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Stock assessments serve to monitor the condition of fish stocks and exploit them

sustainably but require accurate data such as growth and mortality rates as input

parameters. Most species fished worldwide lack the data needed to assess their

status and even those closely assessed are often based on parameters that are

known to contain uncertainty. This has resulted in an increased share of

overfished stocks over the last half century, demanding urgently innovative

methodologies that can provide novel means to reduce uncertainty of fish

stocks assessments and expand the range of assessed species. CKMR has

emerged recently attracting a great interest due to its potential to provide

accurate demographic parameters of interest in stock assessments. The

method is at the crossroads between fisheries science and genomics, requiring

specialized knowledge that is usually outside of the experience of fisheries

scientist and modellers, complicating the application of the method and its

uptake in regular fisheries assessments. In this review, we provide useful

information to perform the genomics and bioinformatics steps required to

complete successfully a CKMR study. We discuss the most suitable genomics

assays, considering the amount of information they provide, their easiness of use

and cost of genotyping accurately the large number of individuals needed to

assess most fish stocks. We provide an overview of methods of analysis and

statistical methodologies that can be used to infer kinship with the accuracy

required in a large population setting with sparse sampling, where most

individuals are unrelated, determining a low probability of finding closely

related individuals. We analyse potential sources of biases and errors and

provide recommendations to facilitate the application of CKMR to a wider

range of fish stocks.
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1 Introduction

Close-kin mark-recapture (CKMR) provides a fisheries-

independent method for estimating demographic parameters (e.g.

abundance, population trend, survival rates) of fish stocks, based on

the frequency and degree of kinship determined from genetic

samples (Bravington et al., 2016b).

The underlying principle is analogous to classical mark

recapture, but uses the genomic information to determine if any

given individual (“capture”) has one or more close relatives

(“recapture/s”) in a sample. The probability of finding relatives

(“recaptures”) diminishes as the size of the population increases,

providing information on adult abundance. The inverse

relationship between abundance and probability of recapture

holds if individuals represent a random sample from the

population of interest (Bravington et al., 2016b).

CKMR relies on a mark‐recapture analysis framework

(Bravington and Grewe, 2007) and can be divided into five

different stages (Figure 1); design, sampling, marker discovery

and genotyping, kin finding and demographic/statistical

modelling of the population.

The design stage involves several steps, starting with the

compilation of existing biological knowledge, catch data (if

available) and estimated stock parameters, including approximate

population size, if the population is assessed. This information is

needed to perform a preliminary evaluation of the potential

feasibility of CKMR to assess the population of interest, which

consists of an estimation of the number of samples and ancillary

information required to infer population parameters with accuracy,

the potential complications and the technical considerations for the

design of the CKMR study. If the study is deemed viable, the next

step is the design of sampling, considering the relevant biology (e.g.,

the presence of population substructure with differentiated adult

and juvenile habitats (nursery grounds) or with biased sex-ratio in
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spawning-grounds) and the estimated samples sizes required for the

target level of precision in the population estimates (Maunder

et al., 2021).

The second stage is the sampling, which involves the collection

of samples, including tissue and hard structures (otoliths, scales or

vertebrae, among others) as well as ancillary data, such as length,

sex, and maturation stage.

The next two stages involve the use of genomics and

bioinformatics tools. The term “genomics” refers to an organism’s

complete collection of heritable information stored in its DNA.

Modern genomic technologies provide the means to study this

information and uncover differences in genome content that

provide insights into individuals, populations and species. Such

differences, also known as DNA polymorphisms (in biology,

polymorphism describes the existence of multiple forms) are the

source of genetic diversity and can be used as molecular markers (Del

Giacco and Cattaneo, 2012). Bioinformatics, on the other hand, can

be defined as the application of tools of computation and analysis to

capture and interpret biological data (Bayat, 2002). Both disciplines

are involved in the third stage, the genotyping, which entails the

determination of the DNA sequence at polymorphic positions within

the genome of an individual. It requires the isolation of DNA from

the tissues collected for each specimen, the amplification and

sequencing of this DNA through a selected method, and searching

for polymorphic regions across their genomes to produce unique

genotypes. The fourth stage addresses the search of close relatives

(equivalent to "recaptures") among the specimens and requires a

bioinformatics workflow to perform a kinship analysis among the

unique genotypes aimed at detecting highly related individuals. In the

last stage, variants of capture‐recapture modelling are applied to the

kinship data to produce direct estimates of parental population

abundance and other demographic parameters such as mortality or

fecundity, depending on the type of kinship relationships analysed.

The results obtained serve to feed back the design stage in an iterative

process to refine and optimize the CKMR model (Delaval

et al., 2022).

The CKMRmethod is at the crossroads between fisheries science

and genomics, requiring specialized knowledge that is usually outside

of the experience offisheries scientist and modellers, complicating the

application of the method and its uptake in regular fisheries

assessments (Davies et al., 2015). This review expands and

complements the review made by Casas and Saborido-Rey, (2023)

within this Research Topic focused on close-kin mark–recapture

(CKMR) as an emerging tool to estimate population parameters,

focused on the theory behind the method, the stages of design and

sampling (one and two) and existing case studies. The present

manuscript addresses stages three and four, which involve the use

of genomic and bioinformatics tools. The rapid advances in genomic

technologies and the plethora of software and analysis pipelines

represent a notable challenge and can be overwhelming when

approaching a CKMR project. A simple terminology is used across

the manuscript to reach potential users of the method, such as

fisheries managers and scientist, with no expertise in genomics.

Additionally, a brief glossary for key genomics and bioinformatics

terms is included. We provide an overview of molecular marker types

that have been applied in CKMR studies to date, their characteristics
FIGURE 1

Flowchart displaying the five components of a CKMR study. The
arrows indicate the succession of stages, including a connection
between the final stage and the initial design stage, indicating an
iterative process.
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and give recommendations for future CKMR studies. We discuss the

genomic methods with higher potential for CKMR applications,

considering the amount of information they provide, their easiness

of use and cost. We provide an overview of methods of analysis and

statistical methodologies that can be used to infer kinship, together

with the potential sources of error and biases. Finally, we provide

recommendations and important considerations to carry out close

kin studies to assess fish populations, to facilitate bridging the gap

between geneticists and fisheries assessment scientists and promote

the use of genomic tools in fisheries science.
2 Genotyping stage

The genotyping stage consists of several steps that involve

laboratory work to isolate, amplify and sequence each specimen´s

DNA, followed by a bioinformatics workflow to analyse the

resulting sequences (Figure 2). This analysis aims at detecting and

scoring variable regions among the individuals that can be used as

markers to produce unique genotypes.
2.1 Isolation of high quality DNA

The first step is the isolation of DNA and the importance of

obtaining the highest possible quality cannot be overemphasized, as
Frontiers in Marine Science 03
it is essential to later produce the best possible sequencing reads.

The collection of tissue samples for CKMR studies commonly relies

on a biopsy of tissue, such as a fin clip or a small piece of skin, which

does not require the sacrifice of the specimen. Alternatively, a range

of soft tissues can be targeted, including spleen, heart, blood, kidney

or muscle, if specimens are sacrificed. A suitable storage of the

tissues collected is essential to guarantee the integrity of the DNA.

An adequate preserving solution (e.g. 90% ethanol, DNAzol,

DMSO-EDTA, DNA/RNA Shield™, RNAlater) should be used,

and is also important to minimize the time between collection and

storage to prevent tissue degradation (Mulcahy et al., 2016; Oosting

et al., 2020; Dahn et al., 2022). If the DNA is not isolated promptly,

samples should be kept at -20°C. Handling procedures should

minimize the risk of cross-contamination between different

individuals. This is especially pertinent to studies involving the

collection of tissue samples at sea, on board of research or

commercial vessels, where access to sterile tools and clean

workspaces is often limited (Anderson et al., 2023). Care is also

needed in subsequent steps, as the risk of contamination remains

along the sample processing. Sample contamination and mixing can

seriously impact downstream results, causing erroneous inferences

and is a common problem in large-scale studies (Zajac et al., 2019;

Francois et al., 2020; Anderson et al., 2023).

Several DNA isolation methods can be used, from the classic

phenol–chloroform DNA extraction method to any of the multiple

high purity DNA isolation commercial kits available, as long as they
FIGURE 2

Representation of the genomics and bioinformatics steps involved in a CKMR study. The workflow entails the isolation of DNA, the amplification of
polymorphic regions across the genome of the species of interest, the identification of molecular markers and the genotyping of the specimens,
followed by an analysis of the kinship relationships among them to infer parent-offspring and half-sibling relationships.
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produce high molecular weight genomic DNA. A large number of

comparative studies have tested the efficiency of different methods

in terms of DNA quality, quantity and purity (i.e. rate of

fragmentation, concentration and rate of contaminants,

respectively) showing that it is highly dependent on the tissue

processed, the storage conditions and the species [e.g. (Silva et al.,

2019; Martincová and Aghová, 2020; Lutz et al., 2023)]. Martincová

and Aghová (2020), tested 12 different DNA extraction methods

from eight manufacturers, including some the most widely used

commercial silica membrane-based kits. The authors assessed the

quality of the DNA obtained from four tissues of two vertebrate

species and found that the highest DNA yields were consistently

obtained with one of the kits but different ones produced a better

DNA quality, in terms of purity and fragmentation. In the tests

carried out by Lutz et al. (2023), three extraction methods were

tested on several fish tissues and the results are in contrast with

those found by Shuttleworth and Oosthuizen (2022) and Oduoye

et al. (2020), who also tested several isolation methods in fishes from

different species. These marked differences highlight the need of a

thorough testing and optimization of the DNA preservation and

isolation method on every CKMR study. Additionally, when

selecting a method is also important to consider the cost, the

processing time and the technical requirements of the different

methodologies, as they differ widely (Silva et al., 2019; Martincová

and Aghová, 2020; Oduoye et al., 2020).

The DNA quality, quantity and purity strongly affects

downstream molecular analysis, conditioning the subsequent

choices of markers and methods, as well as the bioinformatics

workflow but poor quality DNA is highly unlikely to produce the

accurate data need in CKMR studies, regardless of the choices.
2.2 Amplification of polymorphic
genomic regions

After obtaining high-quality genomic DNA for each individual,

the next step consists on the amplification and sequencing of this

material to discover polymorphic regions across the genome of the

species under study. These variable regions are heritable and,

therefore, can be used as genetic markers, enabling the

identification of closely related specimens (Stage 3) needed in

CKMR studies. Accurate kinship analysis requires high resolution

markers, which can be either highly polymorphic or very numerous

to tackle the inherent challenges of studying wild populations, often

characterized by large sizes, small numbers of true closely related

individuals sampled and a high number of comparisons (Städele

and Vigilant, 2016). All CKMR studies published to date have relied

on either microsatellites (STRs) (Bravington et al., 2016a; Ruzzante

et al., 2019; Marcy-Quay et al., 2020; Prystupa et al., 2021) or, more

recently, on single nucleotide polymorphisms (SNPs) (Hillary et al.,

2018; Wacker et al., 2021; Delaval et al., 2022; Patterson et al., 2022;

Trenkel et al., 2022). The former consist of tandem repeats of short

(one to six base pairs) genetic elements, in which differences

between alleles are primarily in the number of repeats (Webster

and Reichart, 2005). The latter, constitute the most common form

of variation in a genome and are characterized by the substitution of
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a single nucleotide at a specific location (van Dijk et al., 2014). Both

types have advantages and drawbacks and the optimal choice

depends on several factors, reviewed below.
2.2.1 Molecular marker types
The first CKMR study that demonstrated the ability of the

method to estimate abundance of a fish population was based on

STRs and several others followed suit (Bravington et al., 2016a;

Ruzzante et al., 2019; Marcy-Quay et al., 2020; Prystupa et al., 2021).

The use of STRs involves a costly and time-consuming investment

in their isolation and characterization, although the emergence of

high capacity sequencing technologies have facilitated this process

in recent years (Ellis et al., 2011; De Barba et al., 2017). High-

throughput sequencing techniques (HTS) enable the simultaneous

sequencing of large numbers of DNA fragments, sensibly reducing

costs and processing times compared to previous technologies

(Reuter et al., 2015). Several tools for identifying STRs from high-

throughput data exist [e.g.: SSR pipeline, (Miller et al., 2013)],

although false positive results and limited quality is still an issue,

requiring often further experiments to identify and validate the

polymorphic STRs (Guang et al., 2019). Moreover, current

techniques present difficulties regarding amplification calibration

and the choice of informative STRs with high specificity (Pimentel

et al., 2018). The analysis of STRs from high-throughput sequences

is hampered by their high propensity to vary in size during both the

PCR amplification and the sequencing reaction itself. Another

disadvantage of STRs, due to their PCR based nature, is that

mutations in primer regions can lead to non-amplifying ‘‘null

alleles’’ that can pose problems for kinship assignments (Paetkau

and Strobeck, 1995; Ishibashi et al., 1996). Nonetheless, STRs also

carry a number of significant advantages, being the most important,

in the context of CKMR studies, a series of characteristics that make

them especially useful for estimating kinship and relatedness. They

are codominant markers, highly polymorphic due to high mutation

rates, with a high power for paternity analyses (≈6× that of SNPs)

and low requirements in terms of DNA amount and quality. In fact,

the ability of STRs to accurately assign parentage from highly

degraded DNA samples has been validated (De Barba et al.,

2017). Therefore, they might be a suitable choice for CKMR

studies that have to rely on the analysis of samples that do not

reach the recommended DNA quality standards, if identification of

first-degree relatives alone is sufficient. Moreover, STR genotyping

is less expensive than SNP genotyping (Puckett, 2017; Lemopoulos

et al., 2019), a very relevant factor in any CKMR study involving

natural populations of interest in fisheries, as these mostly require

the analysis of very large numbers of individuals [e.g (Bravington

et al., 2016a; Trenkel et al., 2022)].

Single nucleotide polymorphisms (SNPs), on the other hand,

have become increasingly popular in population genetic studies

(von Thaden et al., 2017; Torrado et al., 2020; Wenne et al., 2020;

Crespel et al., 2021) and, more specifically, in CKMR studies

(Hillary et al., 2018; Wacker et al., 2021; Delaval et al., 2022;

Trenkel et al., 2022). SNP markers show several practical

improvements over STRs to conduct kinship analysis, including

their higher abundance in the genomes, a lower and predictable
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mutation rate and their easier automation that results in a higher

reproducibility (Amorim and Pereira, 2005; Anderson and Garza,

2006; Fisher et al., 2009). Their main constraint is the limited

genetic information they provide per locus, but given a sufficient

number of markers, their collective strength can resolve almost any

parentage or close kin relationship. Several studies have compared

the power of SNPs and STRs in a parentage context and in virtually

every case, the studies concluded that SNPs are at least as powerful

as STR markers [for review see (Flanagan and Jones, 2019)].

Considering their characteristic, the latest CKMR studies and

the increasing efficiency and affordability of genotyping genomic

techniques, we argue that SNP markers are the sensible choice for

any project initiating today, unless budget constraints or DNA

quality advises otherwise. Thus, hereafter, we focus on

methodologies and bioinformatics pipelines solely based on SNPs.

2.2.2 Methods for high throughput
marker discovery

In spite of the outstanding developments in sequencing

technologies and bioinformatics tools in the last decades and the

worldwide initiatives to improve genomic resources across species

[e.g.: the Vertebrate Genomes Project, (Rhie et al., 2021)], these are

still scarce in non-model species (Christiansen et al., 2021). This is

particularly true for fish (Fan et al., 2020) and thus, in a fisheries

context, CKMR studies must target, mostly, wild populations of

thousands to millions of individuals for which few prior genomic

resources are available. Several methodologies can be used for the

simultaneous discovery of thousands of genomic regions containing

SNPs across genomes, and they can be broadly grouped into three

categories (Table 1); i) restriction enzyme-based methods, ii)

combined enzyme-based hybridization capture methods, iii)

whole-genome sequencing methods.

The first two categories measure polymorphisms in a subset of

genomic regions, a more economical approach than sequencing the

whole genome, especially in studies involving a large number of

individuals. They can assess accurately a wide array of biological

questions and have been the choice in CKMR studies based on SNPs

published to date (Hillary et al., 2018; Wacker et al., 2021; Delaval

et al., 2022; Trenkel et al., 2022).
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Restriction-enzyme-based methods were specifically developed

to reduce the proportion of the genome targeted for sequencing.

They define a large group of HTS methodologies that involve the

digestion of genomic DNA with restriction endonucleases and the

sequencing of the resulting restriction fragments. They encompass

several classes of methodologies, including genotyping-by-

sequencing [GBS (Elshire et al., 2011)], reduced-representation

libraries [RRLs, (Van Tassell et al., 2008)], complexity reduction

of polymorphic sequences [CroPS, (van Orsouw et al., 2007)] and

restriction-site-associated DNA sequencing [RADseq (Miller et al.,

2007; Baird et al., 2008)] that share key steps but also have

substantial differences [reviewed in (Davey et al., 2011)]. The

latter are especially useful for CKMR studies that often target

organisms lacking a well-assembled reference genome, as they can

provide high genome-wide marker densities scored with high

accuracy (Davey et al., 2011). The term RADseq is used today to

refer not only to the original (single digest) RADseq protocol but

also to a number of variants that were developed to suit specific

experimental needs. These include ddRADseq (Peterson et al.,

2012), 2bRAD (Wang et al., 2012), ezRAD (Toonen et al., 2013),

3RAD (Graham et al., 2015), nextRAD (Fu et al., 2017) and

quaddRAD (Franchini et al., 2017), among others (reviewed by

Andrews et al., 2016; Campbell et al., 2018). However, with the

notable exception of double-digest RADseq (ddRAD), the majority

of these derivatives consist of only minor and subtle modifications

of the parent protocol and have only been marginally used and

tested, preventing their application in CKMR studies. The 2RAD

and 3RAD methods (Bayona-Vásquez et al., 2019; Glenn et al.,

2019) are also noteworthy as they overcome some of the technical

challenges of RADseq-based methods, providing an efficient,

flexible, and low-cost system to analyse large numbers of

individuals. The 2RAD/3RAD methods have a lower startup cost

and a higher capacity for sample multiplexing, as well as a simplified

workflow that facilitates their implementation (Bayona-Vásquez

et al., 2019). Nonetheless, it is important to note that technical

differences among the methods lead to important considerations for

the types of bias and error inherent in the resulting data and these

are much better understood in sequences generated by sdRADseq

and ddRADseq techniques (Andrews et al., 2016).
TABLE 1 Comparison of the main properties of restriction enzyme-based methods, combined enzyme-based hybridization capture methods and
whole-genome sequencing methods for the discovery of SNP markers across genomes.

Category Restriction enzyme-based
methods (RADseq)

Combined enzyme-based
hybridization capture

methods
Whole-genome sequencing

Expertise required ++ ++ +++

Number of markers ++ + +++

Number of individuals ++ +++ +

Variant-calling and genotyping
Intermediate coverage, ++ genotype
accuracy

Higher coverage, +++ genotype
accuracy

Lower coverage, + genotype accuracy

Information content intermediate overall information more information per locus more overall information

Practical considerations
intermediate cost per individual,
faster

lower cost per individual, requires
lower quality DNA

higher cost per individual, more
information
Scores indicate (+) low, (++) medium, (+++) high.
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The original single digest Restriction site Associated DNA is

arguably the most popular reduced representation sequencing

technique and has a number of advantages for identifying

kinship-informative SNPs in non-model organisms. This

technique sequences short regions surrounding essentially all

restriction sites for a given restriction endonuclease (assuming a

sufficient sequencing depth). Restriction fragments are randomly

sheared to a length suitable for the sequencing platform of choice,

and selective PCR is normally used to amplify for sequencing only

those fragments containing a restriction site, generating a data set of

RAD tags (sequences downstream of restriction sites) that derive

from a much-reduced part of the original genome. The most

popular derivative, ddRADseq differs from sdRADseq in two

principal aspects. First, it eliminates the need for a sonicator, a

specialized instrument not necessarily available in a standard

molecular laboratory, using instead a double restriction enzyme

digest (i.e., a restriction digest with two enzymes simultaneously).

Second, it introduces a precise selection for genomic fragments by

size since it relies on the distance between cut sites to determine the

length of DNA that is sampled (Peterson et al., 2012).

Both techniques are flexible in the number of loci they can

target as the choice of restriction enzyme(s) determines the number

of resultant SNP markers. Considering that in CKMR studies it is

critical to obtain a sufficient number to resolve kinship accurately, it

is highly recommended to perform a prospective data simulation to

model accurately the number and distribution of expected RAD loci

before initiating a study. Simulations allow testing the behaviour of

different molecular protocols in the system of interest, as well as

assessing the magnitude of data recovered given variable

experimental conditions. This can be performed by several tools,

including simRAD (Lepais and Weir, 2014), ddRADseqtools

(Mora-Márquez et al., 2017), RADinitio (Rivera-Colón et al.,

2021) and PredRAD (Vendrami et al., 2019).

Restriction enzyme techniques are suitable to analyse sample

sizes of a few thousand individuals or less, the range of most teleost

CKMR studies published to date (Hillary et al., 2018; Ruzzante et al.,

2019; Marcy-Quay et al., 2020; Prystupa et al., 2021; Wacker et al.,

2021; Delaval et al., 2022). For larger sample sizes, a better strategy,

in terms of costs and time, is the use of RADseq on a subset of

samples for SNP discovery first, and subsequently using this

information to design a custom panel of SNPs (called SNP chip

or SNP array) for genotyping of the remaining samples (Trenkel

et al., 2022). This approach has further advantages as it ensures

consistent sequencing of the same genomic regions and significantly

simplifies the analysis. SNP chips serve as a black-box presence-

absence for each allele at each locus and a computer reports which

alleles are present. The current generation of microarrays can

accommodate hundreds of thousands or millions of DNA

fragments (oligonucleotides) and the genotyping in parallel of

hundreds of individuals (Adler et al., 2013). SNP chips can also

serve as a workaround when is not possible to consistently obtain

high-quality DNA samples, although the design of a SNP chip

inevitably requires a small number of high-quality samples

(Maunder et al., 2021).

This is precisely the basis of the second category of assays

“combined enzyme-based hybridization capture methods”, which
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loci for capture bait design and subsequently employs custom

capture baits to enrich candidate SNP loci before sequencing

(Hoffberg et al., 2016). The coupling of these two strategies

improves the consistency of genotype data compared to stand

alone restriction enzyme methods as it produces higher sequence

read coverage of a refined set of loci, improving confidence in

genotype calls. Additionally, it allows the multiplexing of a larger

number of samples within a fixed sequencing effort, substantially

reducing the cost per individual (Andrews et al., 2014; Ali et al.,

2016). This group of “enriched” methods encompass several

approaches, including Rapture (Restriction-site associated DNA

capture; RAD capture) (Ali et al., 2016), Hybridization Capture

Using RAD Probes (hyRAD), RADcap (Hoffberg et al., 2016) or

HyRADX (Schmid et al., 2017).

The third category that could be used for the discovery of SNPs

across a given genome are whole-genome sequencing (WGS)

methods, which are rapidly becoming popular in ecological

studies although have never been tested in a CKMR approach

(Taylor et al., 2021). WGS methodologies provide significantly

more information compared to the previous two categories, as

they can theoretically unveil all the polymorphisms in a genome.

Although they have, in principle, more resolution than needed for

CKMR studies and a significantly higher cost, the application of

WGS has the potential to boost the power of close kin analyses.

Current studies are based on close kinship involving first and

second order relatives; parent-offspring and half-sibling pairs.

Nonetheless, WGS in species with well-assembled genomes could

provide sufficient information to reliably identify one or two orders

more distant pairwise relationships (e.g. half-first cousins or great

uncles) requiring the analysis of a smaller percentage of the

population´s individuals to accurately estimate parameters of

interest (Anderson, 2022b).
2.3 SNP identification and calling

Once the sequences have been obtained, the next step involves

the use of bioinformatics tools to convert this raw genetic data into a

final set of SNP and genotype calls consisting of an inferred allele

(i.e. AA, BB, AB) at each SNP locus for each individual analysed.

Although analytic strategies vary across different high-throughput

technologies, they all require critical validation to ensure precise

and unbiased interpretation (Shafer et al., 2017). The number of

SNP loci required to ensure a suitable statistical power for kinship

analyses will vary across study systems based on genetic diversity,

mating system, and the number of individuals sampled (Kopps

et al., 2015).

The steps of the bioinformatics pipeline used to produce the

genotypes need to be tailored to the methodology used to generate

the libraries and the sequencing technology; however, all

bioinformatics workflows share some common goals. For

example, they must take into account the moderate genotyping

error rate inherent in HTS data, identify and remove SNPs in

paralogous and other repetitive genomic regions, and generate a set

of unlinked loci. There are some basic steps that are similar among
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all pipelines, starting with the demultiplexing step that serves to

assign each sequence to its individual of origin [e.g. (Torkamaneh

et al., 2017)]. This is followed by a pre-processing of the reads that

includes a quality control and filtering steps to eliminate poor-

quality or suspected artifactual SNP loci. The reads are subsequently

assembled or aligned. If a reference genome is available, sequence

reads are aligned to the reference using an alignment software such

as Bowtie2, TopHat2, BWA or STAR, among others [for a

comparison of their performance see (Musich et al., 2021)].

Alternatively, loci can be assembled de novo by clustering similar

sequence reads together and assuming that variation among reads

at a locus represents either sequencing error or true allelic variation.

The final step consists on the discovery of polymorphic loci and the

inference of the genotypes at these loci for each individual. Bi-allelic

SNPs are identified for each individual sample and a filtering step is

used to remove uninformative and unreliable loci to keep only high

quality, error free genotypes. Retaining only reliably scored SNPs is

essential in CKMR studies since the genotypes are subsequently

used to infer kinship, thus locus appearing inconsistent with the

assumptions underlying Hardy-Weinberg Equilibrium, showing

linkage disequilibrium, and with low call frequencies must be

filtered out (Trenkel et al., 2022).

There are a number of bioinformatics software packages that

have been developed specifically to aid the workflow analysis of

reduced-representation sequencing data. Several of these platforms

utilize the same tools and algorithms commonly applied to whole-

genome sequence data, while others utilize specifically developed

algorithms. For RADseq, the most popular software analysis is

Stacks v2 (Rochette et al., 2019) and its previous version, Stacks v1

(Catchen et al., 2013). This program is designed modularly to

perform sequentially cleaning and filtering of raw sequence data,

building loci, creating a catalog of loci, and matching samples back

against the catalogue, transposing the data, adding paired-end reads

to the analysis and calling genotypes.

Stacks employs a de Bruijn graph assembler to build contigs

from paired-end reads and overlap those contigs with the

corresponding single-end loci. This enables a Bayesian genotype

caller to provide precise SNPs, and a robust algorithm to phase

those SNPs into long haplotypes, generating RAD loci spanning

several hundred base pairs (Rivera-Colón et al., 2021). Stacks

implements several alternative models to call SNPs and genotypes

and then converts SNPs into phased haplotypes using a graph‐based

algorithm that relies on sequence data, specifically on co‐

observations of alleles within a read pair. Despite its wide

adoption, generating a reliable set of loci for downstream analysis

requires appropriate use of the software and this implies the non-

trivial task of selecting some parameters throughout the pipeline.

Such parameters depend on key features of the RADseq dataset

under analysis and enforces to explore the parameter space and

assess how the analysis software interacts with the biological signal

(Paris et al., 2017). Although these complex genomic analyses

remain a daunting task for many researchers, very detailed road

maps for a correct use of Stacks and robust SNP calling are available

(Paris et al., 2017; Rochette and Catchen, 2017; Rochette et al., 2019;

Rivera-Colón and Catchen, 2022).
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Other alternatives include Ipyrad (Eaton and Overcast, 2020)

which allows for the inclusion of indel variation and requires

selecting a set of parameters that will affect SNP calling,

analogous to Stacks v2. The pipeline dDocent (Puritz et al.,

2014a), depends largely on other bioinformatics software

packages and performs SNP calling using a Bayesian statistical

framework with FreeBayes (Garrison and Marth, 2012). There are

also a number of software that use genotype likelihoods and

probabilities rather than explicit genotype calls. Analysis of Next

Generation Sequencing Data (ANGSD) (Korneliussen et al., 2014)

and polyRAD (Clark et al., 2019) estimate a posterior probability

from the priors and likelihoods for each individual and allele using

Bayes’ theorem (Wang et al., 2019), facilitating the incorporation of

statistical uncertainty regarding genotypes.

2.3.1 Sources of bias and error
Genotype data produced by high throughput sequencing and

SNP arrays are imperfect due to missing (errors of omission) and

erroneous (errors of commission) genotypes (Faria et al., 2011;

Carroll et al., 2018). These errors strongly affect genotype-based

analyses, such as inferences of identity, relatedness and relationship,

resulting in incorrect assignments (Wang, 2010; Gomez-Raya et al.,

2022). CKMR studies often target natural populations where most

individuals are unrelated. In this context, ignoring or

underestimating genotyping errors during SNP-based kinship

inference can cause the exclusion of true relatives or false-positive

assignments, having a great impact on the subsequent estimation of

population parameters. Thus, in CKMR studies it is essential to

minimize genotyping errors by avoiding artefacts that have the

potential to bias allele frequencies and cause false alleles. Allelic

dropout causes the masking of some alleles and occurs when there is

a failure during the amplification of one or both alleles of a diploid

individual (Sommer et al., 2013). If only one allele drops out, the

other is revealed alone causing the misinterpretation of the

individual as homozygous at the concerned locus. If drop out

affects both alleles, it causes missing genotypes. In enzyme-based

methods, allelic dropout manifests when the restriction enzyme

recognition site contains a polymorphism, resulting in a failure to

cut the genomic DNA at that location (Andrews et al., 2016). It has

been shown that allele dropout increases with overall levels of

polymorphism and has a greater impact on data generated by

ddRAD than the original sdRAD, because loci depend on the

presence of two cut sites rather than one (Arnold et al., 2013a;

Gautier et al., 2013a). In capture-targeted assays, variability in

regions surrounding the targeted SNP sites can interfere with

hybridization introducing dropout-like effects (Gershoni

et al., 2022).

Allelic dropout is generally caused by random effect and

strongly correlated with three well know artefacts that can be

introduced at various stages of the genomic workflow; poor DNA

quality and quantity, low sequencing coverage and PCR duplicates

(Nielsen et al., 2011; Puritz et al., 2014b).

Poor DNA quality strongly compromises the accuracy of

genotype data. Restriction enzyme methods are highly susceptible

to degraded DNA, since it reduces dramatically the percentage of
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identical regions amplified among samples, strongly affecting the

ability to identify SNPs. Additionally, the sequences produced from

low quality DNA suffer from low quality scores or high uncertainty

of base calls, resulting in high error rates and low genotyping call

rates (Graham et al., 2015). Low amounts of DNA, on the other

hand, require more cycles in protocols that include a PCR

enrichment step to produce enough DNA for sequencing,

introducing further biases and additional sequencing errors due

to PCR amplification (Davey et al., 2013; Cumer et al., 2021).

However, newer protocols like 3RAD have an improved

performance, compared to traditional RADseq methods, that

makes them better suited to low input DNA concentrations

(Bayona-Vásquez et al., 2019).

To a less extent, targeted sequencing assays that select regions of

interest through PCR amplification (amplicon-based approaches)

or hybridization enrichment (bait hybridization) are also affected by

poor DNA quality and quantity. The former requires annealing to

the locations flanking the regions of interest while in the second the

DNA hybridizes to a bait oligonucleotide. In both cases, the use of

degraded DNA affects the uniformity of coverage across genomic

targets and increases the likelihood of capturing off-target regions

(So et al., 2018). With small amounts of DNA, extensive PCR

amplification is needed, to generate a sufficient number of

sequencing library molecules, exacerbating biases associated to

this process.

Coverage (or depth) in DNA sequencing refers to the number of

reads that align to a specific locus in a given genome. Since high

throughput sequencing has an inherent error rate that compares

unfavourably to Sanger sequencing, it normally requires a minimal

number of reads to ensure accuracy of the bases detected (Huang

and Knowles, 2016). A high coverage permits the calling algorithms

to assess SNPs with a higher likelihood, resulting in a larger

percentage of true loci (Paris et al., 2017). Loci below the

coverage threshold has, in contrast, a high uncertainty and should

be filtered out during the bioinformatics analysis, but when the

starting coverage is deficient, this may result in the removal of all or

most of the loci. Insufficient coverage is a common mistake in

restriction-enzyme based studies and the main reason behind large

genotyping error rates in SNPs (Fountain et al., 2016). This is

especially relevant in CKMR studies that aim at determining

kinship relationships. As a general rule, studies using restriction

enzyme methods should aim at a minimum depth coverage of 25X

to minimize genotyping error rates (Paris et al., 2017). Moreover,

before embarking in a RADseq experiment, an estimation of the

coverage should always be performed before library construction,

based on the number of cut sites and the number of multiplexed

samples (Rivera-Colón et al., 2021).

Finally, high throughput sequencing generally involves the

preparation of libraries that mostly include a PCR step that

generates copies (“PCR duplicates”) of the original DNA

fragments (“parent fragments”). Stochastic effects during PCR can

cause uneven amplification of heterozygous alleles, causing two

undesired phenomena. First, heterozygotes would appear as

homozygotes and additionally, alleles containing PCR errors can

appear as true alleles because PCR duplicates spuriously increase

confidence in their calling (Andrews et al., 2014; Puritz et al.,
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2014b). Failure to remove bioinformatically PCR duplicates can

potentially lead to downstream errors in genotyping (Tin et al.,

2015; Flanagan and Jones, 2019) although this phenomenon is still

being intensely debated ((Euclide et al., 2020). Thus, an important

point to consider when selecting the genotyping method in a CKMR

study is whether the assay allows the removal of PCR duplicates

(Andrews et al., 2016). For instance, both sd- and ddRAD methods

have a PCR step in their protocols, but only the first allows their

removal. This is possible because the sdRADseq protocol has a

mechanical fragmentation step, absent in ddRADseq, which

generates fragments of slightly different sizes. Removal of PCR

duplicates is only possible with ddRADseq if the protocol is

modified to incorporate random oligo-nucleotides into the

barcodes of the molecular library (Rochette et al., 2019). Thus,

dual-digest techniques like quaddRAD and 2RAD/3RAD are

suitable for CKMR studies, as they include molecular ID tags that

allow detection and removal of PCR duplicates (Franchini et al.,

2017; Bayona-Vásquez et al., 2019). Another alternative would be

the use of a PCR-free protocol with any RADseq-based method but

this approach has important drawbacks, as it is costly and has

substantial technical limitations, especially with regard to the

starting DNA amount (Toonen et al., 2013; Rochette et al., 2023).
3 Kinship analysis

The last step of the bioinformatics pipeline in any CKMR study

consists on a precise detection of the close inter-familial

relationships between the individuals present in a sample, based

on their genotypes, using statistical methods that need to be adapted

to the nature of the data (Bravington et al., 2016b; Ruzzante et al.,

2019). The identification of related specimens is possible because of

inheritance, as different types of kinship share different degrees of

genetic relatedness (Städele and Vigilant, 2016). When two

specimens reproduce, they each pass, on average, half of their

DNA on to their progeny, in diploid organisms (i.e. those that

have two complete sets of chromosomes, one from each parent;

includes most animals). Thus, parent-offspring share 50% of their

genome, approximately the same percentage as full-siblings

although each of these relationships has a distinct chromosomal

sharing pattern. Second-degree relatives (half-siblings) share, on

average, 25% of their genomes and are also informative in CKMR

studies (Waples et al., 2018; Delaval et al., 2022; Patterson et al.,

2022). Despite the distinctiveness of the shared patterns, assigning

individuals into discrete kinship categories such as “full-siblings” or

“half-siblings” is difficult because the percentage of the genome

shared can vary considerably due to stochastic processes that occur

during cell division (Städele and Vigilant, 2016). Kinship analysis in

wild marine fish populations is, moreover, a unique challenge due to

the necessity to make large numbers of pairwise comparisons and

the low percentage of true kinship pairs, requiring large panels of

genomic markers to infer close relationships with accuracy [e.g.

(Marcy-Quay et al., 2020; Delaval et al., 2022; Trenkel et al., 2022)].

Statistical methods used to assess kin relationships from

molecular data can be grouped into three broad categories: 1)

exclusion methods; 2) relatedness-based methods; and 3)
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likelihood-based methods, which are of increasing power, but have

substantial computational costs as a trade-off (Huisman, 2017).

Exclusion methods are qualitatively based on Mendel’s laws of

inheritance, excluding a relationship among a set of individuals if

their genotypes are incompatible given the relationship under the

laws. They are very fast and simple in concept and implementation,

but suffer from several weaknesses, including the difficulty to

incorporate genotyping errors and mutations that can invalidate

true kinship pairs (Wang, 2012).

Relatedness-based methods estimate pairwise relatedness or

kinship coefficients between individuals, and use these to

categorize the data into first-degree relatives, second-degree

relatives and unrelated. These coefficients quantify the amount of

genetic sharing between pairs of individuals reflecting the actual

level of shared ancestry between two individuals based on their

DNA (Goudet et al., 2018). In simple systems, with non-

overlapping generations and no inbreeding, a simple measure of

relatedness, defined as the probability that a pair of randomly

sampled homologous alleles are identical by descent (IBD), might

be sufficient to assign kinship (Huisman, 2017). Nonetheless, most

marine fish populations are characterized by overlapping

generations, requiring a more precise description to differentiate

between kinship types. Table 2 reflects the probability of sharing 0, 1

or 2 alleles that are IBD (kinship coefficients k0, k1 and k2), for some

common relationships, although neither pairwise measure can

distinguish between half-siblings, grandparents and full aunts/

uncles (all k=0.25).

Likelihood methods are, in comparison, more powerful,

accurate, and robust but computationally more demanding and

thus, more suitable to achieve the accuracy needed in CKMR

studies. Methods in this third category consider the relationships

among all individuals in a sample to assign kinship so for large data

sets with many individuals and markers, this approach can be

computationally daunting (Wang, 2012). In such cases, is common

to reduce computational cost by considering only pairwise

likelihoods, ignoring all other individuals related or unrelated to

the pair (Huisman, 2017). This group of methods work upon

genotype likelihoods or posterior probabilities, allowing the

incorporation of the uncertainty of genotype calls (Herzig

et al., 2022).
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Accuracy of kinship inference can be affected by two issues,

false-positives that happen when an unrelated pair share enough

alleles by chance to look as a related pair, and false-negatives that

arise when a pair appears not to share alleles that are, in fact, present

in both. The chance of false positives decreases with the increment

in number of loci used and needs to be assessed in advance using the

allele frequencies (and the per-locus exclusion criterion) to ensure

the use of enough loci (Harrison et al., 2013a; Harrison et al.,

2013b). False negatives cannot be predicted in advance and appear

due to null alleles and genotyping errors that produce the incorrect

recording of the true alleles, leading to the rejection of true kinship

pairs (O’Leary et al., 2018). Incorporating both errors in kinship

assignment is paramount in CKMR studies of marine teleost since

they mostly target large populations. In a pairwise analysis of

kinship, the expected number of related pairs is only a very small

fraction of the total number of comparisons [e.g. (Bravington et al.,

2016a; Trenkel et al., 2022)]. The large-scale sparse kinship nature

of such applications determines a large effect of the inclusion of

spurious kin or the exclusion of real kin pairs on subsequent

estimates of population parameters.

Published CKMR studies targeting marine populations to date

have all been based on the detection of Parent-Offspring-Pairs

(POPs) and/or Half-Sibling-Pairs (HSP) (Bravington et al., 2016a;

Hillary et al., 2018; Ruzzante et al., 2019; Marcy-Quay et al., 2020;

Prystupa et al., 2021; Wacker et al., 2021; Delaval et al., 2022;

Trenkel et al., 2022). They have mostly relied on the use of

specifically designed algorithms to incorporate false positive and

negative rates (see (Bravington et al., 2016a; Bravington et al.,

2016b; Hillary et al., 2018) for full details of developing a

likelihood-ratio kin identification statistic). Two statistics known

as WPSEX (Weighted PSeudo-EXclusion) and PLOD (Pseudo log-

odds) scores have been used in CKMR studies to calculate the

probability of POPs and HSPs, respectively, between pairs of

individuals (Bravington et al., 2016b; Hillary et al., 2018; Trenkel

et al., 2022). WPSEX is designed to robustly identify parent-

offspring pairs from biallelic SNP data characterized by many loci

that may have (heritable) null alleles, and occasional genotyping

errors that may prevent the (non-heritable) detection of alleles. The

frequency of null alleles per locus is estimated in advance by

maximum-likelihood, assuming Hardy-Weinberg equilibrium and
TABLE 2 Kinship categories (pairwise kinship) with their corresponding kinship coefficient (j) and probability of sharing zero, one or two alleleles
identitcal-by-descent (ibd) (k0, k1 and k2).

Pairwise kinship j

ibd probability

k0 ĸ1 ĸ2

Self, Monozygous twin (MZ) 1/2 0 0 1

Parent-offspring (PO) 1/4 0 1 0

Full sibling (FS) 1/4 1/4 1/2 1/4

Half-sibling (HS) 1/8 1/2 1/2 0

Grandparent-grandchild 1/8 1/2 1/2 0

Aunt-niece 1/8 1/2 1/2 0

Unrelated (U) 0 1 0 0
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does not require estimates of genotyping error rate (Trenkel et al.,

2022). The PLOD score provides the pseudo-likelihood that a pair

of animals are HSPs and results from summing the log-likelihood

per locus. A higher WPSEX or PLOD value indicates a greater

likelihood that the pair are a POP/HSP, respectively. These scores

are ultimately used to identify threshold values for the robust

classification of kinship categories (POP, HSP, or UP (Unrelated

Pair; all more-distant kinship categories)) (Hillary et al., 2018;

Patterson et al., 2022).

An alternative approach followed by CKMR studies targeting

solely POPs in populations with simple structure and life-histories

[e.g., brown trout (Ruzzante et al., 2019)] was the use of widely

available kinship inference software. COLONY (Jones and Wang,

2010) has been often the program of choice (Ruzzante et al., 2019;

Marcy-Quay et al., 2020; Wacker et al., 2021) although a

bewildering variety of software packages can be used to infer

kinship (e.g. SNPRelate (Zheng et al., 2012); NGSRelate (Hanghøj

et al., 2019); Sequoia (Huisman, 2017), among many others).

Nonetheless, is not always clear how (or indeed whether) some

methods differ from others and no systematic comparison studies

have been performed, even less so in a CKMR framework.

Moreover, such full-pedigree methods that attempt to address the

huge complexit ies of family-reconstruction might be

computationally too demanding to analyse many teleosts

populations, due to their large sizes that imply huge number of

possible pairwise relationships (Bravington et al., 2017).

The R package CKMRsim has been recently released and was

specifically developed to compute likelihood ratios for different

relationships between all pairs of individuals in a data set for close

kin mark recapture studies. The software allows the assessment of

false positive and false negative rates through Monte Carlo methods

(Anderson, 2022a). CKMRsim simulates the genotypes of related

pairs of individuals from the estimated allele frequencies and then

calculates the probabilities of those genotype pairs to compute a log-

likelihood ratio of the true relationship vs. the hypothesis of no

relationship. Similarly, genotypes of unrelated pairs are also

simulated and their log-likelihood ratios computed. The

comparison of observed likelihood ratio values of related kin pairs

with the distribution of simulated pairwise values is used to select

the threshold values for classifying a pair into a given relationship,

minimizing wrong assignments.

Two CKMR studies have compared CKMRsim with other

kinship inference software. In blue skate, ML-relate identified a

slightly higher number of kinship pairs than CKMRsim (27 vs. 19),

all HSPs with lower relatedness values than those of HSPs detected

by both methods (Delaval et al., 2022). COLONY unveiled, on

average (5 runs) 11 more POPs than CKMRsim in Arctic Grayling

(37.67 vs 26) (Prystupa et al., 2021). In both cases, all the related

pairs detected with CKMRsim were also inferred by the other

software’s, but the former was more conservative. These

differences are very relevant in CKMR studies, having large effects

due to low numbers of kin pairs normally detected. Thus, if a

software is selected to perform kinship inference, it is essential to

determine whether the package of choice provides sufficient control

over false-positive and false-negative error rates to assess confidence

in kinship inference.
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3.1 The value of non-autosomal markers
and ancillary information

In addition to genetic markers, complementary biological data

(ideally age, otherwise length can be used, sex) should be used as a

check point of the feasibility of the inferred kin relationships and

identify false‐positive kinship assignments. For example, ancillary

data can serve to identify pairs that cannot have the purported

relationship due to their relative ages. Depending on the life history

of the species, age may also be useful to differentiate relationships

that are indistinguishable otherwise. For example, half siblings may

be discriminated from grandparent–grandoffspring by the age

difference between the individuals in species in which the

reproductive life span is shorter than roughly twice the age at first

reproduction. This information is also essential to separate within

and among-cohort relationships, since only the later are useful in

CKMR studies (Hillary et al., 2018; Davies et al., 2020; Maunder

et al., 2021; Waples and Feutry, 2022).

Besides nuclear markers, CKMR studies can strongly benefit

from the information provided by mitochondrial DNA (mtDNA)

(Bravington et al., 2017). While the former are bi-parentally

inherited, mtDNA is acquired only from the mother in most

animals, including fishes (Breton and Stewart, 2015). This

inheritance pattern can be extremely useful in kinship analysis as

it can be used to discriminate between half siblings that are related

through the father (paternal HSP) and the mother (maternal HSP)

(Thompson et al., 2020). This maternally inherited marker is also

useful for identifying false-positive assignments of kinship with

Mendelian incompatibilities as well as for reducing the

misclassification rates (Kopps et al., 2015). In addition, mtDNA

of identified kin pairs can be used to uncover differences in the

reproductive dynamics of females and males and obtain

information on sex ratios, sexually dimorphic mortality, mating

strategies or spatial reproductive structure (Mace et al., 2020).
4 Discussion

Most species fished worldwide lack the data needed to assess

their status, despite the increasing trend of overfished stocks in the

last four decades (FAO, 2022). Only a low number of fish stocks,

among those targeted by fisheries, are subjected to detailed

assessments and all inhabit the waters of developed regions (as in

Europe, the USA, Canada or Australia) (Palomares et al., 2020).

Even these detailed assessments suffer from recognized

shortcomings as they utilize parameters that are known to

contain uncertainty (Kokkalis et al., 2017), having a great impact

on the quality of the scientific advice provided to management

bodies and hence on fishery activity.

There is a crucial need for innovative methodologies that can

provide novel means to reduce uncertainty of fish stocks

assessments and expand the range of assessed species. Close kin

mark recapture is an emerging fisheries independent approach to

estimate population parameters with potential to improve fisheries

assessments (Bravington et al., 2016b). The method is grounded in

genomics and its application requires expertise and knowledge in
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two distinct fields that have largely evolved separately, complicating

its uptake and implementation by fisheries scientist and modellers.

In spite of the value of genomic based methods to inform fisheries

management being acknowledged, they have seldom been

incorporated and remain underutilized to these days (Bernatchez

et al., 2017).

The rapid advances and extraordinary number of sequencing

and computational technologies certainly represent a major

challenge to those outside the genomics field. Moreover, to date

CKMR has only been applied to a handful of species, mainly

characterized by smaller population sizes than most exploited fish

stocks (Bravington et al., 2016a; Hillary et al., 2018; Ruzzante et al.,

2019; Marcy-Quay et al., 2020; Prystupa et al., 2021; Wacker et al.,

2021; Delaval et al., 2022; Trenkel et al., 2022).

The nature of CKMR studies in a large population setting with

sparse sampling, where most individuals are unrelated and the

probability offinding closely related individuals is low, determines a

large effect of small deviations from true kin numbers on

subsequent estimates of population parameters.

Achieving accurate kinship determinations requires strict

quality controls at every stage, starting with the isolation of high-

quality DNA samples, which is contingent upon an adequate

sample preservation. Genetic markers should be selected in terms

of the quality and amount of information they provide and we argue

that SNPs should be preferred to STRs in contemporary and future

CKMR projects. While studies using STRs can often confidently

identify only first-order kin relations (parent–offspring or full-

sibling), the use of high-density, genome-wide SNP markers can

enable reasonably accurate assignment of individuals to second-

order (e.g. half-siblings), thereby sensibly reducing the sample size

needed in CKMR studies, a requirement that has possibly prevented

more widespread adoption of kinship-based methodologies.

A plethora of methods can be used for marker discovery and

genotyping but enzyme-based, particularly RADseq methods

together with hybridization-based methodologies are particularly

suited for CKMR applications. For RADseq, many different

protocols are available and each has its own trade-offs but the

original sdRADseq has been more intensively tested across multiple

systems and the sources of bias in the resulting data are better known

(Andrews et al., 2014; Flanagan and Jones, 2019; Rochette et al.,

2019). Other variants can also be used as long as they allow

identification and removal of PCR duplicates, including the 2RAD/

3RAD protocols, which provide a streamlined workflow at a lower

cost and can have an increased utility with low-concentration DNA

samples (Bayona-Vásquez et al., 2019; Glenn et al., 2019).

Undeniably, none of these methods are characterized by the

simplicity of their protocols and they require an enormous amount

of post-processing, but their advantages clearly outweigh these

drawbacks. In parallel, a large number of bioinformatics software,

dependent on the genomic method selected, can be applied for the

analysis but their use is not always straightforward since it needs to be

tailored to the user´s data characteristics. Nonetheless, these steps do

not need to be carried out necessarily in-house as they can be

outsourced to an ever growing number of companies worldwide.

Inference of kinship using a specific relatedness software is

challenging due to the lack of systematic comparison studies
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among them and because not all provide a sufficient control over

false-positive and false-negative error rates to assess confidence in

kinship inference. To avoid this problem, the statistics WPSEX and

PLOD can be used, alternatively, to identify reliable threshold values

for the robust classification of kinship categories (Bravington et al.,

2016b; Bradford et al., 2018; Hillary et al., 2018; Thompson et al.,

2020; Trenkel et al., 2022). The package CKMRsim was specifically

developed to compute likelihood ratios for different relationships

between pairs of individuals in a CKMR framework. It has proved

more conservative than other software’s in a few studies (Prystupa

et al., 2021; Delaval et al., 2022) but its accuracy has not been tested

with individuals of known pedigree, to the best of our knowledge.

The use of ancillary data (age/length, sex) and non-autosomal

markers (mtDNA) is pivotal to check the feasibility of the inferred

kin relationships and identify false‐positive kinship assignments but

also to discriminate among types of a degree of kinship (e.g.

grandparent–grandoffspring and half-siblings).

Although here we provide useful information to complete the

genomics and bioinformatics steps required in a CKMR study

today, it is very important to highlight that the application of the

method is still very marginal. Considering this fact and the fast pace

with which technology in this field progresses, we foresee the

incorporation of newer methodologies with the capacity to boost

the power of close kin analyses, and facilitate its application to a

wider range of fish stocks.
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Glossary

Allele Alternative form of a DNA sequence (a single base or a
segment of bases) at a given genomic location; a single allele
for each locus is inherited from each parent.

Allelic dropout
(ADO)

It is a common phenomenon caused by a partial
amplification failure of the DNA, which results in the loss of
one of the alleles, causing the heterozygous individuals to
appear as false homozygous.

Codominant
markers

Markers for which both alleles are expressed when co-
occurring in an individual, allowing the discrimination
between heterozygotes and homozygotes.

Contig (as related to genomic studies; derived from the word
“contiguous”) is a contiguous sequence of DNA created by
assembling overlapping sequenced fragments.

Demultiplexing Is the process by which sequencing reads are assigned to
their sample of origin based on the sequence of their unique
molecular tag or barcode. This step is required when
multiple samples are pooled (multiplexed) before
sequencing, in order to increase sample throughput and
reduce costs.

Diploid Refers to the presence of two complete sets of chromosomes
in an organism's cells, with each parent contributing a
chromosome to each pair. Most animals and plants are
diploids except for their sex cells or gametes that are
haploid.

DNA isolation Is the process of extracting DNA from the cells of an
organism, typically using a sample of blood, saliva or tissue.

DNA
amplification

Any process that increases the number of copies of a specific
DNA fragment. See also PCR.

Genotyping Is the process of determining the DNA sequence, called a
genotype, at polymorphic positions within the genome of an
individual.

Haplotype A set of closely linked genetic markers or DNA variations
on a chromosome that tend to be inherited together.

High
Throughput
Sequencing
(HTS)

Also known as next-generation sequencing (NGS) and
massively parallel sequencing, refers to a collection of
methods and technologies that can sequence thousands/
millions of DNA fragments at a time. This is in contrast to
older technologies that can produce a limited number of
fragments.

Homozygous Indicates two alleles on homologous chromosomes that are
identical for a given locus.

Heterozygous Indicates two alleles on homologous chromosomes that are
different for a given locus.

Hybridization The pairing of a single-stranded, labeled probe (usually
DNA) to its complementary sequence.

Identity by
descent (IBD)

It is a term used in genetic genealogy to describe a matching
segment of DNA shared by two or more individuals that has
been inherited from a common ancestor in the absence of
recombination. Estimating the proportion of IBD segments
is useful to determine relatedness.

Kinship
coefficient

Probability that two homologous alleles drawn from each of
two individuals are identical by descent (IBD), is a classic
measurement of relatedness.
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Linkage
disequilibrium
(LD)

Refers to the non-random association of alleles at
neighboring loci that result from their close physical
proximity, which makes recombination (crossing over)
between them highly unlikely.

Locus Specific physical location on the genome where a DNA
sequence is located. The plural is loci. The size of the region
(from a single base up to thousands of bases) depends on
the context in which the term is being used.

Microsatellite Also known as single-tandem repeats (STRs), consist of
repetitive segments of DNA that present high variability in
repeat number between individuals.

Mutation rate Is the frequency of mutations in a locus or organism over
time.

Non-autosomal
markers

Markers located on the sex chromosomes and the
mitochondrial DNA. The autosomes are the chromosomes
other than the sex chromosomes.

Oligonucleotides Short polymers of the nucleotide building blocks of nucleic
acids.

Paired-end
reads

Refers to reads produced by sequencing both ends of the
same molecule. When the sequenced DNA fragments are
shorter than two times the read length (determined by the
sequencing technology), the paired reads overlap and can be
merged into a longer read.

PCR Polymerase Chain reaction. A method for amplifying a DNA
based sequence using repeated cycles of replication by a
heat-stable polymerase and two oligonucleotides called
primers, one complementary to the (+) strand at one end of
the sequence to be amplified and one complementary to the
(-) strand at the other.

Polymorphism As related to genomics, refers to the presence of two or
more variant forms of a specific DNA sequence that can
occur among different individuals or populations. The most
common type of polymorphism involves variation at a single
nucleotide (also called a single-nucleotide polymorphism, or
SNP).

RAD tags Restriction site associated DNA (RAD) markers.

Restriction
endonucleases

Also called restriction enzymes are enzymes that recognize a
specific DNA sequence called a restriction site, and cleave
the DNA within or adjacent to that site.

Sequencing
coverage

Also called sequencing depth, refers to the number of times
a nucleotide is read during sequencing. The higher the depth
of read coverage, the higher confidence in the resulting
consensus sequence.

Single-
nucleotide
polymorphism
(SNP)

DNA sequence variation that occurs when a single
nucleotide (A, T, C, or G) is replaced in the genome
sequence. Is the most common form of variation in the
genome and it is used widely to study genetic differentiation
among individuals or populations.

SNP chip Also called SNP array, is a type of DNA microarray used to
detect SNP polymorphisms. It contains designed probes
flaking the SNPs of interest for which the specific alleles are
determined by hybridization.

Whole-genome
sequencing

Also known as full genome sequencing, is the process of
determining the entirety, or nearly the entirety, of the DNA
sequence of an organism's genome at a single time.
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