal phases when the water parcels were released at spring high tide in summer (A) and
winter (B); (C, D) are same as (A, B) but for UL at low tide.
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depocenters in the PRE (Figure 7, Yang et al., 2019; Chu

et al., 2020).

During the summer, intrusive particles/water from the shelf

region can be transported to the HK and Macau regions and

affected by the bottom intrusion; the majority of the particles

released from Macau (~80%), HK (~60%), and NW (~80%)

remained in the original region. Associated with the intensified

river discharge, the barriers between the western and eastern

estuaries still existed but were reduced so that a higher

proportion of particles from SZ (~30%) and NE (~40%)

regions were able to move to the Macau waters than winter

time. Similar to winter, HK and Macau are two distinct

convergence zones that the waters from other subregions have

a high possibility to accumulate in those two regions. This is

consistent with the previous investigation that the western

region near Macau and the eastern region near HK were

reported to have a significant hypoxia and low dissolved

oxygen in summer, mainly because of the convergence of

water (Li et al., 2020).
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Conclusions

Using a 3D hydrodynamic model and Lagrangian investigation,

this study explored the seasonal hydrodynamic transport structure

in the PRE and illustrated the intrinsic connectivity under

multiscale motions from a Lagrangian perspective.

The transport structure was obtained based on Lagrangian

tracking. Generally, the surface UL was uniformly southwestward/

southeastward in summer/winter and relatively stronger in the

lower PRE than in the upper PRE. The bottom residual currents

exhibited more complex distributions. In summer, the intensified

fluvial dynamics occupies the region from the northwestern estuary

to the northwest of Neilingding Island, where the UL flowed in a

southeastward direction in the upper estuary and northwestward in

the lower direction. In winter, buoyant waters mainly rush out of

the estuary along the western bank, and the fluvial–tide interaction

line advances further to the northwest. The difference between the

spatially averaged UL and local temporally averaged UE mainly

occurred between Lantau Island andNeilingding Island, a transition
FIGURE 7

(A, B) Bottom FTLE structure in summer and winter, the dashed lines denote the main transport paths. (C, D) Schematic maps of the core
transportation path of surface sediment and depocenters in the PRE in summer and winter; the gray lines are 5 m isobaths. The conceptual
patterns of sediment source to sink are summarized from Zhang et al. (2019); Chen et al. (2020), and Chu et al. (2020).
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region largely affected by the interaction between the periodic tidal

current and river discharge. In this region, the UL features an

onshore intrusion, whereas the UE exhibits a convergence pattern.

Although the calculated UL ignored the sedimentation and

resuspension processes, it captured the major transport processes

and was in good agreement with the mean STP.

Remarkable LCSs exist in the PRE that generally define the

transport paths and convergence regions. The highly positive

FTLE values are the river outlets and channels in the PRE, where

the fluid particles with high dispersion are the main material

transport paths; the regions with strongly negative FTLE values

present a convergence of residual currents, mainly concentrated

in the south of the west shoal and northwest of Lantau Island,

where they are reported as depocenters in the PRE. Based on the

FTLE structure, a connectivity analysis was conducted among

the subregions of the PRE. There was a distinct barrier between

the northwest and northeast sides of the estuary during the

winter and summer. In addition, two convergence regions near

the Macau and Hong Kong waters were identified in both the

summer and winter seasons, which is consistent with the results

from the LCSs and sediment analysis. Sediment and pollutants

easily settle in regions that were also previously reported as the
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depocenters of the PRE and regions experiencing strong

hypoxia. Lagrangian analysis provides a way to extract the

spatial geometry of hydrodynamics by providing the sketches

of the major circulation in estuaries. It proved to be a useful

diagnostic method for understanding the hydrodynamic process

and transport structure in the estuary–shelf regions.
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