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Accurate and reliable wave significant wave height(SWH) prediction is an

important task for marine and engineering applications. This study aims to

develop a new deep learning algorithm to accurately predict the SWH of deep

and distant ocean. In this study, we combine two methods, Ensemble Empirical

Mode Decomposition (EEMD) and Long Short-Term Memory (LSTM), to

construct an EEMD-LSTM model, and explore the optimal parameters of the

model through experiments. A total of 5328 hours of SWH data from November

30, 2020, to July 9, 2021, are used to train and test the model to predict the SWH

for the future 1h, 3h, 6h, 12h, and 18h. The results show that the EEMD-LSTM

model has the best results compared with other comparative models for short-

term and medium- and long-term predictions. The RMSEs are 0.0204, 0.0279,

0.0452, 0.0941, and 0.1949 for the SWH prediction in the future 1, 3, 6, 12, and 18

h. It can be used as a rapid SWH prediction system to ensure navigation safety to

a certain extent, which has great practical significance and application value.

KEYWORDS

SWH prediction, ensemble empirical mode decomposition, long short term memory,
time series analysis, unstructured grid model
1 Introduction

Waves are an important area of study in physical oceanography. Sea waves are highly

influenced by environmental changes and the Earth system, especially waves due to climate

change (Lobeto et al., 2021). The wave period, wave direction, SWH, and other sea state

characteristics are important safety factors that must be considered for activities such as

marine engineering construction, maritime transportation, environmental protection, and

military operations (Mahjoobi and Mosabbeb, 2009). Among them, the SWH of ocean is

the most important. Accurate and reliable wave SWH prediction is an essential task for

marine and engineering applications (Ali et al., 2021). Therefore, it is of great importance

to combine the observation data to make accurate forecasts of the SWH.
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As one of the two critical waters of the 21st Century Maritime

Silk Road (Zhu and Wang, 2015), simulating and analyzing the

SWH of the Indian Ocean will help explore and develop the wave

energy of the sea and help the Chinese fleet navigate far away from

the sea in the future. This is of positive significance to the

development of both China and the coastal countries of the

“Maritime Silk Road” and the building of the Maritime Silk Road

and the Asian Community of Destiny (Zhao et al., 2021).

There are three main methods for predicting the SWH of ocean.

The first one is based on empirical models. Wave prediction is

performed by a priori model assumptions, such as the Auto-

Regression and Moving Average Model (ARMA) (Ge and

Kerrigan, 2016). Still, empirical models have limited predictive

power and are not applicable to predicting non-linear and non-

smooth wave heights. The second is a numerical model based on

physical processes of wave generation and dissipation, such as

SWAN (Booij et al., 1997), WAM (Group, 1988), and Wave

Watch III (Tolman et al., 2009). Because the numerical model of

waves has to be built on explicit physical processes, which require

large computational resources and long computing time, its

predictions lack real-time. The third one is the machine learning-

based forecasting method. Because it is not limited by high-

performance computing and large sample data set input and has

a very high real-time performance, in recent years, machine

learning methods such as Linear Regression (LR), Random

Forests (RF), Long Short Term Memory (LSTM), and Gated

Recurrent Unit (GRU) have been widely used for wave element

prediction (Meng et al., 2021a; Meng et al., 2021b; Meng et al.,

2021c; Meng et al., 2021d; Song et al., 2022), effectively

compensating for the shortcomings of the other two wave

prediction methods.

EMD is a signaling method for processing nonlinear

nonstationary time series proposed by Huang et al. (1998). The

EMD method can be theoretically applied to any type of signal

decomposition and thus has a very obvious advantage in dealing

with non-stationary and non-linear data. EEMD, which stands for

Ensemble Empirical Mode Decomposition (Wu and Huang, 2009),

is a noise-assisted data analysis method proposed to address the

shortcomings of the EMD method, which effectively solves the

mixing phenomenon of EMD. In recent years, EEMD has been

widely used in wave factor prediction (Meng et al., 2022).

Currently, there are two widely used mesh discretization

methods in ocean physical models: structured meshes and

unstructured meshes. Unstructured meshes are meshes without

regular topological relationships. An unstructured grid is one in

which the interior points within the grid region do not have the

same adjacent cells (Song et al., 2021).That is, there are different

numbers of grids connected to different interior points within the

grid section area. The unstructured grid has strong flexibility in

modeling and can be good for shoreline boundary fitting. The data

used in this study are the SWH data of the unstructured model.

The FVCOM model is an unstructured numerical model of the

ocean (Chen et al., 2006). It uses a combination of alpha vertical

coordinates and horizontal triangular unstructured mesh

coordinates to simulate complex shore and seafloor topography

better. The numerical model uses the finite volume method (FVM)
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and can be applied to a variety of oceanic problems, now has been

widely used worldwide to study ocean processes (Chen et al., 2003).

To the best of our knowledge, there is no work to analyze and

predict wave data based on unstructured ocean models using

artificial intelligence methods. In this paper, according to the

characteristics of non-smooth and non-linear wave SWH, the

LSTM model, which is more suitable for time series prediction, is

selected and combined with the EEMD method to train and predict

the model using 5328 hours of deep-sea unstructured mode wave

SWH data. The SWH for the next 1h, 3h, 6h, 12h, and 18h were

predicted. Evaluation metrics such as RMSE, MSE, MAE, MAEP,

and R2 were used to evaluate the model, and a number of different

algorithms were also used to compare with the model to

demonstrate the accuracy of the model predictions.

The main contribution of the work is as follows:

(1) To the best of our knowledge, this is the first work that

presents the analysis and prediction of unstructured ocean model

wave data using artificial intelligence methods. (2) An EEMD-

LSTM model is proposed to predict the SWH of deep ocean for

the next 1 to 18 hours.

(3) A comparative study with other machine learning and deep

learning algorithms is conducted.

The remainder of the paper is organized as follows. Section 2

describes related work. Section 3 describes the methods used, the

construction of the EEMD-LSTMmodel, the comparison model, and

the model evaluation metrics. Section 4 describes the study area and

the wave data used. In Section 5, the model is trained and predicted

using 5328 h of SWH data for deep and distant ocean. The SWHs for

the next 1h, 3h, 6h, 12h, and 18h are predicted and compared with

the model using several different algorithms. Conclusions and

limitations of this experiment are given in Section 6.
2 Related works

With the continuous progress of ocean observation technology,

the volume and data dimension of ocean data has increased

dramatically, and the use of traditional data analysis methods to

analyze the huge amount of data has revealed many shortcomings

(Lou et al., 2021). In recent years, data-driven approaches based on

data are becoming well known and widely used. Data-driven

methods can learn the dependencies between input and output

data from historical data and build models, which can make

predictions about future data. Machine learning methods are

data-driven. Common machine learning methods such as LR and

RF have been widely used in ocean forecasting. Ali M (Ali et al.,

2020) designed a machine learning model based on multiple linear

regression and covariance-weighted least square estimation for

forecasting near real-time SWH values within half an hour.

Pokhrel P (Pokhrel et al., 2020) proposed a random forest

classifier-based algorithm to predict anomalous ocean surges,

which achieved an overall accuracy of 89.57% - 91.81%. Memar S

(Memar et al., 2021)applied two data-driven techniques, adaptive

neuro-fuzzy inference system (ANFIS) and support vector

regression (SVR), to predict the maximum seasonal wave height.

Mahmoodi K (Mahmoodi and Nowruzi, 2021) proposed a new
frontiersin.org
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hybrid Natural Outlier Factor-Extreme Learning Machine(NOF-

ELM) method for predicting extreme wave height occurrence based

on meteorological data.

Being excellent in describing the long-term dependence of time

series, the LSTM network has also been recently applied to wave

height time series prediction (Fan et al., 2020; Guan, 2020; Raja

et al., 2021). Abdullah (Abdullah et al., 2022) proposed a novel

modeling approach based on LSTM neural network model. It is

used to predict SWH in Indonesian waters. Hu H (Hu et al., 2021)

applies a novel machine learning approach based on XGBoost and

LSTM recurrent neural networks to predict the wave height and

period of Lake Erie. GRU, a variant of LSTM, not only inherits the

advantages of LSTM networks but also improves the training speed.

Li X (Li et al., 2022) proposed a robust short- and long-term wave

prediction method through a GRU network. Wei C C (Wei and

Chang, 2021) combined GRU neural networks and convolutional

neural networks (CNNs) to develop a typhoon-induced wind and

wave height prediction model.

The EMD method can be used for adaptive time-frequency

analysis of nonlinear and non-smooth data such as wave height.

Moreover, pre-processing the data using the EMD method can

effectively improve the performance of time series prediction models

(Guo et al., 2020). Raj N (Raj and Brown, 2021) developed and applied

a high-precision hybrid Boruta Random Forest (BRF)-EEMD-

Bidirectional Long and Short Term Memory (BiLSTM) algorithm to

predict the SWH. Zhou (Zhou et al., 2021) used a joint model of EMD

and LSTMnetwork to predict the giant wave height. HaoW (Hao et al.,

2022) combined the 110 advantages of the LSTMmodel and EMD and

found that the error of the EMD-LSTM method is lower than that of

the LSTM model based on the prediction of SWH at three locations

offshore China. Ali M (Ali and Prasad, 2019) combined an Extreme

Learning Machine (ELM) model with an improved complete EEMD

method with adaptive noise (ICEEMDAN) to predict the SWH along

the eastern coast of Australia.

The data applied in this paper are from the FVCOM model,

which is an unstructured ocean model that has also been widely

used in recent years for ocean factor prediction. Soroush Sorourian

et al. (Sorourian et al., 2020) used a fully coupled unstructured grid,

three-dimensional, FVCOM-SWAVE model to study wave

characteristics and wave-current interactions at six tidal inlets

connecting the Barataria Basin to the northern Gulf of Mexico.

Raharja I M D (Raharja et al., 2021) used a 3D oblique pressure

hydrodynamic numerical simulation method of the FVCOM to

simulate the tidal circulation.

Inspired by the above methods and models, we propose an

EEMD-LSTMmodel for the analysis and prediction of unstructured

ocean model SWH data. Section 3 describes in detail the principle of

the method.
3 Methods

3.1 EEMD

EMD is a signaling method to deal with non-smooth time

series (Wu and Huang, 2009), while the EEMD is based on the
Frontiers in Marine Science 03
EMD by inserting a Gaussian white noise sequence, which

effectively suppresses the edge effects and scale mixing

phenomena appearing in the EMD method, so that the final

decomposed eigenmode The IMF (Intrinsic Mode Function)

component of the final decomposition is kept physically unique.

Since the method does not require any predetermined basis

functions, while the added white noise amplitude has a

negligible impact on the final results, the method has good

adaptability (Zheng et al., 2012).

IMFs are the signal components of each layer obtained after

EMD decomposes the original signal. Any signal can be split into

the sum of several IMFs. And the implicit mode components have

two constraints.

(1) The number of extremal points and the number of trans-

zero points must be equal or differ by at most one in the whole

data segment.

(2) At any moment, the average value of the upper envelope

formed by the local extreme value points and the lower envelope

formed by the local minimal value points is zero, i.e., the upper

and lower envelopes are locally symmetric with respect to the

time axis.

After the EMD method decomposition (Lei et al., 2009), the

original signal will decompose into a series of IMF and the

remaining part of the linear superposition.

However, in the EMD method, the signal polarization point

affects the IMF, and modal aliasing can occur if the distribution is

not uniform.

The EEMD method introduces white noise into the signal to be

analyzed. The spectrum of white noise is uniformly distributed, so

the signal is automatically distributed to the appropriate reference

scale. Due to the characteristics of zero-mean noise, the noise will

cancel each other after several averaging calculations so that the

calculation result of the integrated mean can be directly regarded as

the final result.

The EEMD decomposition is mainly divided into 4 steps, as

shown in Figure 1.
(1) Set the processing times of the original signal m

(2) add random white noise to each of the m original signals to

form a new series of signals 148

(3) Perform EMD decomposition on the new signals to obtain

a series of IMF components

(4) The EEMD decomposition results are obtained by

averaging the IMF components of the corresponding

modes.
EEMD can effect ively suppress the modal mixing

phenomenon of EMD, and the decomposition effect is better

than that of EMD.
3.2 LSTM

A recurrent neural network (RNN) is a special kind of neural

network structure that considers the input at the previous moment
frontiersin.org
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and gives the network a kind of ‘memory’ function for what

came before.

RNN is called a recurrent neural network because the current

output is also related to the previous output. This is because the

network remembers the previous information and applies it to the

current output, i.e., the nodes between the hidden layers are

connected, and the input of the hidden layers includes not only

the output of the input layer but also the output of the hidden layer

at the previous moment.

RNN is very effective in dealing with time series problems, but

there are still some problems: the tendency of gradient

disappearance or gradient explosion.

LSTM is developed based on RNN. LSTM overcomes the

problem of long-term dependence and gradient disappearance

that RNN cannot handle using the input gate, forgetting gate, and

output gate structure and can better handle time-series data.

Figure 2 shows the structure of LSTM. There are three main

phases within LSTM.
Frontiers in Marine Science 04
ft = s (wf · ½ht−1, xt � + bf ) (1)

First is the forgetting phase. The calculated ft is used as

forgetting gating to control which of the last memory units Ct–1

need to be retained and which need to be forgotten. Equation (1) is

the formula for ft, where s is the sigmoid activation function, Wf is

the parameter estimated during modal training, ht–1 is the state at

the previous moment, xt is the current input, and bf denotes the

bias.

~Ct = tanh  (WC · ½ht−1, xt � + bC) (2)

it = s (Wi · ½ht−1, xt � + bi) (3)

The second is the selection memory phase. It is mainly a

selection memory for input xt. ~Ct represents the cell state update

value, which is obtained from the input data xt and the state ht–1 at

the previous moment through a neural network layer. The

activation function for the cell state update value usually uses the
FIGURE 1

Principle of EEMD.
FIGURE 2

Structure of LSTM.
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hyperbolic tangent activation function tanh. Equation (2) is the

formula for ~Ct . it is called the input gate that controls which features

of ~Ct are used to update Ct. it, like ft, is a vector with elements in the

interval [0,1], and is also computed from xt and ht–1 via the sigmoid

activation function. Equation (3) is the formula for it.

Ct = ft*Ct−1 + it*~Ct (4)

The results obtained from the above two steps are summed to

obtain the Ct transmitted to the next state, as shown in Equation (4).

ot = s (W0½ht−1, xt � + bo) (5)

ht = ot* tanh  (Ct) (6)

The third is the output phase. This phase will decide what will

be taken as the output of the current state. ht represents the output

of the hidden node. ht is obtained from the output gate ot and the

cell state Ct. ot is also calculated from xt and ht–1 via the sigmoid

activation function, as shown in Equation (5). Equation (6) is the

formula for ht.
3.3 EEMD-LSTM prediction model

The SWH time series is a complex nonlinear, and non-smooth

data signal and such characteristics make the prediction of LSTM

models difficult. EEMD can smooth the SWH time series to obtain a

series of smooth components with different frequencies and then use

the LSTM model to predict these components and sum the prediction

results to obtain the final SWH prediction. Because EEMD can fully

extract the main features of SWH data, the EEMD-LSTM composite

model can overcome the shortcomings of individual models by

generating synergistic effects in the prediction (Meng et al., 2022),

which is perhaps an effective method for predicting nonlinear and non-

smooth SWHs. Therefore, in this study, an EEMD-LSTM prediction

model is proposed for predicting the futuremulti-hourly SWHof deep-

sea waves.

Figure 3 shows the flow chart of the EEMD-LSTM model

implementation. The process of model implementation consists of

three steps.

Step 1: The wave SWH time series data are smoothed by EEMD

to obtain a series of smooth components with different frequencies,

i.e., IMFs and residuals.

Step 2: Normalize each IMF and build different LSTM

prediction models to obtain the prediction results of each IMF

separately and inverse normalize the results.

Step 3: Combine the prediction results of each IMF with equal

weight superposition to get the final prediction results of SWH.
3.4 Comparative experimental methods
and evaluation indicators

3.4.1 Linear regression (LR)
LR, the data are modeled using a linear predictive function, and

the unknown model parameters are estimated from the data. These

models are called linear models.
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LR is a type of regression analysis that models the relationship

between one or more independent and dependent variables using a

least-square function called a LR equation.

The model is defined as shown in Equation (7) (Draper and

Smith, 1998; Montgomery et al., 2021):

f (x) = w0 + w1x1 + w2x2 +⋯wnxn (7)

Using the matrix to represent this is: f(x)=XW, where W is the

set of parameters to be solved and X is the input data matrix.

3.4.2 Random forest (RF)
Integration learning has better generalization performance than

a single learner by building multiple learners and integrating the

results. Currently, there are two types of integrated learning

methods: Boosting algorithms, which have strong dependencies

between learners and learn serially, and Bagging algorithms, which

have no dependencies between learners and can learn in parallel. RF

is a typical Bagging integrated learning algorithm and is popular for

its parallel training advantage in dealing with data problems today.

The process of constructing a RF is as follows.
(1) Random selection of samples (with put-back sampling).

Suppose there are N samples, then N samples are selected

randomly with put-back. Train a decision tree with these N

samples as the samples at the root node of the decision tree.

(2) Random selection of features (the features are selected

randomly during each node split). When each sample has

M attributes, when each node of the decision tree needs to

be split, m attributes are randomly selected from these M

attributes to satisfy the condition m<<M. Then, some

strategy is used to determine the divided attributes from

these countries m attributes.

(3) Each node in the decision tree formation process is split

according to step (2) until it can no longer be split. No

pruning is done during the whole decision tree formation

process.

(4) A large number of decision trees are built according to steps

(1) to (3), which constitute a RF.
Different training sample sets are obtained by resampling the

samples, training the learners separately on these new training

sample sets, and finally merging the results of each learner as the

final learning result, where the weights of each sample are

the same.

3.4.3 GRU
GRU is a variant of the LSTM network (Cho et al., 2014). There

are only two gates in the GRU model: the update gate and the reset

gate. The specific structure is shown in Figure 4.

rt = s (wr · ½ht−1, xt �) (8)

zt = s wz � ht−1, xt½ �ð Þ (9)

~ht = tanh  (W~h · ½rt*ht−1, xt �) (10)
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ht = (1 − zt)*ht−1 + zt*
~ht (11)

The rt and zt in the figure denote the reset gate and update gate,

respectively. rt 230 is obtained from the 231 current input xt and the

previous state ht−1, as shown in Equation (8). The update gate controls

howmuch information from the previous state is written to the current

candidate set ~ht . zt is also obtained from xt and ht−1, as shown in Eq.

(9). Finally, ~ht . zt and ht are calculated from Eqs. (10) and (11).
3.4.4 Evaluation criterion
To quantitatively compare the prediction effects of the models, we

use Root Mean Squared Error (RMSE), Mean Squared Error (MSE),

Mean Absolute Error (MAE), Mean Absolute Error Percentage

(MAEP), and Coefficient of Determination (R2), which calculates

the deviation between the predicted and true values of the model

(Gao et al., 2021, Bethel et al., 2022), are used to evaluate the model.m
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denotes the total number of predicted SWH, yi is the true value, ŷ i is

the predicted value, and y
−

i is the mean of the true values.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m
i=1(yi − ŷ i)

2

r
(12)

MSE =
1
mo

m

i=1
(yi − ŷ i)

2 (13)

MAE =
1
mo

m

i=1
(yi − ŷ i)j j (14)

MAEP =
1
mo

m

i=1

ŷ i − yi
yi

����
���� (15)

R2 = 1 −o
m
i=1(yi − ŷ i)

2

om
i=1(yi − y

−

i)
2

(16)
FIGURE 3

Flowchart of EEMD-LSTM model implementation.
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4 Study area and data

4.1 Study area

Our study area is the sea area shown in Figure 5 in the Indian

Ocean within the range of 15∘S∼30∘N , 30∘E∼110∘E . This sea area

contains the main route of the 21st Century Maritime Silk Road: the

Colombo - Kolkata - Nairobi route. The SWH prediction for the

deep and distant sea of the Indian Ocean can guarantee the safety of

ship travel to a great extent.
4.2 Data

SWH is the actual wave height value counted according to

certain rules. In any wave group consisting of n waves, the wave

heights in the wave train are ranked from largest to smallest, and the

first n/3 waves are determined to be the significant waves. The SWH

and period are then equal to the average height and period of these

n/3 waves.

As shown in Figure 6, there are 4434 unstructured grid nodes

in our study area, and the study data are the SWH forecasts from
Frontiers in Marine Science 07
the unstructured model FVCOM model for each grid node for a

total of 222 days which is 5328 hours from November 30, 2020, to

July 9, 2021. Because the FVCOM model can accurately forecast

wave heights in several different environments and can also well

simulate the characteristics and trends of wave height changes

(Chen et al., 2006), the forecast data from the FVCOM model can

be used as real wave height data to train the model. The SWH time

series data are shown in Figure 7, which is the data with latitude

and longitude 40.8965°E, 9.9087°S. The first 4262 hours of data are

taken as the training set, which accounts for about 80% of the

entire sequence length, and the rest of the data are used as the

test set.
5 Experimental results and analysis

Our experiments are conducted on a PC with the following

simulation environment.

(1) Hardware: I7-8750H processor, 32G RAM, 4 NVIDIA

Tesla P100.

(2) System environment: Ubuntu 16.04 system, python 3.6.5,

NumPy 1.18.5, Tensorflow 2.4.1, matplotlib 3.3.4.
FIGURE 4

Structure of GRU.
FIGURE 5

Study area.
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5.1 Hyperparameter setting

To improve the prediction effect of the model, the

hyperparameters of the model were tested in this study. The

prediction effects of the EEMD-LSTM model were tested for

different values of timestep and SWH data decomposed into

different numbers of components in EEMD, respectively.

The meaning of the parameter Timestep is to predict the data in

the next hour by how long the data in the past. For example,

Timestep=8 means that the SWH data of the past 8 hours is used to

predict the SWH of the future 1 hour. Firstly, the prediction effect of

the EEMD-LSTM model for the SWH of the future one hour was

tested under different values of the timestep. A total of seven sets of

tests were conducted, setting the values of timestep from 6 to 12,

respectively, and keeping other parameters consistent. The

experimental results are shown in Table 1. It can be seen from

Table 1 that when the value of timestep is 8, the EEMD-LSTM

model has the best prediction effect on the SWH in the next 1 hour,

in which the RMSE is only 0.0204 and the R2 can reach 0.9965.

Then the prediction effectiveness of the proposed EEMD-LSTM

model for the SWH in the next 1 hour is tested and compared when

the SWH data are decomposed into different numbers of components

using the EEMD algorithm, respectively. The specific procedure is as

follows: The SWH data can be decomposed into up to 10 IMFs and a
Frontiers in Marine Science 08
residual term. Firstly, the SWH data are decomposed into 1~10

components and a residual term by the EEMD algorithm. Then each

IMF in these 10 decomposition states is predicted by the LSTM

network, where the network parameters are kept consistent. The

prediction results of each IMF are summed separately to obtain the

final prediction results of each decomposition state and then

compared with the true values to calculate the values of each

evaluation index. When using EEMD, the increased noise

amplitude is about 0.2 times the standard deviation of the sample

data, according to the conclusions drawn by Wu and Huang (2009).

The experimental results are shown in Table 2, and the number

of IMFs in the table does not include the number of residual terms.

For example, when the number of IMFs is 3, the SWH time series

data is decomposed into 3 IMFs and a remainder term.

From Table 2, it can be seen that the EEMD-LSTM model has

the best prediction when the data is decomposed into 4 IMFs and a

residual term.

Figure 8 shows the decomposition results of the SWH data into 4

IMFs and a residual term. IMF1 and IMF2 show high frequency

fluctuations in the short term, while IMF3 to IMF5 have lower

frequencies (IMF5 is the residual term), reflecting the characteristics

of long wave height periods. Because we predetermine the number of

components of the decomposition, i.e., we take the best prediction

result of 4 IMFs and one residual term, so the residual term obtained
FIGURE 6

Unstructured grid in the study area.
FIGURE 7

SWH time-series data.
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from the decomposition in Figure 8 is not a monotonic residual term

in the general sense of EEMD decomposition, but an intermediate

quantity that can be further decomposed.

The prediction results of the proposedmodel for each component

when decomposing the data into 4 IMFs and a residual term are

shown in Figure 9. The thicker line in the figure is the true value and

the thinner line is the predicted value. From Figure 9, we can see that

except for IMF1, which has some deviation due to the high frequency,

the prediction results of all the components can fit the observed

values well, and has good results for predicting long-term

characteristics. This proves that the method of decomposing by

EEMD and then predicting separately can remove short-term

disturbances and fluctuations that are not important for prediction.

In summary, we set the hyperparameters of the proposed model

as follows: each SWH data is decomposed into 4 IMFs and a residual

term by the EEMD algorithm. First LSTM layer (32 units), second

LSTM layer (1 unit), timestep is 8, batchsize is 32, epoch is 200, using

Adam optimization algorithm, the activation function is tanh.
5.2 Comparison of the prediction effect of
the EEMD-LSTM model and other models

Four models, LR, RF, LSTM, and GRU, will be used to compare

the prediction effect with the EEMD-LSTM model proposed in this

paper. The parameter settings of each comparison model are shown

in Table 3. s0 represents the number of input layer units, num

represents the number of trees, s1 represents the number of hidden

layer units, activation function represents the activation function

used, s2 is the number of output layer units, g represents the

learning rate, and optimizer represents the type of optimizer used.

Table 4 compares the effectiveness of the EEMD-LSTM model

with the four comparison models for the future 1-hour SWH
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prediction. From Table 4, it can be seen that the EEMD-LSTM

model has the best performance among all the comparison models

in terms of evaluation indexes such as RMSE, MSE, and R2, and R2

reaches 0.9965. It proves that our proposed EEMD-LSTM model

has a smaller prediction error and higher accuracy for the future 1-

hour SWH, and the prediction effect is better than other models.
5.3 SWH prediction for many hours ahead

In this experiment, the SWH will be predicted for a long period.

As shown in Figure 10, the SWH at hour t+1 is first predicted using

the data from the first 1~t hours, t = timestep, and then the SWH at

hour t+2 is predicted using the data from hour 2~t+1, and so on for the

next 1~18 hours.

Figure 11 compares the predicted and true values of the EEMD-

LSTM model and other comparative models predicting the SWH

for the next 1 h, 3 h, 6 h, 12 h, and 18 h.

As can be seen in Figures 11A, B, for the SWH predictions for the

next 1 and 3 hours, the predicted values of our proposed EEMD-LSTM

model are not much different from the true values. The predictions of

the other models compared to it are also good, with only the LSTM

model showing a few cases of large errors and the GRU model having

slightly higher predicted values than the true values.

From Figure 11C, it can be seen that for the SWH prediction in

the next 6 hours, the prediction results of the LSTM model, GRU

model, and RF model all have some deviation from the true value,

and LR has less error compared with other comparison models. The

prediction results of our proposed EEMD-LSTM algorithm for the

SWH in the next 6 hours are closest to the true values, and not only

the trend of the SWH is well predicted, but also the predicted values

are more accurate. This proves that the proposed method is the best

for the prediction of SWH in the next 6 hours.
TABLE 1 Prediction results of EEMD-LSTM model for SWH in the next 1 hour for different values of timestep.

Timestep 6 7 8 9 10 11 12

RMSE(m) 0.0264 0.0209 0.0204 0.0215 0.0207 0.0218 0.0221

MSE 0.0006 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

MAE 0.0213 0.0162 0.0159 0.0168 0.0160 0.0171 0.0173

MAEP 0.0144 0.0110 0.0108 0.0114 0.0109 0.0116 0.0116

R2 0.9942 0.9964 0.9965 0.9962 0.9964 0.9960 0.9960
frontie
Bold values in the table indicate optimal results.
TABLE 2 Prediction effect of EEMD-LSTM model when the SWH data is decomposed into a different number of components by the EEMD algorithm.

IMFs 1 2 3 4 5 6 7 8 9 10

RMSE(m) 0.0253 0.0207 0.0208 0.0204 0.0214 0.0210 0.0207 0.0211 0.0208 0.0208

MSE 0.0006 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

MAE 0.0199 0.0160 0.0162 0.0159 0.0166 0.0163 0.0161 0.0164 0.0161 0.0161

MAEP 0.0134 0.0108 0.0110 0.0108 0.0112 0.0111 0.0109 0.0111 0.0109 0.0074

R2 0.9947 0.9965 0.9964 0.9965 0.9962 0.9963 0.9964 0.9963 0.9964 0.9964
Bold values in the table indicate optimal results.
rsin.org

https://doi.org/10.3389/fmars.2023.1089357
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1089357
As shown in Figures 11D, E, for the SWH prediction in the next 12

and 18 hours, the prediction results of all four comparison models show

substantial irregular deviations compared with the true values and can

only predict the general wave height variation trend with large deviations

in the predicted values. The LSTM, GRU, and RF models deviate the

most, and the LR model deviates less, but the LR model predicted values

have significant lags. The proposed EEMD-LSTM model also deviates

from the true values, but the average difference is about 0.1 m for the

prediction of the next 12 hours and 0.2 m for the prediction of the next

18 hours, which is the smallest deviation compared to the other
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comparison models. In particular, the EEMD-LSTM model can

predict the trend of wave height variation well, which is very useful

and meaningful in practical applications. In addition, although the

predicted values of the EEMD-LSTM model also have some lags, the

magnitude of the lags is smaller than that of the LR model.

In summary, the proposed EEMD-LSTMmodel has better predictions

than the comparison model for both short-term and medium- to long-

termSWHpredictions. It can better predict thewave height variation trend

and more accurately predict the value of wave height with smaller error. It

indicates that decomposing the nonlinear non-stationary series into
FIGURE 8

Decomposition results of SWH data into 4 IMFs and a residual term.
FIGURE 9

Prediction effect of the proposed model for each component decomposed by the EEMD algorithm.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1089357
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1089357
multiple smooth series and then predicting them separately can improve

the prediction effect to a great extent.

Table 5 shows the values of each evaluation index for the prediction

results of each model for the SWH of the next 3 to 18 hours. As can be

seen from the table, for the RMSE, the RMSE of the EEMD-LSTM

model is reduced by 52%~63% compared to the other comparison

models for the prediction of the SWH for the next 3 hours; for the

prediction of the next 6 hours, the RMSE is reduced by 62%~66%; for

the prediction of the next 12 hours, the RMSE is reduced by 50%~55%;
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for the prediction of the next 18 hours forecasts, the RMSE is reduced

by 14%~40%.

For the SWH prediction in the next 3 hours, the R2 of the

EEMD-LSTM model reaches 0.9937; for the next 6 hours, the R2 of

the EEMD-LSTM model is 0.9836, which still remains very high.

The R2 of the other comparison models in contrast are all below 0.9.

For the SWH prediction in the next 12 hours, the R2 of the EEMD-

LSTMmodel is 0.9295, which still remains above 0.9, while the R2 of

the other models is around 0.7. For the next 18 hours, the R2 of the

EEMD-LSTM model is close to 0.7 when the R2 of the other

comparison models is in the range of 0.13 to 0.58.

In summary, from all evaluation indexes, the EEMD-LSTM

model has obvious advantages over other comparison models in

terms of predicting SWH in both the short and long term.

Figure 12 depicts the error and R2 of each model for the SWH

prediction results for the future 1 to 18 hours, with the horizontal

coordinates being the number of predicted future hours and the

vertical coordinates being RMSE and R2, respectively. From (a), it is

obtained that the RMSE values of each model for SWH prediction

increase gradually as the number of prediction hours increases. The

RMSE values of the EEMD-LSTM model for the SWH prediction

for the next 1 to 18 hours are smaller than those of the comparative

models such as LR, LSTM, GRU, and RF, and the advantage is more

obvious when predicting the next 6 and 12 hours. The accuracy of
TABLE 3 Parameter settings of each comparison model.

Algorithm Parameter Setting

LR s0 = 1

RF s0 = 1, num=100, criterion=MSE

LSTM s0 = 1, timestep=8, s1=first LSTM layer (32 unit),

second LSTM layer (1 unit), s2 = 1,

activation function = tanh, optimizer = adam

GRU s0 = 1, timestep=8, s1=GRU unit(cell size = 64)

s2 = 1, g=0.001, optimizer = nadam
TABLE 4 Prediction effect of different models for future 1-hour SWH.

LR RF LSTM GRU EEMD-LSTM

RMSE(m) 0.0260 0.0581 0.0274 0.0228 0.0204

MSE 0.0006 0.0033 0.0007 0.0005 0.0004

MAE 0.0145 0.0423 0.0099 0.0080 0.0159

MAEP 0.0093 0.0272 0.0062 0.0052 0.0108

R2 0.9944 0.9723 0.9938 0.9957 0.9965
Bold values in the table indicate optimal results.
FIGURE 10

Principles of SWH prediction for multiple hours ahead.
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the proposed model predictions is fully demonstrated. From (b), R2

of the prediction results of each model decreases gradually as the

number of predicted hours increases. However, the R2 of the

EEMD-LSTM model is always larger than that of the other

comparison models. It proves that the prediction results of the
Frontiers in Marine Science 12
proposed model are more correlated with the true values and have

better prediction results.

Figure 13 shows the scatter plots of the SWH prediction results of

each model for the next 1-18 h. The horizontal coordinates are the true

values, and the vertical coordinates are the predicted values. The
frontiersin.or
FIGURE 11

Comparison of predicted and true values of SWH predicted by each model for several future hours (A) 1 hour, (B) 3 hours, (C) 6 hours, (D) 12 hours,
and (E) 18 hours.
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scatter points of the EEMD-LSTMmodel are uniformly distributed on

both sides of the line for the predicted SWH in the future 1h, 3h and

6h, and the dispersion is the least compared with other comparison

models. The scatter points of the other comparison models are

distributed in a wide range, and a few points have large deviations.

For the SWH prediction in the next 12h and 18h, the scatter range of

the EEMD-LSTMmodel is slightly expanded, but the dispersion of the

EEMD-LSTM model is smaller and more concentrated on both sides

of the straightline compared with other comparison models. For

predicting the next 18 hours, the forecasts of large wave height have

higher dispersion and larger forecast values. The reason may be that

there are fewer data with large wave height in the dataset.

This proves that the proposed model has a smaller difference

between the predicted and true values compared to other

comparison models and has a better prediction effect.
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5.4 Persistence forecast (PF)

Persistence Forecast (PF) (Rasp et al., 2020) is a simple forecasting

method that treats the SWH of the previous hour as the forecast result

of this hour, which is also the least computationally expensive

forecasting method. If the prediction result obtained by the machine

learning method is worse than the performance of persistent

prediction, then it proves that the machine learning method is not

very effective. PF can be used as a criterion to evaluate the feasibility of

the machine learning method.

We compared the prediction effectiveness of Persistence

Forecast and our proposed EEMD-LSTM model for the SWH

from 1 to 18 hours in the future, and the results are shown in

Table 6. From Table 6, we can see that the performance of each

evaluation index of our proposed model is better than the
TABLE 5 Comparison of the SWH prediction effects of each model for the next 3 to 18 hours.

Future Hours Evaluation Indicators LR RF LSTM GRU EEMD+LSTM

3h RMSE(m) 0.0663 0.0763 0.0736 0.0586 0.0279

MSE 0.0043 0.0058 0.0054 0.0034 0.0007

MAE 0.0456 0.0547 0.0450 0.0363 0.0217

R2 0.9648 0.9533 0.9565 0.9724 0.9937

6h RMSE(m) 0.1199 0.1334 0.1229 0.1196 0.0452

MSE 0.0143 0.0178 0.0151 0.0143 0.0020

MAE 0.0881 0.0980 0.0818 0.0868 0.0366

R2 0.8851 0.8578 0.8791 0.8857 0.9836

12h RMSE(m) 0.1898 0.2102 0.2019 0.2106 0.0941

MSE 0.0360 0.0441 0.0407 0.0443 0.0088

MAE 0.1413 0.1604 0.1486 0.1573 0.0755

R2 0.7135 0.6486 0.6756 0.6470 0.9295

18h RMSE(m) 0.2284 0.2630 0.3298 0.2654 0.1949

MSE 0.0522 0.0691 0.1087 0.0704 0.0380

MAE 0.1707 0.2020 0.2617 0.2008 0.1453

R2 0.5864 0.4518 0.1383 0.4419 0.6988
Bold values in the table indicate optimal results
A B

FIGURE 12

Rmse(M) And R2 Line Graphs Of The Swh Prediction Results Of Each Model For the next 1-18 hours (A) RMSE(m), (B) R2.
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Persistence Forecast, which proves the effectiveness and feasibility

of the EEMD-LSTM model.
5.5 SWH prediction for the whole study
area sea

Figure 14 shows the SWH prediction results of the EEMD-

LSTM model for the future hours 1, 3, 6, 12, and 18. The leftmost

column is the predicted value, the middle column is the true value,

and the rightmost column is the difference between the predicted

and true values. From Figure 14, it can be seen that the prediction

results of the EEMD-LSTM model for 1 to 6 hours for the full study

area of the sea are very close to the true values. The locations and

ranges of the higher wave height areas are predicted very accurately,

and the predicted values of the SWH are also very close to the true

values. In the predictions for the next 12 and 18 hours, most of the
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predictions are accurate, and only a few regions with large wave

heights are under-predicted, but the overall difference is not

significant. It has been proved that the proposed method is very

effective for SWH prediction and has great practical significance

and application value.

6 Conclusions

In this paper, an EEMD-LSTM model for deep-sea wave SWH

prediction is proposed, and the optimal parameters of the model are

explored experimentally. A total of 5328 hours of SWH data from

November 30, 2020 to July 9, 2021 are used to train and test the

model to predict the SWH for the future 1h, 3h, 6h, 12h, and 18h. The

prediction capability of the model is also evaluated using evaluation

metrics such as RMSE, MSE, MAE, MAEP, and R2. The results show

that the EEMD-LSTM model has the best prediction compared with

the comparative models such as LR, RF, LSTM, and GRU. Among
D
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FIGURE 13

Scatter plots of the SWH prediction results for each model for the next 1 to 18 hours (A) 1 hour, (B) 3 hours, (C) 6 hours, (D) 12 hours, (E) 18 hours.
TABLE 6 Comparison of the prediction effect of PF and EEMD-LSTM models in predicting the SWH for the next 1 18 hours.

Hours 1h 3h 6h 12h 18h

Method Ours PF Ours PF Ours PF Ours PF Ours PF

RMSE(m) 0.0204 0.0305 0.0279 0.0758 0.0452 0.1302 0.0941 0.2009 0.1949 0.2430

MSE 0.0004 0.0009 0.0007 0.0057 0.0020 0.0169 0.0088 0.0403 0.0380 0.0590

MAE 0.0159 0.0193 0.0217 0.0540 0.0366 0.0957 0.0755 0.1496 0.1453 0.1816

MAEP 0.0108 0.0124 0.0150 0.0350 0.0254 0.0622 0.0480 0.0974 0.0931 0.1184

R2 0.9965 0.9925 0.9937 0.9540 0.9836 0.8645 0.9295 0.6790 0.6988 0.5282
frontie
Bold values in the table indicate optimal results.
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them, for the SWH prediction of the next 1 h, the R2 reaches 0.9965

and the RMSE is 0.0204; for the prediction of the next 3 h, 6 h and 12

h, the R2 is greater than 0.92 and the RMSE is less than 0.1; for the

prediction of the next 18 h, the EEMD-LSTM model also

outperforms all the comparative models. In summary, our

proposed EEMD-LSTM model for SWH prediction in deep and

distant ocean has good results in both short-term and medium- and

long-term predictions. It can be used as a fast SWH prediction system

to ensure navigation safety to a certain extent, and has great practical

significance and application value.

The limitation of this paper is that only one variable, the SWH, is

used as the input condition for forecasting, and no more information

on the variables is added. Moreover, the data we use is the forecast

data of the unstructured model FVCOM model for SWH, which is

not the real SWH data. Although it has been mentioned in the

previous section that the FVCOM model is very accurate for wave
Frontiers in Marine Science 15
height prediction and the predicted data can be used as real data for

training the model, it is still one of the limitations of this study. In

addition, as the model provides spatial result, so different spaces may

have an effect on the model results. For future research, we can

introduce more variables, such as sea surface wind speed, wind

direction, sea surface pressure, etc., for the prediction of SWH. The

results of SWH prediction can also be used to infer other relevant

variables, such as the direction of ocean currents.
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FIGURE 14

Prediction results of the EEMD-LSTM model for the future SWH from 1 to 18 hours for the whole study area (A) 1 hour, (B) 3 hours, (C) 6 hours, (D) 12
hours, (E) 18 hours. Coordinate axes are in meters.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1089357
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1089357
Author contributions
Formal analysis, JW and FM; Funding acquisition, TS and DX;

Investigation, WW; Methodology, JW; Software, RH and JH;

Supervision, TS and DX; Visualization, JW; Writing—original

draft, JW. All authors contributed to the article and approved the

submitted version.

Funding
This research was funded by National Natural Science Foundation

of China U21A6001. Project Supported by Key Laboratory of

Environmental Change and Natural Disaster of Ministry of

Education, Beijing Normal University (Project No. 2022-KF-08).

Project Supported by Key Laboratory of Marine Hazards Forecasting,

Ministry of Natural Resources (No.LOMF2202). Innovation found

project for graduate students of China University of Petroleum (East

China) (No.CXJJ-2022-08).
Frontiers in Marine Science 16
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abdullah, F., Ningsih, N., and Al-Khan, T. (2022). Significant wave height
forecasting using long short-term memory neural network in indonesian waters. J.
Ocean Eng. Mar. Energy 8(2), 183–192. doi: 10.1007/s40722-022-00224-3

Ali, A., Fathalla, A., Salah, A., Bekhit, M., and Eldesouky, E. (2021). Marine data
prediction: An evaluation of machine learning, deep learning, and statistical predictive
models. Comput. Intell. Neurosci. 2021. doi: 10.1155/2021/8551167

Ali, M., and Prasad, R. (2019). Significant wave height forecasting via an extreme
learning machine model integrated with improved complete ensemble empirical mode
decomposition. Renewable Sustain. Energy Rev. 104, 281–295. doi: 10.1016/
j.rser.2019.01.014

Ali, M., Prasad, R., Xiang, Y., and Deo, R. C. (2020). Near real-time significant wave
height forecasting with hybridized multiple linear regression algorithms. Renewable
Sustain. Energy Rev. 132, 110003. doi: 10.1016/j.rser.2020.110003

Bethel, B. J., Sun, W., Dong, C., and Wang, D. (2022). Forecasting hurricane-forced
significant wave heights using a long short-term memory network in the caribbean sea.
Ocean Sci. 18, 419–436. doi: 10.5194/os-18-419-2022

Booij, N., Holthuijsen, L., and Ris, R. (1997). “The” swan” wave model for shallow
water,” in Coastal engineering 1996, 668–676.

Chen, C., Beardsley, R. C., and Cowles, G. (2006). Finite volume coastal ocean.
Oceanography 19, 78. doi: 10.5670/oceanog.2006.92

Chen, C., Liu, H., and Beardsley, R. C. (2003). An unstructured grid, finite-volume,
three-dimensional, primitive equations ocean model: application to coastal ocean and
estuaries. J. atmospheric oceanic Technol. 20, 159–186. doi: 10.1175/1520-0426(2003)
020<0159:AUGFVT>2.0.CO;2

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., et al. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv1406.1078.. doi: 10.48550/
arXiv.1406.1078

Draper, N. R., and Smith, H. (1998). Applied regression analysis Vol. vol. 326 (John
Wiley & Sons).

Fan, S., Xiao, N., and Dong, S. (2020). A novel model to predict significant wave
height based on long short-term memory network. Ocean Eng. 205, 107298. doi:
10.1016/j.oceaneng.2020.107298

Gao, S., Huang, J., Li, Y., Liu, G., Bi, F., and Bai, Z. (2021). A forecasting model for
wave heights based on a long short-term memory neural network. Acta Oceanologica
Sin. 40, 62–69. doi: 10.1007/s13131-020-1680-3

Ge, M., and Kerrigan, E. C. (2016). “Short-term ocean wave forecasting using an
autoregressive moving average model,” in 2016 UKACC 11th international conference
on control (CONTROL) (IEEE), 1–6.

Group, T. W. (1988). The wam model–a third generation ocean wave prediction
model. J. Phys. Oceanography 18, 1775–1810. doi: 10.1175/1520-0485(1988)018<1775:
TWMTGO>2.0.CO;2

Guan, X. (2020). “Wave height prediction based on cnn-lstm,” in 2020 2nd
international conference on machine learning, big data and business intelligence
(MLBDBI) (IEEE), 10–17.

Guo, Y., Cao, X., Liu, B., and Peng, K. (2020). El Niño index prediction using deep
learning with ensemble empirical mode decomposition. Symmetry 12, 893. doi:
10.3390/sym12060893
Hao, W., Sun, X., Wang, C., Chen, H., and Huang, L. (2022). A hybrid emd-lstm
model for non-stationary wave prediction in offshore china. Ocean Eng. 246, 110566.
doi: 10.1016/j.oceaneng.2022.110566

Hu, H., van der Westhuysen, A. J., Chu, P., and Fujisaki-Manome, A. (2021).
Predicting lake erie wave heights and periods using xgboost and lstm. Ocean Model.
164, 101832. doi: 10.1016/j.ocemod.2021.101832

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998).
The empirical mode decomposition and the hilbert spectrum for nonlinear and non-
stationary time series analysis. Proc. R. Soc. London. Ser. A: mathematical Phys. Eng. Sci.
454, 903–995. doi: 10.1098/rspa.1998.0193

Lei, Y., He, Z., and Zi, Y. (2009). Application of the eemd method to rotor fault
diagnosis of rotating machinery. Mechanical Syst. Signal Process. 23, 1327–1338. doi:
10.1016/j.ymssp.2008.11.005

Li, X., Cao, J., Guo, J., Liu, C., Wang, W., Jia, Z., et al. (2022). Multi-step forecasting
of ocean wave height using gate recurrent unit networks with multivariate time series.
Ocean Eng. 248, 110689. doi: 10.1016/j.oceaneng.2022.110689

Lobeto, H., Menendez, M., and Losada, I. J. (2021). Future behavior of wind wave
extremes due to climate change. Sci. Rep. 11, 1–12. doi: 10.1038/s41598-021-86524-4

Lou, R., Lv, Z., Dang, S., Su, T., and Li, X. (2021). Application of machine learning in
ocean data. Multimedia Syst., 1–10. doi: 10.1007/s00530-020-00733-x

Mahjoobi, J., and Mosabbeb, E. A. (2009). Prediction of significant wave height using
regressive support vector machines. Ocean Eng. 36, 339–347. doi: 10.1016/
j.oceaneng.2009.01.001

Mahmoodi, K., and Nowruzi, H. (2021). Extreme wave height detection based on the
meteorological data, using hybrid nof-elm method. Ships Offshore Structures 17(11),
2520–2530. doi: 10.1080/17445302.2021.2005357

Memar, S., Mahdavi-Meymand, A., and Sulisz, W. (2021). Prediction of seasonal
maximum wave height for unevenly spaced time series by black widow optimization
algorithm. Mar. Structures 78, 103005. doi: 10.1016/j.marstruc.2021.103005

Meng, F., Ma, T., Xie, P., Sun, H., Xu, D., and Song, T. (2021a). “Use ensemble
learning to estimate the population and assets exposed to tropical cyclones,” in 2021
IEEE international geoscience and remote sensing symposium IGARSS (IEEE), 8476–
8479.

Meng, F., Song, T., Xu, D., Xie, P., and Li, Y. (2021b). Forecasting tropical cyclones
wave height using bidirectional gated recurrent unit. Ocean Eng. 234, 108795. doi:
10.1016/j.oceaneng.2021.108795

Meng, F., Tian, Q., Sun, H., Xu, D., and Song, T. (2021c). “Cyclone identify using
two-branch convolutional neural network from global forecasting system analysis,” in
2021 IEEE international geoscience and remote sensing symposium IGARSS (IEEE),
8468–8471.

Meng, F., Xie, P., Li, Y., Sun, H., Xu, D., and Song, T. (2021d). “Tropical cyclone size
estimation using deep convolutional neural network,” in 2021 IEEE international
geoscience and remote sensing symposium IGARSS (IEEE), 8472–8475.

Meng, F., Xu, D., and Song, T. (2022). Atdnns: An adaptive time–frequency
decomposition neural network-based system for tropical cyclone wave height real-
time forecasting. Future Generation Comput. Syst. 133, 297–306. doi: 10.1016/
j.future.2022.03.029
frontiersin.org

https://doi.org/10.1007/s40722-022-00224-3
https://doi.org/10.1155/2021/8551167
https://doi.org/10.1016/j.rser.2019.01.014
https://doi.org/10.1016/j.rser.2019.01.014
https://doi.org/10.1016/j.rser.2020.110003
https://doi.org/10.5194/os-18-419-2022
https://doi.org/10.5670/oceanog.2006.92
https://doi.org/10.1175/1520-0426(2003)020%3C0159:AUGFVT%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(2003)020%3C0159:AUGFVT%3E2.0.CO;2
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.1016/j.oceaneng.2020.107298
https://doi.org/10.1007/s13131-020-1680-3
https://doi.org/10.1175/1520-0485(1988)018%3C1775:TWMTGO%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1988)018%3C1775:TWMTGO%3E2.0.CO;2
https://doi.org/10.3390/sym12060893
https://doi.org/10.1016/j.oceaneng.2022.110566
https://doi.org/10.1016/j.ocemod.2021.101832
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1016/j.ymssp.2008.11.005
https://doi.org/10.1016/j.oceaneng.2022.110689
https://doi.org/10.1038/s41598-021-86524-4
https://doi.org/10.1007/s00530-020-00733-x
https://doi.org/10.1016/j.oceaneng.2009.01.001
https://doi.org/10.1016/j.oceaneng.2009.01.001
https://doi.org/10.1080/17445302.2021.2005357
https://doi.org/10.1016/j.marstruc.2021.103005
https://doi.org/10.1016/j.oceaneng.2021.108795
https://doi.org/10.1016/j.future.2022.03.029
https://doi.org/10.1016/j.future.2022.03.029
https://doi.org/10.3389/fmars.2023.1089357
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1089357
Montgomery, D. C., Peck, E. A., and Vining, G. G. (2021). Introduction to linear
regression analysis (John Wiley & Sons).

Pokhrel, P., Ioup, E., Hoque, M. T., Simeonov, J., and Abdelguerfi, M. (2020).
Random forest classifier based prediction of rogue waves on deep oceans. arXiv
preprint arXiv:2003.06431. doi: 10.48550/arXiv.2003.06431

Raharja, I., Radjawane, I., and Hendrawan, I. (2021). “Characteristic of tidal currents
in the lombok strait using 3d fvcom numerical model,” in IOP conference series: Earth
and environmental science, vol. 925. (IOP Publishing), 012002.

Raj, N., and Brown, J. (2021). An eemd-bilstm algorithm integrated with boruta
random forest optimiser for significant wave height forecasting along coastal areas of
queensland, australia. Remote Sens. 13, 1456. doi: 10.3390/rs13081456

Raja, A. P. L., Ramadhan, A. W., Adytia, D., and Adiwijaya, A. (2021). “Long short-
term memory approach for wave height prediction: Study case in jakarta bay,
indonesia,” in 2021 international conference on software engineering & computer
systems and 4th international conference on computational science and information
management (ICSECS-ICOCSIM) (IEEE), 690–694.

Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., and Thuerey, N. (2020).
Weatherbench: a benchmark data set for data-driven weather forecasting. J. Adv.
Modeling Earth Syst. 12, e2020MS002203. doi: 10.1029/2020MS002203

Song, T., Li, Y., Meng, F., Xie, P., and Xu, D. (2022). A novel deep learning model by
bigru with attention mechanism for tropical cyclone track prediction in the northwest
pacific. J. Appl. Meteorology Climatology 61, 3–12. doi: 10.1175/JAMC-D-20-0291.1

Song, T., Wang, J., Xu, D., Wei, W., Han, R., Meng, F., et al. (2021). Unsupervised
machine learning for improved delaunay triangulation. J. Mar. Sci. Eng. 9, 1398. doi:
10.3390/jmse9121398
Frontiers in Marine Science 17
Sorourian, S., Huang, H., Li, C., Justic, D., and Payandeh, A. R. (2020). Wave
dynamics near Barataria Bay tidal inlets during spring–summer time OceanModel. 147,
101553. doi: 10.1016/j.ocemod.2019.101553

Tolman, H. L., et al. (2009). “User manual and system documentation of wavewatch
iii tm version 3.14,” in Technical note, MMAB contribution 276(220).

Wei, C.-C., and Chang, H.-C. (2021). Forecasting of typhoon-induced wind-wave by
using convolutional deep learning on fused data of remote sensing and ground
measurements. Sensors 21, 5234. doi: 10.3390/s21155234

Wu, Z., and Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-
assisted data analysis method. Adv. adaptive Data Anal. 1, 1–41. doi: 10.1142/
S1793536909000047

Zhao, L., Hu, R., and Sun, C. (2021). Analyzing the spatial-temporal characteristics
of the marine economic efficiency of countries along the maritime silk road and the
influencing factors. Ocean Coast. Manage. 204, 105517. doi: 10.1016/
j.ocecoaman.2021.105517

Zheng, Y., Xiaofeng, S., Jian, C., and Jun, Y. (2012). Extracting pulse signals in
measurement while drilling using optimum denoising methods based on the ensemble
empirical mode decomposition. Petroleum Explor. Dev. 39, 798–801. doi: 10.1016/
S1876-3804(12)60107-4

Zhou, S., Bethel, B. J., Sun, W., Zhao, Y., Xie, W., and Dong, C. (2021). Improving
significant wave height forecasts using a joint empirical mode decomposition–long
short-term memory network. J. Mar. Sci. Eng. 9, 744. doi: 10.3390/jmse9070744

Zhu, S., and Wang, Y. (2015). Fairway security of maritime silk road in 21st century.
Transport Res. 1, 8–13.
frontiersin.org

https://doi.org/10.48550/arXiv.2003.06431
https://doi.org/10.3390/rs13081456
https://doi.org/10.1029/2020MS002203
https://doi.org/10.1175/JAMC-D-20-0291.1
https://doi.org/10.3390/jmse9121398
https://doi.org/10.1016/j.ocemod.2019.101553
https://doi.org/10.3390/s21155234
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1016/j.ocecoaman.2021.105517
https://doi.org/10.1016/j.ocecoaman.2021.105517
https://doi.org/10.1016/S1876-3804(12)60107-4
https://doi.org/10.1016/S1876-3804(12)60107-4
https://doi.org/10.3390/jmse9070744
https://doi.org/10.3389/fmars.2023.1089357
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Prediction of significant wave height based on EEMD and deep learning
	1 Introduction
	2 Related works
	3 Methods
	3.1 EEMD
	3.2 LSTM
	3.3 EEMD-LSTM prediction model
	3.4 Comparative experimental methods and evaluation indicators
	3.4.1 Linear regression (LR)
	3.4.2 Random forest (RF)
	3.4.3 GRU
	3.4.4 Evaluation criterion


	4 Study area and data
	4.1 Study area
	4.2 Data

	5 Experimental results and analysis
	5.1 Hyperparameter setting
	5.2 Comparison of the prediction effect of the EEMD-LSTM model and other models
	5.3 SWH prediction for many hours ahead
	5.4 Persistence forecast (PF)
	5.5 SWH prediction for the whole study area sea

	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	References


