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Due to their well-acknowledged capability in predicting habitat distributions,

Habitat Suitability Models (HSMs) are particularly useful for investigating

ecological patterns variations under climate change scenarios. The shallow

coastal regions of the Northern Adriatic Sea, a sub-basin of the Mediterranean

Sea, are studded with coralligenous outcrops recognized as important biodiversity

hotspots exposed to the effects of climate change. In this research, we investigate

the distributions of the Northern Adriatic Sea coralligenous habitats characterized

by diverse species assemblages differently influenced by environmental factors,

and provide a projection of how these might be impacted by climate change. Two

models (Random Forest and MaxEnt), populated with occurrence data gathered

from previous publications, environmental parameters’ from online databases

(CMEMS, Bio-Oracle), and a set of dedicated ocean model simulations, are

applied in recent past conditions and under a future severe climate change

scenario (RCP 8.5). The model performance metrics confirm the ability of both

approaches for predicting habitat distribution and their relationship with

environmental conditions. The results show that salinity, temperature, and

nitrate concentration are generally the most relevant variables in affecting the

coralligenous outcrops distribution. The environmental variations projected under

climate change conditions are expected to favour the spreading of opportunistic

organisms, more tolerant to stressful conditions, at the expense ofmore vulnerable

species. This will result in a shift in the distribution of these habitats, with a

consequent potential loss of biodiversity in the Northern Adriatic Sea.

KEYWORDS

coralligenous conservation, habitat suitability modelling, climate change, random forest,
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1 Introduction

Marine ecosystems play a key role in safeguarding the planet and

in favoring human life. They host a large portion of the world’s

biodiversity and provide many fundamental benefits to humans,

delivering resources and supporting maritime activities, such as

fishery, tourism and transportation, and representing a driver of the

world economy (Freeman et al., 2013; Barbier, 2017). They do also

play a central role in stabilizing the Earth’s climate system by

contributing to buffer the effects of climate change on our planet

(Melaku Canu et al., 2015). Nevertheless, the global climate change is

deeply affecting oceanographic, biogeochemical, and hydrological

processes that regulate the structure and functioning of marine

systems (Leadley et al., 2014). In particular, starting from the 70s,

abrupt shifts in current climate patterns (Cheung et al., 2009; Pereira

et al., 2010; Cahill et al., 2012; Sloyan et al., 2016), alteration of

frequency or intensity of environmental phenomena (Garcia-Reyes

et al., 2015; Defforge and Merlis, 2017), increase in temperatures

(IPCC, 2013b; Rhein et al., 2013) and ocean acidification (Hoegh-

Guldberg et al., 2014) have been detected. These alterations lead to a

higher probability and frequency of catastrophic events, mass

mortality (IPCC, 2014; Pecl et al., 2017a; Pecl et al., 2017b), food

webs alteration (Johnson et al., 2011), abrupt shifts in the seasonality

of ecological processes (Deutsch et al., 2015; Lefort et al., 2015), and

decline in ecosystem diversity and productivity (Short and Neckles,

1999; Behrenfeld et al., 2006; Hoegh-Guldberg et al., 2007; Polovina

et al., 2008; Harley, 2011). As a cascade effect, shifts in marine

organism populations, variations in species phenology, and

interactions with serious impacts on ecosystem functioning have

also been reported (Perry et al., 2005; Last et al., 2011; Doney

et al., 2012).

The sensitivity of marine systems to climate change have been

discussed in several Assessment Reports (hereby AR) of the

Intergovernmental Panel on Climate Change (IPCC). Nevertheless,

it was only since the fourth AR in 2007, that the impacts of climate

change on marine ecosystems were addressed in deeper detail, with

emphasis on the assessment of future ecosystems’ response and

through a recognition of the complexity of these environments

(Gissi et al., 2021; Fraschetti et al., 2022).

Because global warming has been pinpointed to be one of the

main elements of climate change, and temperature is expected to keep

rising in the upcoming decades, marine species will be forced to either

adapt to the new conditions or find new suitable ecological niches

(Lawler et al., 2006; Coll et al., 2012; Marras et al., 2015; Garcıá

Molinos et al., 2016), with consequent shifts in habitat distributions.

Developed to predict the distribution of habitat in response to a

given set of environmental factors, Habitat Suitability Models

(hereafter HSMs) have been applied in an increasingly number of

contexts, becoming important tools to support biodiversity

management (Lawler et al., 2006; Degraer et al., 2008; Glockzin

et al., 2009; Gogina and Zettler, 2010; Bates et al., 2013; Freeman

et al., 2013; Guisan et al., 2013). In particular, HSMs can have an

important role in ecosystem-based management planning (Guisan

and Thuiller, 2005; Heikkinen et al., 2006; Pompe et al., 2008; Elith

and Leathwick, 2009; Kharouba et al., 2009; Lavender et al., 2021), by

helping in i) identifying priority areas of conservation (Cañadas et al.,

2005), ii) assessing the spatial distribution of suitable habitats for a
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species or a community to live within protected areas (Monk et al.,

2010), iii) predicting sites at risk of invasion by exotic species

(Compton et al., 2010) and iv) investigating the distribution of

possible diseases (Williams et al., 2010). These models can be

grouped into two categories (Meineri et al., 2015): mechanistic

methods aiming at reproducing the ecological dynamics by

explicitly describing (and formalizing into equations to be solved by

mean of numerical techniques) their driving processes (e.g. energy

fluxes, biological interactions, dispersal); and correlative methods

aiming instead at reproducing the distribution of species and

habitats by addressing their probability of presence (or absence)

under prescribed environmental parameters. By pursuing the

emerging patterns instead of an explicit description of the

ecological processes, the latter approach tends to be more efficient

particularly in complex systems.

These tools are widely implemented in the Mediterranean Sea

(Lauria et al., 2015; Giannoulaki et al., 2017), one of the worldwide

biodiversity hotspots which has been predicted to be among the most

impacted by global warming (Templado, 2014; Lionello and Scarascia,

2018) with many Mediterranean species at high risk of decline due to

climate change (Vasilakopoulos et al., 2017). In particular, the

growing and survival of calcifying organisms, such as corals and

coralline algae, are threatened by the alteration of their optimal

conditions (Freeman et al., 2013).

The coralligenous, a widespread habitat of the Mediterranean Sea,

is recognized as a priority for conservation under the Habitats

Directive (EU, 1992; 92/43/EEC) and the Marine Strategy

Framework Directive (EU, 2008; 2008/56/EC) for its importance as

a biodiversity hotspot (Gomes-Gras et al., 2019). It is the result of a

balance between bioconstruction and bioeroding processes carried

out by the associated organisms (Cerrano et al., 2001). These complex

biogenic structures, characterized by holes and cavities, provide

different microhabitats, microenvironments, and ecological

gradients that host numerous species, especially coralline algae,

mollusks, polychaetes, madrepores, and macroalgae (Ingrosso et al.,

2018). Dim-light, narrow thermal oscillations and low water turbidity

(influencing the filtering capacity of organisms) are among the main

environmental conditions determining coralligenous growth and the

number of associated species. The United Nations has identified this

habitat as an ecosystem services provider (Action Plan for the

protection of coralligenous and other calcareous bio-concretions in

the Mediterranean Sea, 2017), and has remarked the need for its

protection due to its vulnerability to climate change (Teixidó et al.,

2013). At the European level, the EU Council (Regulation n°1967/

2006) reported guidelines for sustainable fishery practices in the

Mediterranean explicitly referring to the need to protect

coralligenous habitat.

Coralligenous outcrops are scattered on the sandy-muddy seabed

of the Northern Adriatic Sea (the northernmost region of the

Mediterranean basin) and are locally known as tegnùe, trezze or

grèbeni (Casellato and Stefanon, 2008). Differently from other bio-

constructions, the tegnùe are observed to be associated with methane

vents and hypothesized to be cemented by methane seeps mostly

originating from microbial decomposition of fossil plant material, a

characteristic that makes these outcrops unique in the Mediterranean

Sea (Tosi et al., 2017 and references therein). Besides hosting highly

diverse benthic communities, these outcrops play a fundamental role
frontiersin.org
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as reproductive and nursery areas and attract and protect numerous

demersal and pelagic fish species, thus representing sites of high local

interest for divers and fishermen (Cenci and Mazzoldi, 2006;

Casellato et al., 2007).

This habitat is subject to conservation by two Natura 2000 (N2K)

sites, namely the SPA/SAC IT3330009 “Trezze di San Pietro e

Bardelli” and the SAC IT3250047 “Tegnùe di Chioggia”. The N2K

network will likely expand in the Adriatic Sea to accomplish the

conservation goals set up by global and European strategies - the

Convention on Biological Diversity, the European Biodiversity

Strategy 2030, the Global Sustainable Development Goals (de

Francesco et al., 2020; Manea et al., 2021). As such, because of the

potential effects of climatic change on this habitat, there is a need to

implement durable conservation efforts in the area and guide the

possible designation of new N2K sites for its protection.

In this direction, this study investigates the potential distribution

of the coralligenous habitat in the Northern Adriatic Sea accounting

for its species assemblages, and its possible shift under a future severe

climate change scenario. Two methods of machine learning habitat

suitability modelling are applied: Random Forest and Maximum

Entropy (MaxEnt). Both of them are correlative approaches using

the full spatial coverage of physical and biogeochemical variables to

explore patterns of species distribution (Elith and Graham, 2009).

They are both widely recognized as efficient tools for detecting and

predicting habitat suitability distribution (Phillips et al., 2006;

Thuiller and Münkemüller, 2010; Hijmans and Elith, 2013).

The study consists of two main modelling steps:

1. Habitat suitability analysis investigating the correlation

between the distribution of different coralligenous habitat

assemblages and the pattern of environmental variables (i.e.

temperature, salinity, current velocity, light, nitrate, and phosphate

concentration) during a historical period in the recent past (1999-

2018, historical – “HIS” – run);

2. Habitat suitability analysis under future RCP 8.5 climate

change scenario (2070-2099) and potential shift of the habitats

assemblages by utilizing oceanic model simulations under the RCP

8.5 climate change scenario (Moss et al., 2010) (hereafter “SCE” run).

The results are discussed and interpreted in the light of the

ecological properties of these systems and their implications for the

coastal marine environment, aiming at providing usable information,

alongside with some methodological remarks, for long-term

planning, management and protection purposes.
2 Materials and methods

2.1 Analysis workflow overview

As a preparatory phase for the modelling activity, the collection of

occurrence data was first carried out by georeferencing information

obtained from the literature and partially classified under habitat

assemblage categories. For those occurrences that were not classified

in the literature, a classification phase was undertaken with a

dedicated Random Forest and MaxEnt, using the occurrences

already classified as a training dataset. This approach provided two

distinct datasets (one for each method) with occurrences classified in

habitat categories.
Frontiers in Marine Science 03
Subsequently, another set of Random Forest and MaxEnt based

on the fully classified datasets was carried out for computing habitat

suitability and its pattern under historical conditions. In this phase

the datasets were split into training and test sets; the former was used

to fit each of the HSMs on the available data and the latter was

employed for the models skill assessment. The last modelling step

addressed the prediction of coralligenous distribution under a climate

change scenario. All data exploration, calculation, and model pre-

processing were carried out using R software (R Development Core

Team; version 4.0.5, https://www.r-project.org/), randomForest

(version 4.6-14) (Liaw and Wiener, 2002) and dismo (version 1.3-3)

(Hijmans et al., 2011) packages. The workflow of the investigation is

reported in Figure 1.
2.2 Coralligenous occurrence data and
habitat classification

Current coralligenous outcrops occurrences in the North Adriatic

Sea were obtained by georeferencing (using ArcMap 10.2) the

information contained in Falace et al. (2015) and Ponti et al. (2005)

and combining them with the dataset compiled byMartin et al. (2014)

in the framework of the projects MEDISEH and CoCoNET (Figure 2).

In the study by Falace et al. (2015) the occurrences were clustered in

three distinct habitat types (called A, B, and C) based on species
FIGURE 1

Workflow of the investigation process.
frontiersin.org

https://www.r-project.org/
https://doi.org/10.3389/fmars.2023.1050293
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Vitelletti et al. 10.3389/fmars.2023.1050293
compositions (a description of each habitat assemblage is reported

in Table 1).

This habitat type classification was extended to all the

coralligenous occurrences included in the present study to forecast

the possible shift in communities’ composition. The habitat types

were attributed by measuring, through the potential of HSMs, the

correlation between environmental variables and species assemblages

reported in Falace et al. (2015). Specifically, both algorithms were

trained using the outcrop occurrences already categorized, while, the

remaining points were used as a test set to which were then attributed

a habitat category to each entry (workflow in Figure 1). Random

Forest is widely used for the classification process through the

implementation of categorical variables; while the application of

MaxEnt for this purpose has required the assessment of the

suitability of each habitat based on the already classified points and

the classification of the uncategorized occurrences based on the

highest suitability value.
2.3 Environmental variables

Several environmental variables were identified in the literature as

particularly relevant in influencing coralligenous growth. In this
Frontiers in Marine Science 04
study, temperature, salinity, current velocity, and light (all evaluated

at the sea bottom) were considered, alongside with phosphate and

nitrate concentrations averaged over the water column (Casellato and

Stefanon, 2008; Martin et al., 2014; Falace et al., 2015). Near-bottom

quantities for most of the variables were selected considering that the

coralligenous outcrops are benthic habitats mainly composed of

encrusting organisms. Only the values of nitrate and phosphate

characterized the whole water column since these variables, adopted

as proxies of nutrients, strongly influence the filter feeder organisms

associated with the coralligenous (Piazzi et al., 2011; Gómez-Gras

et al., 2021). Data were extracted from different sources Table 2.

Simulated temperature, salinity, and current velocity at the sea

bottom were provided by the numerical model ROMS (Regional

Ocean Modeling System, Haidvogel et al., 2008) reproducing 3-D

hydrodynamics and thermohaline processes in the Adriatic Sea from

1987 to 2100. For this application, the Adriatic Sea was discretized

into an orthogonal curvilinear grid with horizontal resolution ranging

between approximately 2 km, in the northernmost part of the basin,

and 10 km in the southeast. The water column was discretized into 15

terrain-following sigma levels progressively refined towards the sea

surface to better describe air-sea heat and momentum exchanges.

ROMS run was forced by 6-hourly atmospheric outputs from the

Regional Climate Model SMHI-RCA4 (Strandberg et al., 2015),

driven in turn by the General Circulation Model ICHEC-EC-

EARTH (r3i1p1 ensemble member) retrieved from the EURO-

CORDEX repository (Jacob et al., 2013). SMHI-RCA4 has been

extensively used for regional-scale climate projections, well

capturing the climate variability over Europe as represented by the

CORDEX multi-model (Kotlarski et al., 2014). Driving atmospheric

forcing has a horizontal resolution of approximately 12 km. Boundary

conditions were prescribed at the Otranto Strait, at the southeastern

end of the basin, based on monthly climatological values computed

along the cross-section from the CMEMS reanalysis at 1/16°

(Simoncelli et al., 2019) modulated following the anomalies

computed from CMCC-CM (Centro Euro-Mediterraneo sui

Cambiamenti Climatici Climate Model) profiles (Scoccimarro et al.,

2011). Similarly, freshwater input from the mainland was prescribed

as interannual modulations, based on the anomalies of SMHI-RCA4

precipitations on the Adriatic basin, of climatological values for 39

points sources along the coast following the estimates by Raicich

(1994); Janeković et al. (2014), plus Zuliani et al. (2005) for the overall

contribution from the Venice lagoon. In order to decouple the sea

level modulation trends from the astronomical tide, no tidal forcing

was included in this run. Although a thorough validation of the
TABLE 1 Habitat assemblages description extrapolated by Falace et al. (2015).

Habitat Description Species

A Opportunistic and tolerant macroalgal species resistant to mud and organic
matter

•Turf-dominant algae (Cladophora sp., Antithammion sp., Pseudochlorodesmis
furcellata)
•Encrusting Porifera (Antho (Antho) incostans, Dictyonella incisa, Mycale (Mycale)
massa)
•Bioeroders (Cliona spp., Rocellaria dubia)

B Massive Porifera erect Tunicata and non-calcareous encrusting algae •Chondrosia reniformis, Tedania anhelans, Ircinia variabilis
•Aplidium conicum, Aplidium tabarquensis
•Peyssonnelia spp.

C Non-articulated calcareous macroalgae, tunicate •Polycitor adriaticus
FIGURE 2

Geographical setting of the area of interest with the classified records
according to the ML methods described in Paragraph 2.1. The filled ○
symbol means the occurrences already classified by Falace et al.
(2015), while the unfilled ones represent occurrences from Ponti et al.
(2005) and Martin et al. (2014). + symbol visualizes the records
classified in the habitat typology with MaxEnt (M) and × stands for
Random Forest (RF). Each color represents a habitat type.
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ROMS run is beyond the scope of the present study, the most relevant

quantities for our application were assessed against observational data

and existing literature. In particular, sea surface temperature (SST) for

the 1987-2016 period was compared with the L4 Optimal

Interpolation (L4OI) Mediterranean SST Analysis L4, reprocessed

using Pathfinder L3S (Pisano et al., 2016), available from the

Copernicus Marine Service, whereas the main thermohaline and

circulation patterns in the 1987-1996 decade were verified against

the work by Artegiani et al. (1997a; 1997b). Modelled time-averaged

SST in the Northern Adriatic Sea is characterized by a cold mean bias

of approximately -0.75°C with moderate spatial variability

(Figure 3A), and by an underestimation of the warming trend in

the above-mentioned period by 0.02°C y-1.

The vertical structure of the water column reproduces the space-

averaged temperature and salinity seasonal profiles presented by

Artegiani et al. (1997a), and the surface circulation pattern

(Figure 3B) captures, at least qualitatively, the main features of the

gyre system characterizing the basin-scale circulation in the area

(Artegiani et al., 1997b).

Light at the sea bottom was retrieved from Bio-Oracle (Tyberghein

et al., 2012; Assis et al., 2018). Phosphate and nitrate concentrations were

extracted from the Copernicus Marine Service (hereafter CMEMS). For

the first step of themodelling phase (HIS) data fromROMS and CMEMS

were sampled and averaged for the period between 1999 and 2018,

whereas data extracted from Bio-Oracle were averaged from 2000 to

2014. The SCE simulation was driven by projected data of temperature,

salinity, and current velocity fields at the sea bottom from ROMS model
Frontiers in Marine Science 05
in the period between 2070 - 2099. For Random Forest and MaxEnt

applications, all the variables were sampled on the same grid with 0.02°

resolution, bracketing a geographical domain between 44.8-46 latitude

and 23-14 longitude and projection (WGS84), interpolated when

necessary using the “nearest neighbor” method. The patterns of the six

environmental variables used in the study, with variations of temperature,

salinity, and velocity in climate change scenarios, are reported in Figure 4.
2.4 Habitat Suitability Models set up
and evaluation

Random Forest is an extension of single Classification Trees, in which

multiple decision trees are built with random subsets of the data. This

model can be employed for both classification and regression tasks

(Vincenzi et al., 2011). Both modes were applied in this study,

respectively for the identification of the unclassified habitats and for the

computation of the suitability of each habitat, both in historical and climate

change conditions. MaxEnt aims at assessing the suitability of a given

habitat by pursuing a maximum entropy configuration (that is, closest to

uniform) compatible with the available information (Freeman et al., 2013).

Both models were populated with presence-only data of habitat-

categorized coralligenous outcrops, using the six continuous

environmental variables as predictors.

Before performing any suitability analyses, a tuning of

hyperparameters in Random Forest (top parameters controlling the

learning process and involved in understanding which parameters
BA

FIGURE 3

(A) mean SST bias; (B) surface circulation patterns, color map indicates the current speed, vectors (subsampled every 3 cell grids and normalized on the
current speed) indicate the current directions.
TABLE 2 Summary details of environmental variables.

Variable Unit Original resolution Historical run SCE run Source

Temperature °C 0.02°× 0.02° 1999-2018 2070-2099 ROMS

Salinity PSU 0.02°× 0.02° 1999-2018 2070-2099 ROMS

Current Velocity m/s 0.02°× 0.02° 1999-2018 2070-2099 ROMS

Light E/m2/year 0.083°× 0.083° 2000-2014 / Bio-Oracle

Phosphate Millimole/m3 0.042° × 0.042° 1999-2018 / CMEMS

Nitrate Millimole/m3 0.042° × 0.042° 1999-2018 / CMEMS
fro
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can correctly map the features) and parameters in MaxEnt (internal

to the model and estimated by the training process, that explicates the

system variability) is strongly suggested to define the optimal model

architecture. In this study, the default set up of Random Forest

implemented in R appeared adequate, while for MaxEnt a specific

investigation was conducted with the ENMeval R package (version

0.3.1, Muscarella et al., 2014) determining the best options balancing

goodness-of-fit and model complexity.

In both models, the suitability analyses were carried out using

training and testing datasets including respectively 70% and 30% of

the whole occurrence data. The training set enabled the model to

learn the relations between the environmental variables and

occurrences, while the testing set was used to evaluate the model

performance. The goodness-of-fit and performance were quantified

by using the “Area Under the Curve” (hereafter AUC) and “True Skill

Statistic” (hereafter TSS), two metrics that proved to be particularly

indicated for Random Forest regression and MaxEnt applications

(Shabani et al., 2018; Acharya et al., 2019; Rew et al., 2020). The AUC,

related to the probability that a randomly chosen occurrence site

ranks more suitable than a randomly chosen absence site (Elith et al.,

2006), ranges between 0 and 1, where 1 means perfect matching, 0.5

represents matching not better than random, and 0 corresponds to

completely wrong predictions. TSS considers omission and

commission errors (related to false negatives and false positives

respectively) and is not affected by the size of the validation set. It

ranges between -1 and +1, where +1 indicates a perfect agreement and

values of 0 or less indicate performance no better than random

(Allouche et al., 2006).
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The relative contribution to the model predictions from each

variable is quantified in Random Forest as the Mean Decrease

Accuracy (hereafter %IncMSE), and in MaxEnt as the Permutation

Importance. In both cases, higher values correspond to the higher

importance of the variable.

In MaxEnt the Jackknife analysis also allows the quantification of

the individual effect of each variable by systematically excluding it

from the dataset (Elith et al., 2011). The use of this function helped to

identify also the variables that mainly affect the model fit.

For both models, the suitability is expressed as a probability

ranging from 0 (worst suitability for the habitat) to 1 (best suitability

for the habitat).
2.5 Habitat area calculation, distribution,
and shift

The raster files produced by each model were used to estimate

the suitability in the historical period and under climate change RCP

8.5 scenario. The calculation of the surface of each range of

suitability was conducted by implementing basic functions in R.

Furthermore, the SCE suitability values were extrapolated, for each

occurrence point, to hypothesize which habitat could be the most

likely to be found according to the predicted changes in

environmental variables.

The model outputs, provided as ASCII raster files, were post-

processed using Matlab (version MatlabR2018a) to identify spatial

patterns of change in habitat suitability, shifts in dominant habitat,
A

B

D

E

F

G

I

H

C

FIGURE 4

Patterns of the six environmental variables employed in this study. (A–F) show respectively the time averaged patterns of nitrate and phosphate
concentration along the water column, and light, temperature, salinity and velocity at the sea bottom in the historical period (1999-2018). (G–I) map the
difference (D) in bottom temperature, salinity and current velocity speed between future (under a severe climate change scenario RCP 8.5, 2070-2099 –

SCE) and historical conditions (HIS).
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and to produce maps for a visual representation of the results

throughout the study area.
2.6 Sensitivity analysis

In order to explore how the uncertainty on the evolution of the

environmental variables can affect the results of the present work, a

sensitivity analysis was performed by running a set of additional

HSM simulations in the future scenario, in which the projected

values of each environmental variable were singularly increased and

decreased by an estimate of the related uncertainty. The amount of

this perturbation was defined based on existing large-scale

modelling projections or, if unavailable, from information on

basin-scale variability in present conditions (Bonaldo et al., 2014;

Soto-Navarro et al., 2020; and Reale et al., 2022). For light radiation,

in particular, the variation for the sensitivity analysis was chosen as

the standard deviation of the present values restricted to a

bathymetric range between -18 and -40m. A complete overview of

the variations applied to each environmental factor is reported in

Table 3. The overall sensitivity of the results was quantified in terms

of consensus of the additional simulations with the SCE run. This

was computed at each location as the fraction of sensitivity runs in

which the projected evolution was consistent with the one computed

in SCE. Larger values of consensus correspond to smaller sensitivity.
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3 Results

3.1 Habitat classification

The classification of the reported occurrences into the three

habitat assemblages results into two datasets differing from each

other in only three occurrence points out of 85, reaching a 96%

agreement rate. Figure 2 shows the distribution of the categorized

record, while further details on the classification are provided in

Supplementary Tables 1 and 2.
3.2 Models accuracy

Both Random Forest and MaxEnt exhibit high AUC values (the

lowest, 0.88, was calculated by MaxEnt for habitat C), meaning that

the models have a high prediction accuracy (Table 4). Although

Random Forest seems slightly better performing than MaxEnt

according to this metric (Figure 5), the difference between models’

test AUC is very small (maximum 0.026 for habitat C). The models

show high TSS values, indicating they were both reliable. Habitat A

and B returned estimations of 0.95 for both in Random Forest and of

0.94 and 0.86 respectively in MaxEnt. Habitat C presents lower

v a l u e s w i t h 0 . 7 3 and 0 . 7 2 i n Random Fo r e s t a nd

MaxEnt, respectively.
TABLE 3 Perturbation values for the sensitivity analysis.

Variable Value of increase/decrease Source

Temperature ± 1.5°C Soto-Navarro et al. (2020)

Salinity ± 1.5 PSU Soto-Navarro et al. (2020)

Current Velocity ± 0.05 m/s Bonaldo et al. (2014)

Light ± 2 E/m2/year Standard deviation calculated by the environmental raster layer

Phosphate ± 37% Reale et al. (2022)

Nitrate ± 11% Reale et al. (2022)
TABLE 4 Models accuracy evaluation using AUC test and TSS metrics.

Random Forest MaxEnt

Habitat A

AUC test 0.98 AUC test 0.97

TSS 0.95 TSS 0.94

Habitat B

AUC test 0.98 AUC test 0.91

TSS 0.95 TSS 0.86

Habitat C

AUC test 0.91 AUC test 0.88

TSS 0.73 TSS 0.72
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3.3 Variable importance and contribution

The analysis of the contribution of each environmental variable

quantifies their role in controlling the habitat distribution. The

evaluation of Random Forest features under the historical period

highlights that for both habitats A and B the highest decrease in %

IncMSE is observed when salinity is removed by the system (11.84%

and 12.57%, respectively), followed by phosphate (4.24%) and nitrate

(2.87%) for habitat A, and temperature and light (11.56% and 8.06%,

respectively) for habitat B. Regarding habitat C, it appears that nitrate

is the most influencing (19.94%) variable, followed by salinity

(16.21%), and temperature (16.15%).

The MaxEnt analysis of contribution shows that the historical

distribution of habitat A is largely dependent on temperature (99.3%).

Habitat B is mainly influenced by temperature (47.1%) and phosphate

(45.3%). In habitat C salinity is reported as the most contributing

variable (71.3%), followed by nitrate (12.8%) and light (9.1%). A

complete variable ranking and related figures are in Supplementary

Tables 3–8, and Supplementary Figure 2.

The Jackknife analysis built-in in MaxEnt (Figure 6) shows that

temperature in habitat A, when taken individually, is the most

influencing the goodness-of-fit (referred to in the model as “gain”);

once this variable is cut out, the gain decreases, suggesting that

temperature was the main source of system’s variability. In habitat

B, when considering each variable taken alone, light radiance appears

as the one contributing the most, in turn, when individually removing

each variable from the whole set, temperature emerges as the one

mostly explaining the variability of the system. Salinity in habitat C is

the most contributing variable when taken alone, but nitrate removal

shows that this variable actually explains the variability of the system.

The response curves produced by MaxEnt reported for each

habitat in Figures 7–9, represent the effect of each environmental

variable on the model prediction. In habitat A, an increase in

suitability is recorded as the light radiance increases and a similar

trend is observed in habitat C where, however, the suitability curve
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reaches a maximum and decreases up to a plateau. Light in habitat B

presents a bell-shaped curve meaning that an optimal range of

suitability is present corresponding to a defined interval of values

with zero suitability at the extremes of the distribution. Nitrate shows

a similar trend to light, both in habitat A and B, whereas in habitat C

high suitability values were reached at low concentrations. In both

habitats A and B suitability is inversely related to phosphate

concentration; in habitat C the highest suitability is obtained in

correspondence to intermediate concentration values. Habitats A

and B exhibit comparable trends also in response to salinity, both

reporting a decrease from the optimal suitability (1.00) to 0.55 and

0.60 respectively as long as the variable increases. Habitat C reaches

the highest suitability around 38 followed a sudden decrease for

higher values. Increasing temperature in habitats A and B lead to an

increase in their suitability, while in habitat C the highest value is

reached at about 16.5°C, followed by a steep decrease. Finally, the

increase in bottom current velocity in habitats A and B causes a

constant decrease in suitability, whereas habitat C reaches the highest

suitability at the midpoint of the current velocity curve.
3.4 Coralligenous suitability mapping

Figures 10, 11 show the maps of historical suitabilities and the

future variations computed respectively by Random Forest and

MaxEnt for all habitat assemblages. In the historical run, Random

Forest predicts patchy high suitability areas close to the occurrence

point for all the three coralligenous habitat types, whereas MaxEnt

predicts a wider suitable areas and smoother suitability patterns.

Random Forest for habitat A in SCE predicts an increase in the

probability of having ideal conditions in the whole area of interest, in

particular towards the Gulf of Trieste, the Slovenian and Croatian

coasts. Variations between the historical and SCE are considered here

as changes in total area of each habitat. Areas with “low” (equal to

suitability values comprehended between 0 and 0.25) and “high” (0.50
B C
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A

FIGURE 5

AUC plots on test dataset showing the accuracy of Random Forest (RF) and MaxEnt (M) in predicting the potential distribution of coralligenous: (A) Random Forest
AUC on test dataset of habitat A; (B) Random Forest AUC on test dataset of habitat B; (C) Random Forest AUC on test dataset of habitat C; (D)MaxEnt AUC on test
dataset of habitat A; (E)MaxEnt AUC on test dataset of habitat B; (F)MaxEnt AUC on test dataset of habitat C.
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– 0.75) ranges experience an overall decrease of -801 km2 (-10.46%)

and -3 km2 (-33.32%), whereas a very marked increase for the

“moderate” (0.25 - 0.50) interval is reported with +805 km2

(+2121.41%). An increment in the suitability is shown also for
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habitat B. Random Forest reports an increase in the “moderate”

interval with +117 km2 (equal to +339.92%) whereas the “low” surface

decreases by -79 km2 (-1.04%) and “high” and “very high” (0.75 –

1.00) disappear in SCE. Lastly, in habitat C an overall decrease in
B C

D E F

A

FIGURE 7

Response curves derived from MaxEnt reporting the relationship of predicted suitability of habitat A to environmental variables, with y-axis indicating the
probability values and x-axis the concentration/intensity of the variables: (A) relationship between habitat A and light; (B) relationship between habitat A
and nitrate concentration; (C) relationship between habitat A and phosphate; (D) relationship between habitat A and salinity; (E) relationship between
habitat A and temperature; (F) relationship between habitat A and velocity.
B
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FIGURE 6

Jackknife analyses results derived from MaxEnt reporting the contribution and potential effects of variables on the model fit (referred in the system as
“gain”): (A) Jackknife analysis of habitat A; (B) Jackknife analysis of habitat B; (C) Jackknife analysis of habitat C.
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suitability is observed in the SCE. Random Forest shows a decrease in

the areas close to the occurrences and predicts a slight increase

offshore. The variations between historical and SCE return an

increment of +208 km2 (+2.80%) in the “low” range, but an

important decrease is reported for the “moderate” range with -114

km2 (-65.99%), and the other two intervals set to zero.

Results from MaxEnt for habitat A exhibits a decrement in “low”,

“moderate” and “high” percentage by -7069 km2 (99.56%), -228 km2

(-100%), and -99 km2 (-61.29%) respectively, whereas the “very high”

increases by +7396 km2 (+3348.69%). Habitat B has an increment in

“high” and “very high” ranges with +130 km2 and +4868 km2

(+43.47% and +1740.95%) respectively. “low” and “moderate”

decrease by -4835 km2 and -164 km2 (-73.90% and -27.89%). Then,

for habitat C MaxEnt returns a reversed pattern: only the lowest range
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reports an increase with +1213 km2 (+22.12%), the others decreased

by -395 km2, -363 km2, and -454 km2 (-48.31%, -46.02%, -73.60%).
3.5 Habitat distribution and habitat shift

The comparison of the suitability values allows to identify the

dominant (that is, the most suitable) habitat at each location, the

habitat shift in future conditions, as well as the areas in which a

minimum suitability threshold (in this case 0.5) is achieved (Figure 12).

The results from Random Forest returns suitability below 0.5 on the

whole study area for all three habitats. Although with relatively low

suitability values, in the historical period habitat C seems to dominate

over a larger area, followed by B and A. The result reverses in SCE, with
B C
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A

FIGURE 9

Response curves derived from MaxEnt reporting the relationship of predicted suitability of habitat C to environmental variables, with y-axis indicating the
probability values and x-axis the concentration/intensity of the variables: (A) relationship between habitat C and light; (B) relationship between habitat C
and nitrate concentration; (C) relationship between habitat C and phosphate; (D) relationship between habitat C and salinity; (E) relationship between
habitat C and temperature; (F) relationship between habitat C and current velocity.
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FIGURE 8

Response curves derived from MaxEnt reporting the relationship of predicted suitability of habitat B to environmental variables, with y-axis indicating the
probability values and x-axis the concentration/intensity of the variables: (A) relationship between habitat B and light; (B) relationship between habitat B
and nitrate concentration; (C) relationship between habitat B and phosphate; (D) relationship between habitat B and salinity; (E) relationship between
habitat B and temperature; (F) relationship between habitat B and velocity.
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habitat A occupying a wider suitability surface, followed by C, and B.

This change in dominant habitat patterns is associated with 14

occurrence points possibly shifting from habitat C to A, 3 from B to

A, and 1 from A to B. MaxEnt maps returns suitability both below and

above the 0.5 threshold in the historical period, with higher values near

the coastal zone. The habitat that coveres most of the area is habitat C,

followed by B and A. Once again, the picture changes in SCE, with a

dominant presence of habitat A above the 0.5 threshold throughout the

whole basin. In this perspective, MaxEnt predicts a potential shift of 50

occurrence points from C to A, 21 from B to A, and 4 from A to B.
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3.6 Results from sensitivity analysis and
consensus maps

The results of the sensitivity analysis are summarised in

consensus maps showing, for every cell of the domain, the fraction

of sensitivity runs in which the sign of the trend of the suitabilities

(Figure 13) or the projected dominant habitats (Figure 14) confirm

the results of the SCE run. Very high scores (yellow color) appear

widespread for habitats A and B (Figures 13A, B, D, E) both in

Random Forest and Maxent, suggesting a satisfactory robustness for
B C
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FIGURE 10

Suitability maps (horizontal resolution 0.02°) from Random Forest. Maps (A–C) represents Random Forest suitability for habitat A, B and C during the
historical period (1999-2018). Maps (D–F) represents Random Forest future changes according to climate change RCP 8.5 scenario. First line scale
legend: 0-0.25 = Low suitability; 0.25-0.5 = Moderate suitability; 0.5-0.75 = High suitability; 0.75-1 = Very high suitability (Thuiller and Münkemüller,
2010; Mousazade et al., 2019). Second line scale legend: -1 = prediction of a suitability decrement in comparison to historical period; 0 = no changes
predicted; +1 = prediction of a suitability increment in comparison to historical period.
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FIGURE 11

Suitability maps (horizontal resolution 0.02°) from MaxEnt. Maps (A–C) represents MaxEnt suitability for habitat A, B and C during the historical period
(1999-2018). Maps (D–F) represents MaxEnt future changes according to climate change RCP 8.5 scenario. First line scale legend: 0-0.25 = Low
suitability; 0.25-0.5 = Moderate suitability; 0.5-0.75 = High suitability; 0.75-1 = Very high suitability (Thuiller and Münkemüller, 2010; Mousazade et al.,
2019). Second line scale legend: -1 = prediction of a suitability decrement in comparison to historical period; 0 = no changes predicted; +1 = prediction
of a suitability increment in comparison to historical period.
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these predictions throughout the whole domain. Some larger

sensitivity is found for habitat C (Figures 13C, F), appearing in

Random Forest as a patchy pattern of low-agreement regions, and,

to a smaller extent, in MaxEnt as a slight decrease in consensus along

the coast.
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The larger sensitivity of Random Forest in the calculation of the

habitats suitabilites reflects on a smaller consensus in the prediction of

the dominant habitat, whereas MaxEnt seems to confirm a larger

robustness with respect to possible uncertainties in the environmental

parameters (Figure 14).
B C
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FIGURE 13

Consensus between trends sign in the sensitivity analysis and the SCE run for Random Forest (A–C) and for MaxEnt (D–F). For each simulation,
agreement is assessed based only on the sign (either increasing or decreasing) of the trend. The scale ranges from 0 (worst agreement, no simulation in
the sensitivity analysis in agreement with SCE) to 1 (perfect agreement, all simulations in agreement with SCE).
B
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A

FIGURE 12

Historical and future distribution of dominant habitats (maximum suitability) according to Random Forest and MaxEnt models. (A) Historical distribution
of habitats predicted by Random Forest; (B) Historical distribution of habitats predicted by MaxEnt; (C) Future distribution of habitats predicted by
Random Forest; (D) Future distribution of habitats predicted by MaxEnt. Shaded colors indicate suitability values below a threshold of 0.5, therefore
belonging to low-medium ranges, while marked ones stood for values above 0.5 and belonging to high range.
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4 Discussion

The identification of areas of priority for conservation and the

successful management of Marine Protected Areas (hereafter MPAs),

are severely hindered by a lack of data on the distribution of habitats

identified as vulnerable and threatened by environmental and

anthropogenic effects at different scales, as it is the case of the

coralligenous (Teixidó et al., 2013; Marshall et al., 2014). MPAs are

recognized as excellent tools to counteract some threats that affect

marine ecosystems and decrease their vulnerability by enhancing

their resilience (Vitelletti and Bonaldo, 2020). The prediction of the

effects of climate change on environmental conditions and

communities can feed the adoption of anticipatory approaches, thus

fostering the effective management and protection of marine areas

(Elliott et al., 2017). The application of HSMs can provide forecast on

the effects of environmental processes and possible human actions on

the marine environment, facilitating the identification of areas of
Frontiers in Marine Science 13
priority for conservation, and supporting the definition and

implementation of MPA management plans (Robinson et al., 2011).
4.1 Remarks on models performance

The accuracy metrics calculated for Random Forest and MaxEnt

confirm in principle the good performance of both models in

predicting the probability of coralligenous presence in the Northern

Adriatic Sea (Acharya et al., 2019 and reference therein). Nonetheless,

the appearing discrepancies in terms of present and future habitat

distribution show that accuracy metrics per se are not always sufficient

for drawing conclusions on the validity of the results. In fact, due to

the complexity of the ecological processes and the unavoidable need

for simplified conceptualizations (be them mechanistic or

correlative), HSMs are intrinsically prone to different sources of

error. Several studies have investigated the different relations
A

B

FIGURE 14

Consensus between projected habitat distribution in the sensitivity analysis and the SCE run for Random Forest (A) and MaxEnt (B).
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between HSMs and input data characteristics concluding that models

results and effectiveness vary according to the study system, data

quality, and the scientific question addressed (Elith and Graham, 2008

and references therein). The implementation of at least two model

techniques, with the comparison of their performances and the

integration of the results, is typically adopted in HSM studies to

better address the uncertainty related to the modelling approach.

The two models employed in this study predict higher habitats’

suitability in areas close to the available occurrences, albeit with

different distributions. While MaxEnt reports larger surfaces suitable

for coralligenous presence with a gradual decrease as moving away

from the occurrences, Random Forest, at a finer scale observation,

showed narrower suitability ranges. In future conditions, both models

predict some changes in habitat suitability and dominance with more

marked variations in MaxEnt than in Random Forest, although with

overall comparable spatial patterns. However, it is clear that a net loss

of suitable areas of some habitat types is envisaged by both models

and some associated species are more vulnerable than others to

climate change (Boys et al., 2021). The difference between MaxEnt

and Random Forest results can be ascribed to various reasons, from

the implementation of different approaches eliciting differences in

behavior of species distribution outputs to the choice of

environmental variables (Shabani et al, 2018 and reference therein).

In particular, the patchy pattern in Random Forest is probably due to

an overfitted model, where the effects of environmental conditions on

the location of occurrences exert a greater influence on the closest

surrounding area and consequently lead to the presence of high

probabilities of suitability in the neightbouring cells. The

configuration of a built-in option called “regularization parameter”

in MaxEnt permits to prevent overfitting although with a less

localized prediction (Phillips and Dudı ́k, 2008 and reference

therein). The absence of this option in Random Forest model can

be the reason for the greater influence of the environmental variables

on the records’ surrounding area and confirms the sensitivity of this

model to spatial autocorrelation (Sinha et al., 2019). The size of the

dataset might be another factor giving rise to different results between

the models. Literature reports evidence of MaxEnt being capable of

dealing with limited datasets (Kaky et al., 2020); whereas, Random

Forest is more influenced by the quantity and spatial distribution of

the available occurrences (Rahmati et al., 2016; Acharya et al., 2019),

though possibly achieving satisfactory results also in the presence of a

limited number of occurrence records (Mi et al., 2017 and reference

therein). Even though the model skills of the two approachs are

comparable, the tendency to overfitting in Random Forest, combined

with its overall higher sensitivity to uncertainties in the input data,

suggests that present and projected basin-scale patterns produced by

this model should be treated with higher cautiousness.
4.2 Habitat shifts and ecological implications

The differentiation into the three habitat types and the application

of HSMs allows to predict how each of them will be influenced by

future climate changes.

Among the considered environmental variables temperature,

salinity and nitrate are the strongest drivers for the distribution of

the three habitats types. These variables are largely influenced by
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atmospheric factors as well as by the terrestrial dynamics of the North

Adriatic Sea that is subject to important river inputs (Degobbis et al.,

2000). Alterations in environmental variables due to climate change

have already been explored and have proved to be relevant in this sub-

basin being able to change the characteristics and quality of the water

body (Rizzi et al., 2016). However, a certain degree of correlation

among variables, particularly in coastal environments dominated by

cross-shore gradients, may have some spurious impacts on the results

(Burbach, 2011) also considering that the distribution of habitats is

influenced by overlapping and integrating factors. For this reason,

during the setting up phase of any model, it is recommended to settle

the correct resolution and spatial scale to capture the entire available

environmental variability.

The results obtained in this study predict the shift from habitats B

and C to habitat A, suggesting a more suitable growth conditions for

habitat A species assemblages in the future. Opportunistic organisms

(e.g. turf-forming macroalgae, encrusting Porifera, and bioeroders)

dominate habitat A and are known to tolerate what is generally

considered stressful environmental conditions, such as high

temperature and organic loads (Piazzi et al., 2012; Falace et al.,

2015). Indeed, the suitability distribution of this habitat was

positively correlated with high nitrate concentrations and

temperature, while a negative influence resulted from high salinity

and phosphate levels. These results are in line with previous modeling

findings (Falace et al., 2015). Habitat B is considered a transitional

habitat, being composed of species characterizing habitat A together

with massive Porifera, erect tunicate, and non-calcareous encrusting

algae. Similarly to A, habitat B distribution appears influenced by

temperature and salinity showing respectively positive and negative

relationships. Both the increments of phosphate and nitrate

concentrations have a negative influence on the potential presence

of habitat B. These results are realistic considering the negative impact

that high loads of nutrients and suspended sediment (which are

highly correlated with dissolved nutrients) have on erect and filter-

feeders organisms, by hindering their breathing and feeding habit

(Lemly, 1982; Gibson et al., 2006 and reference therein). Finally,

habitat C, distributed farther from the coast as compared to the other

two, is characterized by the presence of calcareous algae and the

tunicate Polycitor adriaticus, a species observed mainly in undisturbed

environments and vulnerable to stressful conditions (Falace et al.,

2015). Indeed, this habitat presents higher suitability in the Northern-

Western Adriatic at low-medium concentrations of nutrients and

medium-low temperatures (around 16.5°C). Light at the sea bottom

(influenced by water turbidity) slightly influences the distribution of

the different habitats, especially B and C. This result finds consistency

in previous studies identifying light radiation as a factor that

influences the distribution of mesophotic communities (Rossi et al.,

2017; Coppari et al., 2020; Castellan et al., 2022), as the northern

Adriatic rocky outcrops are defined (Fava et al., 2016; Ingrosso

et al., 2018).

Under the climate change scenario, an average temperature

increase of 2.48°C in the sub-basin is predicted. The changes in this

environmental variable result in a sharp decline (Random Forest) or

disappearance (MaxEnt) of habitat C (and partly of habitat B), which

could be replaced by habitat A. The resulting pattern is opposite to

what is depicted in the historical period. Since habitat A is dominated

by opportunistic macroalgae, it is not surprising that it can benefit
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from sea warming thus expanding its area at the expense of more

temperature-vulnerable habitat-forming species, such as massive

Porifera and erect tunicates (Ji et al., 2016; Ober, 2016). Extreme

warming events caused by climate change have been observed to have

major impacts on Mediterranean coralligenous assemblages, inducing

the loss of engineering species characterized by key functional traits,

which have a role in driving the biogeochemical cycles and the trophic

chain that support biodiversity (Gómez-Gras et al., 2021).

It is interesting to know that contrasting observations have been

reported about the effects of seawater warming on crustose coralline

algae (associated with habitat C) (Cornwall et al., 2019).

Unfortunately, in this study, it was not possible to discriminate the

rocky outcrops based on their coralline algae species composition

(mainly Lithophyllum stictaeforme, Lithothamnion minervae, and

Peyssonnelia polymorpha according to Ponti et al., 2011).

An intensification of studies coupling long-term monitoring of

coralligenous communities with habitat suitability and climate model

predictions would be strongly beneficial in filling the present scarcity

of an evidence-based insight in the effects of warming on these species

(see, for example, Rodrı ́guez-Prieto, 2016), Furthermore, in

combination with warming, cumulative negative effects are expected

on coralligenous. Indeed fast-growing turfs and invasive algae can

overgrow on crustose coralline algae and trap and accumulate

sediment preventing the recovery of filter feeders, leading then to

the declining of these species due to high sedimentation rate (Filbee-

Dexter et al., 2016 and references therein).

The projected scenario depicts a severe simplification in

coralligenous habitat and a general loss of assemblages over the

entire study area. Worth noting, the apparent underestimate of the

SST increase rate in the ocean model simulation could imply, under

the assumption that in shallow waters this reflects to some extent the

behavior of the whole water column, that our projections

underestimate the intensity of the climate change signal. As a

result, the conditions discussed here for the end of this century

could take place significantly sooner than depicted in this study.

How climate change will alter the physical and chemical properties of

the North Adriatic sub-basin and sedimentation loads is still unclear,

even though changes in riverine inputs and runoff are expected, due

to altered precipitations and snow-ice melting, together with

increased frequency of storm surges (Castellan et al., 2022). The

combined effect of all these events is uncertain, but surely it will alter

the water quality and turbidity of the basin, with consequences on

the species influenced by light radiation (Rizzi et al., 2016; Castellan

et al., 2022), as those associated to habitat B and C. Nonetheless,

the sensitivity analysis shows that the overall picture emerging from

the present work can be confirmed even when accounting for the

uncertainty affecting the values of the environmental parameters.

The biodiversity loss expected for the Northern Adriatic Sea in

climate change conditions will likely lead to the loss of key ecological

processes with important consequences on the entire food web and

ecosystem functioning.
5 Conclusions

The use of HSMs is achieving a major role in estimating potential

habitat distributions and informing conservation strategies. As such,
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these modeling tools can support environmental surveys planning

and management decisions and can suggest more suitable locations

where conservation efforts should be focused. At present the available

knowledge on HSM applications provides no striking evidence of one

approach clearly outperforming the others for any application: for

this reason, it is generally a good strategy to apply different

approaches and critically evaluate the reliability of their results.

With reference to the present application, the following

conclusions can be drawn:
• both Random Forest and MaxEnt achieved satisfactory

accuracy metrics for the analysis of coralligenous habitats in

the Northern Adriatic Sea. Nonetheless, some tendency to

overfitting reported in the former, together with its higher

sensitivity to uncertain input data, suggest some cautionsness

in the interpretation of its results, particularly for spatial

patterns far of the occurrence locations;

• the application of these HSMs showed that widespread

modifications in coralligenous habitat distributions should

be expected in a severe climate change condition (RCP 8.5).

Tolerant and opportunistic species are expected to expand

their distribution in the Northern Adriatic Sea, while

calcareous species and organisms more vulnerable to

environmental alterations might undergo a decrease in their

suitable habitat;

• the projected shift in habitat distribution will result in a a

potential net loss of biodiversity in the sub-basin;

• in this perspective, the use of HSMs can facilitate the

identification of protection priorities for endangered areas.

To this aim, the intensification of survey activities and the

definition of long-term monitoring plans would provide

valuable data for the model applications, collecting at the

same time information on the evolution of marine habitats

and on the results of management and protection actions put

in place in these systems.
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