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Seawater transparency, one of the important parameters to evaluate the marine

ecological environment and functions, can be measured using the Secchi disk

depth (SDD). In this study, we use multi-source remote sensing data and other

fused data from 2011 to 2020 to study the spatial distribution and variation of

SDD off southeastern Vietnam. Themonthly average of SDD in the study area has

obvious seasonal variation characteristics and shows a double peak

characteristic. An important observation is a significant decrease in

transparency from July to September each year, which is far lower than other

nearby seas. To study this low SDD phenomenon, the generalized additive model

(GAM) is used to determine the main environmental factors. The response

relationship between SDD and environmental factors on different time scales is

explained through empirical mode decomposition (EMD) analysis experiments.

The results show that the comprehensive explanation rate of the GAM model is

72.1%, and the main environmental factors affecting SDD all have non-linear

response relationships with SDD. The contributions are ranked as sea surface

salinity (SSS)> offshore current velocity (Cu)> wind direction (WD)> offshore

Ekman transport (ETu)> sea surface temperature (SST)> mean direction of wind

waves (MDWW). SDD is positively correlated with SSS and SST, and negatively

correlated with Cu and ETu. SSS, Cu, ETu, and SST have a significant effect on

SDD at interannual scales. Long-term changes in SDD are driven by SSS, Cu, WD,

and SST. Generally, SSS has the most comprehensive impact on SDD. WD

indirectly has a non-negligible impact on SDD by changing ocean

dynamics processes.
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1 Introduction

The Secchi disk depth (SDD), an old method to determine

seawater transparency efficiently and easily, is still widely used

today (Wernand, 2010). SDD is an important approach to

characterizing the optical properties of seawater (Tang and Chen,

2016; Zhou et al., 2018). It is also an important indicator of the

marine ecological environment and aquatic health, which can

change the heat flux transport, photosynthesis of phytoplankton,

and circulation of underwater nutrients (Kirk, 1994; Rodrigues

et al., 2017; Harvey et al., 2019; Zhou et al., 2021). The study of

SDD contributes to understanding seawater quality, primary

productivity, and aquatic ecosystems of phytoplankton.

From previous studies, we know that SDD is affected by

chlorophyll, salinity, suspended particulate matter (SPM),

chromophoric dissolved organic matter (CDOM), wind, and

nutrients (Gordon et al., 1983; Cloern, 1987; Erlandsson and

Stigebrandt, 2006; Philippart et al., 2013; Aas et al., 2014; Hayami

et al., 2015; Li et al., 2017; Bohn et al., 2018; Wang et al., 2019; Zou

et al., 2020). These environmental parameters affecting SDD are

related to deterministic events, such as abundant sediment

transports in the estuary with low salinity plume, changes in

nutrient concentrations due to upwelling, and seasonally varying

sea surface temperature (SST) (Wang et al., 2015; Duy Vinh et al.,

2016);. In addition, random events (e.g., algal blooms) can also have

an important impact on SDD (Klemas, 2012; Yang et al., 2022). In

past research on SDD, in addition to remote sensing monitoring

technology, there is often analysis of the temporal and spatial

changes of SDD and environmental driving forces (Philippart

et al., 2013; Hayami et al., 2015; Nishijima et al., 2016; Nishijima

et al., 2018; Luis et al., 2019; Idris et al., 2022). However, in special

sea areas with complex environments, few quantitative studies on

the effects of multiple environmental indicators on SDD have been

conducted (Alsahli and Nazeer, 2021). Moreover, the correlation

analysis between periodic events and SDD has not been

adequately studied.

The study area of this paper is located in the southeast sea of

Vietnam. Its hydrodynamic environment is complex, and the

topography changes greatly (Tang et al., 2004). The sea area is a

system of multiple complex interactions. In addition, SDD does not

completely depend on a single environmental factor but results

from multiple factors in the water. The composition of distinct

water bodies is different, and the distribution and driving force of

SDD is also different. This study aims to address the following

research question: How does the SDD change in the southeastern

Vietnamese waters? What fundamental environmental factors

modulate SDD in this sea area? On what time scale do these

environmental factors significantly affect SDD?

In this study, we use 2011-2020 multi-source remote sensing

fusion data including various marine dynamic data, meteorological

data, SST, sea surface salinity (SSS). Then, we use the generalized

additive models (GAM) and the empirical mode decomposition

(EMD) modal decomposition method to analyze the variation

characteristics of SDD, screen out the main environmental factors

affecting SDD in the study area, and quantitatively calculate the
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contribution of driving factors. Finally, the time scale and cycle that

affect SDD are clarified, and the reasons for the significant

difference in SDD between the study area and other sea areas.
2 Data and methods

2.1 Study area

Figure 1 shows the South China Sea (SCS) bathymetry. The

study area (10°~14°E, 105°~114°N), which is the sea area off the

southeastern coast of Vietnam, is plotted in the red rectangle. The

water depths in the study area span from a few meters near shore to

more than 6000 m offshore. Overall, water depth becomes shallower

moving closer to land. In addition, the hydrodynamic environment

of the study area is complex. With the Mekong Delta on the left

nearshore, the average annual flow of the Mekong is 15,000 m3, and

there is the western boundary current along the Vietnamese

coastline. In summer, at about 11.2°N, the western boundary

current may split into an eastward flow known as the

summertime eastward jet (Cai et al., 2007; Sun and Lan, 2021).

Moreover, upwelling also occurs in the study area during summer.

Overall, the region has complex biological, chemical, and physical

characteristics (Tang et al., 2004; Chang et al., 2008).
2.2 SDD and environmental factors data

A total of 10 years (2010-2020) satellite-derived monthly SDD

data are obtained from the Satco2 (http://www.geodata.cn). The

spatial resolution of the data is 1.8 km. Previous studies have used

this dataset to conduct research on marine elements in the SCS. The

relationship model between SDD and water inherent optics is
FIGURE 1

Bathymetry (m) of the SCS region. The red dashed box is the study
area. The bathymetry data is obtained from ETOPO1.
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expressed as follows (He et al., 2014; He et al., 2017):

Zd = 0:25(a + bb) ln½rrab(a+bb)(Cafbb)
� (1)

where rr is the surface reflectance of the transparency disk, a is

the refraction factor, b is the water surface reflection factor, Ca is the

ratio threshold, f is a variable ranging from 0.32 to 0.37, a is the

absorption coefficient, and bb is the backscattering coefficient. For

case I water, a and b are estimated as follows:

a(l) = ½aw(l) + 0:06A(l)Chl0:65�½1 + 0:2e−0:014(l−440)� (2)

bb(l) = bbw(l) + ½0:3Chl0:62 − bw(550)� 0:002 + 0:02½0:2 − 0:25 log (Chl) 550l �� �
(3)

where l is the observation wavelength, aw, bw, and bbw are the

absorption, scattering and backscattering coefficients of pure water,

respectively, and e is the Chl concentration. In addition, for case II

water, the absorption (ap) and scattering coefficient (bbp) of

suspended sediment should be increased on the basis of case I water:

ap(l) = s½0:025 + 0:038e−0:0055(l−440)� (4)

bbp(l) = 0:019s½0:28 − 0:000167(l − 400)� (5)

where s is the concentration of suspended sediment.

SST, SSS and sea surface velocity data with a spatial resolution

of 9 km (0.083°) are derived from global ocean reanalysis data

simulated by The Copernicus Marine Environment Monitoring

Service (CMEMS). The data extends from surface to 5500 m and is

divided into 50 layers in the vertical direction. It adopts GEBCO

data for layering nearshore and adopts ETOPO1 with a resolution

of 1 arc minute to realize layering in the deep ocean, thus providing

high-quality ocean environmental data (Wang et al., 2021).

The monthly average ocean wave and sea surface wind field data

are derived from the ERA5 dataset of the European Center for

Medium-Range Weather Forecasts (ECMWF). This dataset is the

fifth-generation reanalysis dataset of global climate and weather

over the past 40-70 years, including real-time updates from 1979 to

the present. The dataset provides a large number of atmospheric,

ocean wave and land surface parameters. The temporal resolution is

hourly and monthly, and the spatial resolution of the reanalysis data

is 0.25° (resolution of ocean wave data is 0.5°). The applicability of

this product in the SCS has been verified and is in good agreement

with buoy data (Shi et al., 2021).

The coastal upwelling region in the SCS is driven by classic

wind-stressed Ekman dynamics (Zeng et al., 2022). In the upwelling

region of southeastern Vietnam, Ekman transport along the shore

(ETv) and offshore (ETu) and Ekman pumping (EPV) can

transport nutrients from the coast or ocean bottom to the upper

layer. This can promote the growth of phytoplankton and indirectly

affect SDD. Ekman transport is calculated from wind components

at 10 m above the sea surface (Equation 6, 7) (Cropper et al., 2014).

Qx =
raCd
rf (W2

x +W2
y )

1
2Wx (6)
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Qy = − raCd
rf (W2

x +W2
y )

1
2Wy (7)

where W is the wind speed near surface, r is the sea water

density (1025 kg/m3), and Cd is the dimensionless viscosity (1.4×10-

3). f is the Coriolis parameter, defined as twice the component of the

angular velocity of earth (W) at latitude q f = 2Wsinq. x and y

correspond to the zonal and meridional components of

wind, respectively.

EPV is calculated as follows:

EPV = curl(t)
rf (8)

where t is surface wind stress.

The mixed layer depth (MLD) and barrier layer depth (BLD)

distribution in the ocean is closely related to the internal motion of

the ocean, marine organisms and marine meteorological elements.

BLD is the water layer between the isothermal layer depth (ILD)

and MLD, expressed as BLD=ILD-MLD. In this study, the gradient

method is used to determine ILD and MLD. Different

determination methods are used in offshore waters with a water

depth of less than 200 m and in the open seas with larger water

depths (Godfrey and Lindstrom, 1989; Chu et al., 2002):

offshore(≤200 m)

∂T
∂ z = 0:2 °C ·m−1   ∂st

∂ z = 0:1   kg · m−4   (9)

open sea(≥200 m)

∂T
∂ z = 0:05 °C ·m−1   ∂st

∂ z = 0:015   kg · m−4 (10)

where st is the density of seawater obtained from temperature

and salinity by TEOS10 (http://www.teos-10.org/), and T is sea

water temperature.

2.3 Method

2.3.1 Empirical mode decomposition
Compared with the traditional wavelet analysis, the EMD

proposed and improved by Huang can obtain more refined time-

frequency local features. It smoothly processes complex signals and

extracts the fluctuation or trend components of different scales from

the original sequence. The output is several intrinsic mode

functions (IMFs) of different scales and a trend item. The trend

change characteristics have no relationship with past or future data.

This method is widely used in atmospheric and oceanic research

(Chen et al., 2013; Chen et al., 2014).

IMFs must satisfy two conditions (Huang et al., 1998). (a) The

number of extreme points and zero crossing points throughout the

data should be less than or equal to 1. (b) Any point where the mean

of the envelope is defined by the local maximum or local minimum

is 0. An IMF that meets these conditions has amplitude and

frequency that vary as a function of time. EMD is ultimately

decomposed into IMFs, and a residual term r(n) is obtained:

X(t) =o
n

i=1
IMFi + r(n) (11)
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where X(t) is decomposed by EMD to obtain several IMFs.

Based on the Hilbert transformation of each IMF, the instantaneous

frequency and instantaneous amplitude of each component are

obtained. For any signal X(t), it can be expressed as:

H(X(t)) = y(t) = 1
p pv

Z  X(u)
t − u

du (12)

In the above equation, pv is the Cauchy’s principal value, and

the analytic signal corresponding to X(t) is:

Z(t) = X(t) + iy(t) = a(t)eiq(t) (13)

where a(t) and q(t) are the instantaneous amplitude and

instantaneous phase of the signal, respectively, expressed as

a(t) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X(t)2 + y(t)2

p
(14)

q(t) = arctan( y(t)
X(t) ) (15)

Further derivation of q (t) function obtained from the original

analysis signal yields the instantaneous frequency of the signal as

follows:

w(t) = dq(t)
dt (16)

If the amplitude is plotted on the plane of time and frequency,

the Hilbert spectrum of the original signal X(t) can be obtained.

This study mainly uses EMD to carry out multi-scale analysis

and correlation analysis on the time series of SDD and related

influencing factors in the study area. The Hilbert spectrum analysis

is then applied to the obtained IMF modal components to finally

obtain the Hilbert spectrum with clear physical meaning. This

method can better describe the non-linear process and can

effectively obtain the variation trend characteristics of SDD in

different and multiple periods, in order to further determine the

contribution of various environmental factors.
2.3.2 Generalized additive models
GAM is an important achievement in statistical research in

recent years (Guisan et al., 2002). Its advantage is that it can explain

the highly non-linear or monotonic relationship between response

variables and environmental factors. The model is data-driven

rather than assuming specific parameters between data in

advance. It has high flexibility and can better explain the

relationship between the response variable and the explanatory

variable, and the importance of each explanatory variable. GAM can

be expressed as:

g(Y) =  a   +  o
n

i
fi(xi) + ϵ (17)

where g(Y) is the connection function of the response variable

SDD (the data of the response variable can be of any exponential

distribution form), a is the intercept, ϵ is the residual, n is the

number of parameters, Xi is the ith explanatory variable, and fi(xi) is

the smoothing function used to describe the relationship between

g(Y) and the ith explanatory variable.
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This study used the effective degree of freedom (EDF), P-value,

deviance explained (D-E) and F-statistic to characterize the quality

of the model’s statistical results. In addition, the larger the F-

statistic, the higher the importance of the corresponding variable.

When EDF=1, it represents a linear relationship between the

variables and when EDF > 1, it indicates that the function is a

non-linear curve equation. The larger the EDF, the more significant

the non-linear relationship (Requia et al., 2019). P-value represents

the significance level of the statistical results, D-E represent the

model’s interpretation rate for the change of the response variable,

and values closer to 1 mean that the model works better.

Based on the inversion principle of SDD, generally, the factors

that most directly affect SDD include SPM, chlorophyll and CDOM.

In contrast, other environmental factors indirectly affect SDD by

affecting the spatial and temporal distribution of the above three

environmental factors. In this study, one environmental factor is

selected as the explanatory variable of GAM each time, and the

relationship and contribution of each factor to SDD changes are

analyzed. The environmental variables include SSS, SST, ET

(Ekman transport), EPV, CV (current velocity), ILD, BLD, wind

and nine wave parameters:mean direction of total swell, significant

height of total swell, mean period of total swell, MDWW (mean

direction of wind waves), mean period of wind waves, mean wave

direction, mean wave period, SWH (significant height of combined

wind waves and swell), and significant height of wind waves. The

construction and data analysis of the GAM model are completed

using the R mgcv package.
3 Results

3.1 Spatial distribution and variation
characteristics of SDD

The monthly mean SDD in the study area from 2011 to 2020,

shows the variation range of the monthly mean SDD in the study

area is 26.6~34.9 m during the 10 years (Figure 2). SDD has obvious

seasonal variation characteristics, reaching a maximum in May,

decreasing rapidly, and reaching a minimum in August each year.

Concretely, the average SDD in June (summer) is 32.4 m, when the

water clarity of the study area is higher, but it was still very low in

September, which was already autumn (mean SDD value is 28.6 m).

Apparently, the most turbid time of the year is July to September.

We average the SDD in the SCS and surrounding seas by season

according to the monthly variation characteristics of SDD

(Figure 3), in order to better understand the spatial and temporal

distribution of SDD from 2011 to 2020. Note that the definition of

the four seasons is delayed by one month compared to the

commonly used time, e.g., summer is July-September. This

approach has been applied in previous studies related to primary

productivity in SCS (Zhao and Wang, 2018), so we consider it

acceptable in studies of SDD directly related to primary

productivity. Overall, SDD have a gradient change in spatial

distribution, and the SDD pattern is basically the same along the

coast. More SDD low-value areas are distributed in the near shore

and estuarine areas. According to the seasonal average distribution,
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the average value of SDD from July to September is significantly

lower than in other sea areas (Figure 3C). The main axis of the low-

value area is parallel to the southern coastline of the Indo-China

Peninsula, showing tongue-shaped, which seems to be an extension

of the low-value area of the Mekong Estuary. This phenomenon

does not appear in other seasons (Figures 3A, B, D).
3.2 Multi-scale analysis of SDD

Taking the monthly time series of SDD in the study area from

2011 to 2020 with a total of 120 sample points, the SDD is

decomposed by the EMD method (Figure 4). The plot shows the

EMD decomposition result of SDD monthly average value, where

ORG is the original time series of SDD, IMF1-5 are the five signal

components, which reflect the SDD fluctuation characteristics of

different time scales from high frequency to low frequency, and

trend denotes the trend term. In addition, the period of each

component is calculated by the distance between adjacent

maximum (minimum) values, and the average value and variance

of each component. The average periods of IMF1-5 components are

6 months, 11 months, 16 months, 24 months, and 60

months, respectively.

Specifically, the first signal component (IMF1) of SDD indicated

an aperiodic oscillation, it contains a high-frequency oscillation

process. During 0-20 months and 50-70 months, the amplitude of

SDD changes is about 1.5 m, and the amplitude can reach 4.7 m in

other time intervals. IMF2 is the interannual component expressing

the interannual variation process, and its maximum amplitude is

4.4 m. IMF3 is a component with a period of 16 months. Its

amplitude is larger between 50 and 70 months, which may be

caused by low-frequency anomalous events in the corresponding

period. IMF4 represents SDD changes on a time scale of about two

years, with smaller changes in amplitude. The variation
Frontiers in Marine Science 05
characteristics of IMF5 are relatively gentle, with a low-frequency

variation signal on the five-year time scale. The last signal

component (Trend) is a non-monotonic signal. SDD first

increases and then decreases during the ten years. It reaches a

maximum of 34.96 m around the 60th month and decreases in the

next five years. The SDD remains at 30.5~31 m during the ten years.

In order to analyze the variation characteristics of SDD, the

Hilbert transform is performed on the IMF1-5 components of SDD

signal. The time spectrum of the signal is plotted in Figure 5. Signals

with average frequencies around 0.08/month and 0.15/month

fluctuate widely, while low-frequency signals (less than 0.05/

month) exhibit a near-stationary band. In terms of energy

distribution, high energy is mostly distributed in higher frequency

signals, which indicates that the SDD in the study area has the

largest fluctuations on the time scale of about half a year to one year.

This further confirms the signal analysis in Figure 4.
3.3 GAM analysis of SDD and
environmental factors

According to the principle of SDD inversion calculation and the

actual situation of the study area, the significant reduction in SDD

phenomenon is often caused by the joint action of various

influencing factors (Gordon et al., 1975);. Therefore, we include

multiple oceanographic and meteorological elements in the

analysis, use the variance inflation factor standard to eliminate

the multi-collinearity environmental factors (Wood, 2004). Finally,

SSS, SST, MDWW, SWH, ETu, ETv, BLD, EPV, Cu (offshore

current), Cv (alongshore current), MLD, WD, and ILD

environmental factors are screened as explanatory variables.

The GAM results shows that the combined explanation rate of

the model is 72.1%, and all selected driving factors significantly

affect the changes in SDD at P-value< 0.01, which were all

statistically significant. The environmental factors that explain the

SDD variation with a high rate (15.3%-38.2%) with effects ranked as

SSS > Cu > WD > ETu > SST > MDWW, and they fit well with the

model equations constructed by SDD (Table 1). Although the rest of

the factors pass the P-value significance test, their explanatory

power for SDD changes is relatively low (less than 15%) and the

model fit is also poor. In addition, the EDF of each explanatory

variable is greater than 1, indicating that the constructed function is

a non-linear equation and there is a significant non-linear

relationship between the explanatory variables and SDD.

The smooth regression function of related environmental

factors is calculated using the GAM model established between

multiple driving factors and SDD response variables. The effect

diagram of the impact of environmental factors on SDD changes

with an explanation rate greater than 15% is obtained (Figure 6).

The gray shading in the figure represents the upper and lower

bounds of the confidence interval, and the solid line represents the

smooth fitting curve.

According to the results, each environmental factor shows a

non-linear relationship with the change in SDD. Specifically, SDD is

positively correlated with SSS and SST. When SSS is 30.5-31.5 PSU

and SST is 28-30.5 °C, the confidence interval is small and the
FIGURE 2

Annual cycle of SDD calculated from 2011 to 2020 in the study area.
Different color lines represent the SDD of different years. Black
dashed line represents the mean value of SDD. The red area
represents the low value of SDD from July to September.
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reliability is high. In addition, SSS and SST have the most significant

impact on SDD (Figures 6A, E). Cu and ETu have similar effects on

SDD, with a general decrease in SDD as Cu and ETu increase

(Figures 6B, D). It should be noted that when Cu is greater than 0.5

m/s, SDD reaches the minimum, and then there is no obvious trend,

indicating that the response of SDD to Cu in the study area is

phased and does not decrease with the increase in Cu. The

relationship between WD and SDD is diverse. SDD is relatively
Frontiers in Marine Science 06
high when WD is 0-90° and the confidence interval is small

(Figure 6C). SDD increases with the increase in WD in this

interval. When WD is between 90° and 230°, SDD first rises and

then falls, reaching two peaks at 130° and 230°, respectively. SDD

increases with the increase of WD. The relationship between

MDWW and SDD is complex (Figure 6F). MDWW and SDD are

positively correlated when the wave direction is between 0 and 180°.

When MDWW is between 180° and 290°, SDD decreases and then
A B

DC

FIGURE 3

Distributions of mean SDD (background color, m) for (A) January-March (B) April-June (C) July-September (D) October-December from 2011-2020.
The dotted line is the low value area of SDD.
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increases. The SDD in the interval is significantly affected by

MDWW.WhenMDWW is greater than 290°, SDD decreases again.
4 Discussion

4.1 Multi-scale correlation analysis of SDD
and main environmental factors

In this paper, EMD is used to objectively deal with nonlinear

and nonsmooth processes. We perform EMD transformations on

the main factors obtained from the GAM and analyze their response

to changes in SDD at different time scales. Based on the EMD signal

decomposition, we use the Pearson correlation coefficient to analyze

the correlation between SDD and various influencing factors on

multiple time scales to obtain the contribution of the correlation

factors that affect SDD changes on different time scales (Figure 7).

Specifically, with the exception of SDD IMF1, SSS has a

regulating effect on all SDD signal components with a period

greater than or equal to 11 months, and the correlation
FIGURE 5

Hilbert-Huang spectrum analysis of SDD. The color represents the
energy value, where the higher the value, the higher the energy
event.
A B

D

E F

G
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FIGURE 4

Decomposition results of SDD time series using the EMD. (A) is original component, (B–F) are IMFs, and (G) is the trend component.
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coefficients of the two can reach 0.565, 0.429, 0.444, 0.315, and

0.883, respectively, which indicates that SDD is significantly driven

by SSS on interannual or longer time scales, and they are positively

correlated. Cu has a significant negative correlation with SDD

period of less than 11 months and signal components greater

than 60 months, which means that SDD is affected on short time

scales within 1 year and long time scales greater than 5 years. WD is
Frontiers in Marine Science 08
similar to MDWW, both of which have a moderate effect on SDD

changes greater than 16 months. The effects of ETu and SST exist

mainly on longer time scales (Based on available theoretical and

GAM results, ETu is negatively correlated with SDD, so the positive

correlation results between SDD Trend and ETu Trend are not

considered. The anomalous positive correlation of the long-term

trend correlation may be related to the amount of data). In addition,
TABLE 1 GAM fitting results of SDD and environmental factors.

Variable EDF F-statistic p-value Contribution (%)

SSS 8.225 607.6 <2×10-16** 38.2

Cu 8.529 335.6 <2×10-16** 25.7

WD 8.907 269.1 <2×10-16** 21.8

ETu 8.43 208.9 <2×10-16** 17.7

SST 8.894 196.9 <2×10-16** 17

MDWW 8.797 173.8 <2×10-16** 15.3

MLD 7.429 174.2 <2×10-16** 14.2

EPV 8.688 120.3 <2×10-16** 11.1

Cv 7.771 77.89 <2×10-16** 7.24

ETv 8.661 38.63 <2×10-16** 3.9

ILD 7.864 8.57 <2×10-16** 2.3

SWH 7.969 21.63 <2×10-16** 2.2

BLD 6.532 14.84 <2×10-16** 1.35
** indicates significant correlation (P<0.01).
A B

D E F

C

FIGURE 6

Response curves of SDD to changes in (A) SSS, (B) Cu, (C) WD, (D) ETu, (E)SST and (F) MDWW. The Y-axis in each subplot represents the smoothing
function term for each factor, and the numbers in brackets represent degrees of freedom.
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they are both significantly correlated with SDD IMF1, which

indicates that ETu and SST also have a non-negligible effect on

the semiannual-scale SDD oscillation.

In general, SSS, Cu, ETu, and SST significantly impact SDD on a

six-month to one-year scale. On a time scale of about two years

(SDD IMF3, SDD IMF4), SDD is significantly driven by SSS, WD,
Frontiers in Marine Science 09
ETu, and MDWW. All factors play a significant role in the

approximately five-year scale signal of SDD. Therefore, we can

conclude that SSS influences the signal components of SDD at five

different time scales, indicating that SSS is an important

environmental factor affecting SDD at most of the time. The

modulating effect of SSS on SDD is the most comprehensive,

followed by the effect of Cu, which has an important impact on

the four signal components of SDD.
4.2 Analysis of the response mechanism of
SDD to environmental factors

According to the distribution of SSS and SST, it can be

concluded that the study sea area is characterized by low

temperature and low salinity. The Mekong River brings a large

number of low-salinity plumes during the rainy season, which

makes the estuary and its adjacent waters low in salt content (SSS

minimum is below 22 PSU) (Figure 8A) (Hordoir et al., 2006).

Based on our results, there is a significant positive correlation

between SSS and SDD. SDD decreases with the decrease in SSS,

and appropriate salinity promotes the mass growth and
A B

D

E F

C

FIGURE 8

Spatial distribution of (A) SSS; (B) Cu; (C) WD; (D) ET; (E) SST; (F) MDWW. (July to September).
FIGURE 7

Correlation analysis of SDD and environmental factors at various
time scales. The shape and color of the ellipse in the figure
represent the degree of the correlation, the direction of the ellipse
represents positive or negative correlation, and * means that the
data has been tested for significance at 0.01.
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reproduction of phytoplankton, thereby reducing the transparency

of seawater (Jeppesen et al., 2007). At the same time, part of the

study area is in the upwelling region, and the distribution of SST

shows the cold spot phenomenon near shore (Wang et al., 2013;

Dang et al., 2022). This is due to the deep cold water brought by the

upwelling, causing the SST in the upwelling area to be less than 26.5

°C at minimum (Figure 8E). Based on the Pearson analysis between

the GAM analysis and EMD, SST and SDD are positively correlated.

The decrease in SST reduces the thickness of the thermocline and

the vertical stability of seawater. Nutrients are more easily mixed, so

SDD decreases as SST decreases. It is worth noting that due to the

strong seasonal changes in SST, the changes to the marine biological

environment are relatively slow, so the impact of SST on SDD is

mainly reflected on a longer time scale in addition to the semi-

annual scale. In short, the upwelling sea area carries a large amount

of nutrients and SPM (Li et al., 2015). It can be concluded that the

plume and upwelling of the Mekong River affect the distribution of

SSS and SST, which indirectly causes the SDD in the study area to

decrease significantly.

In marine systems, regional SDD is sensitive to hydrodynamic

and meteorological conditions (Zhou et al., 2022). WD from July to

September is mostly southwesterly (Figure 8C), and the distribution

of the wind stress curl field is favorable to the formation of

summertime eastward jet (Sun and Lan, 2021), which has a

significant impact on the regional climate and ecological

environment. The summertime eastward jet generally intensifies

in July, reaches its maximum in August, and then gradually weakens

in September, which is consistent with the appearance of the low

value region of SDD. As shown in the distribution of the sea surface

current field (Figure 8B), the prevailing southwest wind promotes

Cu in the offshore direction, which increases the intensity of Cu in

the study area and promotes the transfer of low salinity cold water

from the Mekong River to the east, thus indirectly causing

significantly low SDD (Van Der Woerd and Pasterkamp, 2008).

Cu can lead to the summertime Chl-a jet phenomenon (Chl-a

concentrations above 0.13 mg m-3) (Zeng et al., 2022), which can

have a direct impact on SDD. In addition, Cu driven by wind also

has periodic changes due to seasonal changes in WD. Therefore, Cu

impacts the variation of SDD on a semi-annual to annual scale.

Another environmental factor driven by wind, MDWW, also plays

a role in SDD. MDWW is mostly southwestern from July to

September (Figure 8F). The GAM model results show that SDD

is significantly lower when the direction of weaves is 180-270° due

to MDWW transporting more nutrients with SPM and contributed

to the reduction of SDD. Finally, Ekman transport, as one of the

environmental variables affecting SDD, is also driven by wind

(Dippner et al., 2007; Wang et al., 2013). The offshore direction

of ET in the study area is southeast and perpendicular to the

shoreline (Figure 8D), favoring the creation of more phytoplankton

growth and causing a decrease in SDD.

It is noteworthy that each environmental factor we analyzed

acts indirectly on SDD by affecting chlorophyll or SPM. The sources

of chlorophyll, representing primary productivity, are nearshore

transport and locally generated (Liu and Tang, 2022), which affect

SDD through physical and biological processes. Both summertime

eastward jet and upwelling significantly affect local chlorophyll,
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which explains the relationship between SDD response to EPV

intensity and summertime eastward jet in the GAM analysis, i.e.,

these processes are significantly associated with changes in SDD,

but their contribution to SDD changes is limited due to seasonal

fluctuations in EPV and hydrodynamics. The effect of MLD on SDD

is similar to the EPV effect. MLD is influenced by monsoons and

eddies, especially in summer when the MLD increases and

phytoplankton can obtain abundant nutrients in surface waters,

which has a great impact on local SDD. However, due to its seasonal

variation, the effect of MLD on SDD is limited during the

whole year.
5 Conclusions

In this study, we use multi-source satellite remote sensing data

and reanalysis data to study the spatial distribution and variation

characteristics of SDD in the study area (10°~14°E, 105°~114°N)

from 2011 to 2020. The monthly mean time series shows that the

SDD values in the study area are bimodal and varied significantly

seasonally, with the highest and lowest values occurring in May and

August each year, respectively. The spatial and temporal

distributions show a distinct zone of low SDD values (average

28.8 m) from July to September each year compared to nearby

waters, with its main axis parallel to the southern shoreline of the

Mekong estuary in a tongue shape.

To explore the SDD low value phenomenon, a non-parametric

model, GAM, is used to identify the dominant environmental

factors affecting SDD variation and analyze the relationship

between the dominant environmental factors and SDD variation.

The combined explanation rate of the model is 72.1%, and the

environmental factors’ influence contribution is ranked SSS > Cu >

WD > ETu > SST > MDWW, with different degrees of nonlinear

response relationships. Among them, SDD is positively correlated

with SSS and SST, and negatively correlated with Cu and ETu.

Moreover, in order to explore at what time scales environmental

factors influence SDD, this paper performs an EMD decomposition

of the main environmental factors. The analysis results show that

the variation of SSS, Cu, ETu, and SST on the interannual scale have

important effects on SDD, while on longer time scales, SSS, Cu, WD,

and SST had effects on SDD. In general, SSS has the largest

comprehensive impact on SDD. WD is also an important

segment that can indirectly affect SDD by altering ocean

dynamic processes.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

YS: data analysis, writing and editing. YS and YX: figure

plotting. DL and GX: conceptualization, methodology and
frontiersin.org

https://doi.org/10.3389/fmars.2023.1095663
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2023.1095663
reviewing. All authors contributed to the article and approved the

submitted version.
Funding

This research is supported by the project supported by Southern

Marine Science and Engineering Guangdong Laboraory (Zhuhai)

(SML2020SP007), the Guangdong Basic and Applied Basic

Research Foundation (2019A1515110840), and the Research

Startup Foundation of Guangdong Ocean University (R20009).
Acknowledgments

Thanks to the SDD data support from “National Earth System

Science Data Sharing Infrastructure, National Science &

Technology Infrastructure of China. (http://www.geodata.cn)”;

Thanks to the SDD data support from “National Earth System

Science Data Sharing Infrastructure, National Science &

Technology Infrastructure of China. (http://www.geodata.cn)” the
Frontiers in Marine Science 11
Copernicus for providing the monthly SST, SSS, and ocean current

data; the ECMWF for providing the wave and wind data. Thanks to

Dr. Kenny T.C. Lim Kam Sian for the contributions to

this manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Aas, E., Høkedal, J., and Sørensen, K. (2014). Secchi depth in the oslofjord–skagerrak
area: theory, experiments and relationships to other quantities. Ocean Sci. 10 (2), 177–
199. doi: 10.3390/rs11192226

Alsahli, M. M., and Nazeer, M. (2021). Spatiotemporal variability of secchi depths of
the north Arabian gulf over the last two decades. Estuar. Coast. Shelf Sci. 260, 107487.
doi: 10.1016/j.ecss.2021.107487

Bohn, V. Y., Carmona, F., Rivas, R., Lagomarsino, L., Diovisalvi, N., and Zagarese, H.
E. (2018). Development of an empirical model for chlorophyll-a and secchi disk depth
estimation for a pampean shallow lake (Argentina). Egypt. J. Remote Sens. Space Sci. 21
(2), 183–191. doi: 10.1016/j.ejrs.2017.04.005

Cai, S., Long, X., and Wang, S. (2007). A model study of the summer southeast
Vietnam offshore current in the southern south China Sea. Cont. Shelf Res. 27 (18),
2357–2372. doi: 10.1016/j.csr.2007.06.002

Chang, C. W. J., Hsu, H. H., Wu, C. R., and Sheu, W. J. (2008). Interannual mode of
sea level in the south China Sea and the roles of El Niño and El Niño modoki. Geophys.
Res. Lett. 35 (3), L03601. doi: 10.1029/2007GL032562

Chen, X., Feng, Y., and Huang, N. E. (2014). Global sea level trend during 1993–
2012. Glob. Planet Change 112, 26–32. doi: 10.1016/j.gloplacha.2013.11.001

Chen, X., Zhang, Y., Zhang, M., Feng, Y., Wu, Z., Qiao, F., et al. (2013).
Intercomparison between observed and simulated variability in global ocean heat
content using empirical mode decomposition, part I: modulated annual cycle. Clim.
Dyn. 41 (11), 2797–2815. doi: 10.1007/s00382-012-1554-2

Chu, P. C., Liu, Q., Jia, Y., and Fan, C. (2002). Evidence of a barrier layer in the sulu
and celebes seas. J. Phys. Oceanogr. 32 (11), 3299–3309. doi: 10.1175/1520-0485(2002)
032<3299:EOABLI>2.0.CO;2

Cloern, J. E. (1987). Turbidity as a control on phytoplankton biomass and productivity in
estuaries. Cont. Shelf Res. 7, 1367–1381. doi: 10.1016/0278-4343(87)90042-2

Cropper, T. E., Hanna, E., and Bigg, G. R. (2014). Spatial and temporal seasonal
trends in coastal upwelling off Northwest Africa 1981–2012. Deep. Res. Part I Oceanogr.
Res. Pap. 86, 94–111. doi: 10.1016/j.dsr.2014.01.007

Dang, X., Bai, Y., Gong, F., Chen, X., Zhu, Q., Huang, H., et al. (2022). Different
responses of phytoplankton to the ENSO in two upwelling systems of the south China
Sea. Estuar. Coasts. 45 (2), 485–500. doi: 10.1007/s12237-021-00987-2

Dippner, J. W., Nguyen, K. V., Hein, H., Ohde, T., and Loick, N. (2007). Monsoon-
induced upwelling off the Vietnamese coast. Ocean Dynam. 57 (1), 46–62. doi: 10.1007/
s10236-006-0091-0

Duy Vinh, V., Ouillon, S., Van Thao, N., and Ngoc Tien, N. (2016). Numerical
simulations of suspended sediment dynamics due to seasonal forcing in the Mekong
coastal area. Water 8 (6), 255. doi: 10.3390/w8060255
Erlandsson, C. P., and Stigebrandt, A. (2006). Increased utility of the secchi disk to
assess eutrophication in coastal waters with freshwater run-off. J. Mar. Syst. 60, 19–29.
doi: 10.1016/j.jmarsys.2005.12.001

Godfrey, J. S., and Lindstrom, E. J. (1989). The heat budget of the equatorial western
pacific surface mixed layer. J. Geophys. Res. Oceans 94 (C6), 8007–8017. doi: 10.1029/
JC094iC06p08007

Gordon, H. R., Brown, O. B., and Jacobs, M. M. (1975). Computed relationships
between the inherent and apparent optical properties of a flat homogeneous ocean.
Appl. Opt. 14 (2), 417–427. doi: 10.1364/AO.14.000417

Gordon, H., Clark, D., Brown, J., Brown, O., Evans, R., and Broenkow, W. (1983).
Phytoplankton pigment concentrations in the middle Atlantic bight: comparison
between ship determinations and coastal zone color scanner estimates. Appl. Opt. 22,
20–36. doi: 10.1364/AO.22.000020

Guisan, A., Edwards, T. C.Jr., and Hastie, T. (2002). Generalized linear and
generalized additive models in studies of species distributions: Setting the scene.
Ecol. Modell. 157 (2-3), 89–100. doi: 10.1016/S0304-3800(02)00204-1

Harvey, E. T., Walve, J., Andersson, A., Karlson, B., and Kratzer, S. (2019). The effect
of optical properties on secchi depth and implications for eutrophication management.
Front. Mar. Sci. 5. doi: 10.3389/fmars.2018.00496

Hayami, Y., Maeda, K., and Hamada, T. (2015). Long term variation in transparency in the
inner area of ariake Sea. Estuar. Coast. Shelf Sci. 163, 290–296. doi: 10.1016/j.ecss.2014.11.029

He, X., Bai, Y., Chen, C. T. A., Hsin, Y. C., Wu, C. R., Zhai, W., et al. (2014). Satellite views
of the episodic terrestrial material transport to the southern Okinawa trough driven by
typhoon. J. Geophys. Res. Oceans 119 (7), 4490–4504. doi: 10.1002/2014JC009872

He, X., Pan, D., Bai, Y., Wang, T., Chen, C. T. A., Zhu, Q., et al. (2017). Recent
changes of global ocean transparency observed by SeaWiFS. Cont. Shelf Res. 143, 159–
166. doi: 10.1016/j.csr.2016.09.011

Hordoir, R., Nguyen, K. D., and Polcher, J. (2006). Simulating tropical river plumes,
a set of parametrizations based on macroscale data: A test case in the Mekong delta
region. J. Geophys. Res. Oceans 111, C09036. doi: 10.1029/2005JC003392

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, E. H., Zheng, Q., et al. (1998).
The empirical mode decomposition and the Hilbert spectrum for non stationary time
series analysis. Proc. R. Soc Lond. 454, 903–995. doi: 10.1098/rspa.1998.0193

Idris, M. S., Siang, H. L., Amin, R. M., and Sidik, M. J. (2022). Two-decade dynamics
of MODIS-derived secchi depth in peninsula Malaysia waters. J. Mar. Syst. 236, 103799.
doi: 10.1016/j.jmarsys.2022.103799

Jeppesen, E., Søndergaard, M., Pedersen, A. R., Jürgens, K., Strzelczak, A., Lauridsen,
T. L., et al. (2007). Salinity induced regime shift in shallow brackish lagoons. Ecosystems
10 (1), 48–58. doi: 10.1007/s10021-006-9007-6
frontiersin.org

http://www.geodata.cn
http://www.geodata.cn
https://doi.org/10.3390/rs11192226
https://doi.org/10.1016/j.ecss.2021.107487
https://doi.org/10.1016/j.ejrs.2017.04.005
https://doi.org/10.1016/j.csr.2007.06.002
https://doi.org/10.1029/2007GL032562
https://doi.org/10.1016/j.gloplacha.2013.11.001
https://doi.org/10.1007/s00382-012-1554-2
https://doi.org/10.1175/1520-0485(2002)032%3C3299:EOABLI%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032%3C3299:EOABLI%3E2.0.CO;2
https://doi.org/10.1016/0278-4343(87)90042-2
https://doi.org/10.1016/j.dsr.2014.01.007
https://doi.org/10.1007/s12237-021-00987-2
https://doi.org/10.1007/s10236-006-0091-0
https://doi.org/10.1007/s10236-006-0091-0
https://doi.org/10.3390/w8060255
https://doi.org/10.1016/j.jmarsys.2005.12.001
https://doi.org/10.1029/JC094iC06p08007
https://doi.org/10.1029/JC094iC06p08007
https://doi.org/10.1364/AO.14.000417
https://doi.org/10.1364/AO.22.000020
https://doi.org/10.1016/S0304-3800(02)00204-1
https://doi.org/10.3389/fmars.2018.00496
https://doi.org/10.1016/j.ecss.2014.11.029
https://doi.org/10.1002/2014JC009872
https://doi.org/10.1016/j.csr.2016.09.011
https://doi.org/10.1029/2005JC003392
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1016/j.jmarsys.2022.103799
https://doi.org/10.1007/s10021-006-9007-6
https://doi.org/10.3389/fmars.2023.1095663
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2023.1095663
Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems. 2nd ed
(Cambridge, UK: Cambridge University Press).

Klemas, V. (2012). Remote sensing of algal blooms: An overview with case studies.
J. Coast. Res. 28 (1A), 34–43. doi: 10.2112/JCOASTRES-D-11-00051.1

Li, Y., Xu, X., Yin, X., Fang, J., Hu, W., and Chen, J. (2015). Remote-sensing
observations of typhoon soulik, (2013) forced upwelling and sediment transport
enhancement in the northern Taiwan strait. Int. J. Remote Sens. 36 (8), 2201–2218.
doi: 10.1080/01431161.2015.1035407

Li, J., Yu, Q., Tian, Y. Q., and Becker, B. L. (2017). Remote sensing estimation of
colored dissolved organic matter (CDOM) in optically shallow waters. ISPRS J. Photog.
Remote Sens. 128, 98–110. doi: 10.1016/j.isprsjprs.2017.03.015

Liu, F., and Tang, S. (2022). A double-peak intraseasonal pattern in the chlorophyll
concentration associated with summer upwelling andmesoscale eddies in the western south
China Sea. J. Geophys. Res. Oceans 127 (1), e2021JC017402. doi: 10.1029/2021JC017402

Luis, K. M., Rheuban, J. E., Kavanaugh, M. T., Glover, D. M., Wei, J., Lee, Z., et al.
(2019). Capturing coastal water clarity variability with landsat 8.Mar. Pollut. Bull. 145,
96–104. doi: 10.1016/j.marpolbul.2019.04.078

Nishijima, W., Umehara, A., Sekito, S., Okuda, T., and Nakai, S. (2016). Spatial and
temporal distributions of secchi depths and chlorophyll a concentrations in the suo
Nada of the seto inland Sea, Japan, exposed to anthropogenic nutrient loading. Sci.
Total Environ. 571, 543–550. doi: 10.1016/j.scitotenv.2016.07.020

Nishijima, W., Umehara, A., Sekito, S., Wang, F., Okuda, T., and Nakai, S. (2018).
Determination and distribution of region-specific background secchi depth based on
long-term monitoring data in the seto inland sea. Japan. Ecol. Indic. 84, 583–589.
doi: 10.1016/j.ecolind.2017.09.014

Philippart, C., Salama, M. S., Kromkamp, J. C., van derWoerd, H. J., Zuur, A. F., and Cadee,
G. C. (2013). Four decades of variability in turbidity in the western wadden Sea as derived from
corrected secchi disk readings. J. Sea Res. 82, 67–79. doi: 10.1016/j.seares.2012.07.005

Requia, W. J., Jhun, I., Coull, B. A., and Koutrakis, P. (2019). Climate impact on
ambient PM2. 5 elemental concentration in the united states: A trend analysis over the
last 30 years. Environ. Int. 131, 104888. doi: 10.1016/j.envint.2019.05.082
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