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The North Pacific Subtropical Countercurrent area (STCC) is high in mesoscale eddy

activities. According to the rotation direction of the eddy flow field and the sign of

temperature anomaly within the eddy, they can be divided into four categories:

cyclonic cold-core eddy (CCE), anticyclonic warm-core eddy (AWE), cyclonic

warm-core eddy (CWE) and anticyclonic cold-core eddy (ACE). CCE and AWE are

called normal eddies, and CWE and ACE are named abnormal eddies. Based on the

OFES data and vector geometry automatic detection method, we find that at the sea

surface, the maximum monthly number of the CCE, AWE, CWE, and ACE occurs in

December (765.70 ± 52.05), January (688.20 ± 82.53), August (373.40 ± 43.09) and

August (533.00 ± 56.92), respectively. The number of normal eddies is more in winter

and spring, and less in summer and autumn, while abnormal eddies have the opposite

distribution. Themaximum rotation velocity of the four types of eddies appears in June

(11.71 ± 0.75 cm/s), June (12.24 ± 0.86 cm/s), May (10.63 ± 0.99 cm/s) and June (9.97

± 0.91 cm/s), which is fast in winter and spring. The moving speed of the four types of

eddies is almost similar (about 10 ~ 11 cm/s). The amplitude of normal and abnormal

eddies is both high in summer and autumn, and low in winter and spring, with larger

amplitudes in normal than abnormal eddies. The eccentricity (defined as the

eccentricity of the ellipse obtained by fitting the eddy boundary) of the four types of

eddies is also close to each other, and their variation ranges from 0.7 to 0.8, with no

apparent seasonal variation. The vertical penetration depth, which has no significant

seasonal difference, is 675.13 ± 67.50 m in cyclonic eddies (CCE and CWE), which is

deeper than that 622.32 ± 81.85 m in anticyclonic eddies (ACE and AWE). In addition,

increasing the defined temperature threshold for abnormal eddies can significantly

reduce their numbers but does not change their seasonal variation trend.
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1 Introduction

Satellite observations show that mesoscale eddies are almost

ubiquitous in the global oceans (Chelton et al., 2007; Chelton et al.,

2011; Ma and Wang, 2014; Wang et al., 2015; Chen and Han, 2019;

Dong et al., 2022). The lifespan of these mesoscale eddies is from

several weeks to months, and the eddy diameter is O(100 km).

Mesoscale eddies are strongly nonlinear and have significant effects

on physical quantities in the ocean and the atmospheric bottom

boundary layer. Mesoscale eddies can transport material and energy

through their horizontal movement (Dong et al., 2014), rotation (He

et al., 2018) and asymmetric flow field structure (Qiu et al., 2022).

Eddy-induced zonal mass transport is comparable in magnitude to

the large-scale wind- and thermohaline-driven circulation (Zhang

et al., 2014a). Therefore they play a crucial role in the redistribution of

heat and freshwater (Chen et al., 2012; Gaube et al., 2015; Xu et al.,

2016; Dong et al., 2017; Lin et al., 2019; Xu et al., 2019; Dai et al., 2020;

Ding et al., 2021a).

Mesoscale eddies also affect biological productivity in the upper

ocean (Xian et al., 2012; McGillicuddy, 2016; Wang et al., 2018; He

et al., 2019; Patel et al., 2020; Geng et al., 2021). In the south Indian

Ocean, anticyclonic eddies (AEs) can induce a positive chlorophyll

anomaly within the eddy (Gaube et al., 2013). Besides, cyclonic eddies

(CEs) usually cause the upper mixed layer depth to become shallow,

while AEs can cause the deepening of the upper mixed layer (Sun

et al., 2017; Gaube et al., 2019; Ding et al., 2021b). Using satellite data

from 2006 ~ 2009 in the Kuroshio Extension region, Ma et al. (2015)

demonstrated that CEs-induced (AEs-induced) surface winds speed

decelerate (accelerate) and reduce (increase) latent and sensible heat

fluxes, water vapor content, cloud liquid water, and rain rate.

According to the rotation direction of the eddy surface flow

field, mesoscale eddies are usually divided into CEs (with a

counterclockwise rotation flow field) and AEs (with a clockwise

rotation flow field). Synthetic analysis of large samples found that

CEs are usually associated with a cold eddy core, while the AEs usually

have a warm eddy core (Qiu and Chen, 2004; Meijers et al., 2007;

Wang et al., 2012; Zhang et al., 2014b; Yang et al., 2015; Amores et al.,

2016; Treguier et al., 2017). Therefore, CEs are also called cyclonic

cold-core eddies (CCEs), and AEs are also named anticyclonic warm-

core eddies (AWEs). However, recent studies have pointed out the

existence of CEs with a warm eddy core (CWEs) and AEs with a cold

eddy core (ACEs) (Itoh and Yasuda, 2010; Ji et al., 2016; Ni et al.,

2021; An et al., 2022; Sun et al., 2022). In order to distinguish these

eddies from the traditional CCEs and AWEs, these eddies are named

abnormal eddies (Sun et al., 2019).

Using different definitions and identification methods, the

proportion of abnormal eddies is from about 10% (Sun et al., 2019)

to 20% (Ni et al., 2021) and even as high as 1/3 (Liu et al., 2021). Sun

et al. (2019) pointed out that abnormal eddies are widespread in the

North Pacific Ocean and have significant regional differences. The

CWEs are concentrated in the northwest and southeast of the North

Pacific Ocean. At the same time, the ACEs are also widely distributed

in the northeast area in addition to these above two regions. The

monthly distribution of the abnormal eddy numbers shows they are

more numerous in summer than in winter.

Ni et al. (2021) pointed out that CWEs account for 19% of the

global CEs, and AWEs account for 22% of the total AEs. The
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proportion of abnormal eddies is higher in tropical and boundary

current regions. Besides, they have a noticeable seasonal difference in

extratropical oceans area caused by the seasonal difference in the

mixed layer depth. Combining the global Archiving, Validation, and

Interpretation of Satellite Oceanographic (AVISO) and Advanced

Very High-Resolution Radiometer (AVHRR) data from 1996 to 2015

and an artificial intelligence identification algorithm, Liu et al. (2021)

found that abnormal eddies account for one-third of the total

mesoscale eddies. Abnormal eddies showed a decreasing trend year

by year in the global ocean, which is consistent with the results of Sun

et al. (2019) in the North Pacific Ocean. They pointed out that there is

a good correlation between the change in the number of abnormal

eddies and the sea surface temperature gradient induced by global

warming. The correlation coefficient between the two can reach 0.68,

significant at 90% confidence level.

An et al. (2022, hereafter known as Part I) discussed the spatial

characteristics of the four types of eddies in the STCC region based on

the OFES data from 2008 to 2017. They found that the proportion of

the four eddy types is 35.60, 32.08, 12.95, and 19.37% at the sea

surface, respectively. From the vertical distribution, abnormal eddies

are mainly distributed in the oceanic upper layer. There is no

significant difference in eddy radius (about 70 ~ 80 km) and

amplitude (3 ~ 6 cm) for the four types of eddies. These mesoscale

eddies generally move westward at about 3 ~ 5 km per day. Part I

provides a reference to comprehensively understand the spatial

characteristics of mesoscale eddies in the STCC area.

The STCC area is located in the East-Asian monsoon region, and

its eddy kinetic energy (EKE) shows a prominent annual cycle (Qiu,

1999; Kang et al., 2010; Qiu and Chen, 2010; Qiu et al., 2014).

Therefore, this region’s mesoscale eddies characteristics may have

obvious seasonal variation. Following Part I, this study systematically

explores the seasonal variation of the four mesoscale eddy types. The

findings are useful for getting a more comprehensive understanding

of mesoscale eddy characteristics in the STCC region.

The rest of the study is organized as follows. Section 2 introduces

the OFES data, the automatic eddy detection method, and the

definition of the four types of mesoscale eddies. Section 3 analyzes

the seasonal variations of the four types of mesoscale eddies in detail,

including eddy number, radius, rotation velocity, horizontal

movement velocity, nonlinearity, amplitude, eccentricity, and

penetration depth. The eddy anomaly ratio (the ratio of the

abnormal eddy existence duration to that of the eddy lifespan) and

the influence of different temperature thresholds value on abnormal

eddy numbers are discussed in Section 4. Finally, the main

conclusions of this study are summarized in Section 5.
2 Data and methods

2.1 OFES data

This study explores the seasonal variation of the mesoscale eddies

in the STCC region (16°N ~ 27°N, 115°E ~ 160°W) based on the

OFES data (OGCM for the Earth Simulator), which extends from

January 2008 to December 2017. The horizontal resolution of this

data is 1/10° × 1/10° and is vertically divided into 54 uneven layers.

The minimum depth at the upper-most layer is 2.5 m, and the
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maximum depth is 6,300 m. The time resolution of this data is three

days. It can be downloaded from the Asia-Pacific Data Research

Center of the University of Hawaii (http://apdrc.soest.hawaii.edu/

las_ofes).

We use 3-day snapshots of sea surface height (h), three-

dimensional zonal velocity (U), meridional velocity (V), and

temperature (T) in this study. The OFES data are first passed

through a high-pass space filter of 3° × 3° to obtain the sea surface

height (h′ ), velocity (U′ and V′ ), and temperature (T′ ) anomalies.

The spatial resolution of the OFES data is higher than common

satellite data (generally only 0.25° × 0.25°, such as AVISO data, Pujol

et al., 2016), and it contains three-dimensional variables. Thus the

OFES data is more suitable than satellite data for mesoscale eddies

studies. In addition, the OFES data does not adopt an assimilation

scheme. Therefore its dynamic process is self-consistent and can be

used for numerical diagnosis of thermodynamic or dynamic

processes. Many previous works used this data for mesoscale eddy

and other mesoscale process research (Taguchi et al., 2010; Zhang

et al., 2017; Ji et al., 2018; Sun et al., 2022; Wang et al., 2022). For more

information about the OFES data, please refer to Sasaki et al. (2008).
2.2 Two-dimensional eddy
detection method

The automatic eddy detection algorithm is essential for extensive

sample analysis studies. Predecessors have proposed a variety of

automatic eddy identification methods, such as the Okubo-Weiss

parameter method (Okubo, 1970; Weiss, 1991), the Winding-Angle

method (Sadarjoen and Post, 2000), and the Sea Surface Height

Topological method (Chelton et al., 2011). Among these methods,

the Okubo-Weiss parameter method is the easiest to implement, but

its accuracy is relatively low. Winding-Angle method has a high

accuracy of eddy identification but with low computational efficiency.

The altimeter sampling ability limits the Sea Surface Height

Topological method, resulting in a lower successful identification

(Tang et al., 2019).

This study adopts a vector geometry automatic detection method

based on the geometric characteristics of mesoscale eddies (Nencioli

et al., 2010). This method has already been applied to multiple data

sources and complex flow fields (Dong et al., 2009; Aguiar et al., 2013;

Lin et al., 2015; Sun et al., 2018; Yang et al., 2020; Sun et al., 2021a; Sun

et al., 2021b; Qiu et al., 2022). Recently research has shown that the

vector geometry method has more advantages than the Sea Surface

Height Topology approach in terms of correct eddy identification rate

and detection efficiency (You et al., 2022). The specific operations of

this method are summarized as follows:

Firstly, based on the two-dimensional flow field data and the

rotation characteristics of the eddy velocity field, the eddy center

point is defined as a point meeting the following four constraints.
Fron
1~2) In the east-west (north-south) direction across the eddy

center, the meridional (zonal) velocity component V′ (U′ )

has an opposite sign on the left and right (upper and lower)

sides of the eddy center, and its size gradually increases with

the distance from the eddy center.
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3) The velocity at the eddy center point has the minimum value

among the local area around the eddy center.

4) The velocity vector rotates clockwise or counterclockwise

around the eddy center, and the rotation direction remains

unchanged.
After the eddy center is determined, the outermost closed

streamline of the local stream function around the eddy center is

extracted as the eddy boundary. The eddy radius is then calculated as

the radius of a circle which gives a circle area equivalent to the

polygonal area enclosed by the eddy boundary.
2.3 Two-dimensional eddy
tracking algorithm

Mesoscale eddy is a “living” marine phenomenon that goes

through different life stages, from formation to decay (Liu et al.,

2012). This study uses a similar method following Doglioli et al.

(2007) and Chaigneau et al. (2008) to track the mesoscale eddies’

trajectory. The tracking steps are as follows:
1) The search area (S1) and extended search area (S2) with a

radius of 1.2° and 1.8° are defined, with the eddy center as the

circle center. The search area’s size selection depends on

the background field’s current velocity and the data’s

spatiotemporal resolution. On the one hand, the center of

the mesoscale eddy is required not to move out of S1 at the

next time step. On the other hand, S1 should not be too large.

Otherwise, two distinct eddies will be incorrectly identified as

the same eddy. The radius of S2 is generally set as 1.5 times

that of S1.

2) If an arbitrary eddy (the current eddy hereafter) is successfully

detected at the time step t, then we search for an eddy with the

same polarity as the current eddy in the search area S1 at time

step t+1. If more than one eddy meets the requirement, the

eddy closest to the current eddy center is selected as the

continuation of the current eddy. If no eddy is successfully

identified at the time step t+1, we search again using the

extended search area S2 at the time step t+2. If still no eddy

with the same polarity is found, then the current eddy is

considered decayed, and its lifespan is defined as the time

interval from the time step of the first successful detection to

the time step t. After the automatic eddy detection and

tracking, a dataset containing eddy radius, polarity,

boundary, lifespan, and the moving path is obtained.
2.4 Three-dimensional eddy
detection algorithm

Based on the two-dimensional eddy detection results (subsection

2.3), three-dimensional eddy detection is carried out layer by layer

from the sea surface down to the bottom layer (Dong et al., 2012; Lin

et al., 2015). The specific steps are summarized as follows:
frontiersin.org
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According to the eddy information at the sea surface (N1 , current

layer): eddy center position P1(x1.y1) , occurrence time (t1 ), eddy

radius (R1) , and eddy polarity (cyclonic/anticyclonic), we search for

the eddy center at time (t1 ) with the same polarity within the area S3
in the next layer (search layer). S3 is a circular area, with P1(x1,y1) as

the center and 0.25R1 as the radius. If no eddy center satisfies the

conditions in the next layer, the eddy penetration depth is equal to the

depth of the current layer. If only one eddy center meeting the

conditions is found in the next layer, it is regarded as the vertical

extension of the current eddy. The eddy central point position P2(x2,

y2) , radius (R2) and other information in the second layer are

extracted. Then, the second layer is used as the current layer, and

the third layer is the search layer, thus continuing the search process

until no eddy can be found or the search reaches the bottom

boundary. If more than one eddy satisfies the conditions in the

search layer, then the one with the nearest eddy center is taken as

the vertical extension of the current eddy. Using this method, the eddy

vertical penetration depth is slightly shallower than the realistic value.

The difference depends on the interval between the two layers in the

vertical direction. In this study, we consider it as a small amount and

do not discuss this difference.
2.5 Eddy classification

Eddies are classified into four types according to the combination

of the rotation direction (clockwise or counterclockwise) of the eddy

flow fields and the signs of the temperature anomaly (warm or cold)

within the eddy. They are cyclonic cold-core eddy (CCE, with a

counterclockwise rotating flow field and a negative temperature

anomaly); cyclonic warm-core eddy (CWE, with a counterclockwise

rotating flow field and a positive temperature anomaly); anticyclonic

cold-core eddy (ACE, with a clockwise rotating flow field and a

negative temperature anomaly), and anticyclonic warm-core eddy

(AWE, with a clockwise rotating flow field and a positive temperature

anomaly). CCEs and AWEs are also known as normal eddies because

they satisfied traditional mesoscale eddies definition, while CWEs and

ACEs are known as abnormal eddies (Sun et al., 2019).

There are two ways to define temperature anomaly. One is the

average temperature anomaly within the eddy (T1 =
1
No

N

i=1
T 0), where

T′ is the temperature deviation from the background field and N

represents the number of grid points within the eddy (Sun et al.,

2022). The other one is the difference between the average

temperature anomaly within the eddy (T′ ) and the eddy

background field (T2 =
1
Mo

M

i=1
T 0). Where M represents the number of

grid points within the eddy background field, usually defined as the

annular area from the eddy boundary to 1.5 times the eddy radius

(Sun et al., 2019).

The method in Part I is also used here to determine the eddy

temperature anomaly. That is, the first definition method is adopted.

Considering that the time scale of mesoscale eddies is several weeks to

months, eddies with a lifespan shorter than 30 days are removed to

increase the results’ robustness. This study focuses on eddies’ seasonal

variation, concentrated in the oceanic upper layer. Therefore,

although the maximum depth of the OFES data is 6,300 m, we only

focus on the oceanic upper layer shallower than 1,000 m.
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3 Eddy seasonal variations

The STCC region (16°N ~ 27°N, 115°E ~ 160°W) is affected by the

East-Asian monsoon and has obvious seasonal variations. Part I of the

study discusses the three-dimensional spatial distribution of

mesoscale eddies from 2008 to 2017. The present study focuses on

the seasonal variations of the eddy number, radius, rotation velocity,

horizontal moving velocity, nonlinearity, amplitude, eccentricity, and

vertical penetration depth.
3.1 Eddy number

Previous studies have shown that the temporal variability of sea

surface temperature (SST) gradient on a seasonal scale is closely

related to the number of eddies generated (Liu et al., 2012). The larger

SST gradient generates more eddies in the early spring than in

summer. To verify this result, Figure 1 shows the monthly

distribution of multi-year average (2008 ~ 2017) eddy numbers at

the sea surface (Figures 1A, B) and 1,000 m (Figures 1C, D). At the sea

surface, the multi-year average monthly number of CCEs, AWEs,

CWEs, and ACEs are 631.34 ± 100.11, 568.37 ± 97.90, 229.62 ± 98.36,

and 343.31 ± 128.81, respectively. The largest number of the four

types of eddies (hereafter, the order of the four types of eddies is

CCEs, AWEs, CWEs, and ACEs) appears in December (765.70 ±

52.05), January (688.20 ± 82.53), August (373.40 ± 43.09), and August

(533.00 ± 56.92). Accordingly, the four types of eddies reach the

minimum number in April, April, February and February, and the

corresponding values are 529.00 ± 29.92, 440.30 ± 32.28, 112.20 ±

22.51 and 151.00 ± 28.41, respectively. The result indicates that the

number of normal eddies, whether average value, maximum or

minimum, is far greater than abnormal eddies.

Normal eddies at the sea surface are more in winter and spring,

and less in summer and autumn (Figure 1A). Unlike normal eddies,

the number of abnormal eddies is higher in summer and autumn, and

less in spring and winter (Figure 1B). The mechanism causing this

difference may be that the wind stress curl in the STCC region,

pointed out by Ni et al. (2021), is stronger in winter than in summer.

Therefore, the eddies generated by the wind stress curl are more

normal eddies, while the abnormal eddies occur more in summer

when the wind stress curl is weak. Of course, there are other

mechanisms for eddy generation in the STCC region (such as flow

instability and the interaction between flow field and topography), but

this is beyond the scope of this paper, and we will further discuss it in

future studies. In addition, CCEs are generally slightly more than

AWEs, which is consistent with the result of Tang et al. (2019).

At 1,000 m, the multi-year monthly average number of CCEs,

AWEs, CWEs, and ACEs are 1,192.38 ± 163.66, 1,133.62 ± 146.50,

28.50 ± 19.46 and 39.46 ± 21.14, respectively. Their maximum values

all appear in December, with corresponding values of 1,272.40 ±

378.98, 1,202.10 ± 337.32, 38.80 ± 46.08, and 52.40 ± 50.52.

Accordingly, the minimum is in February (1,061.40 ± 63.11),

February (1,009.40 ± 73.01), April (21.60 ± 11.54), and February

(31.60 ± 15.58). Comparing Figures 1C, D with Figures 1A, B,

it can be concluded that eddy numbers at 1,000 m do not vary

with seasons.
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Whether at the sea surface or 1,000 m, the number of CCEs is

generally higher than that of AWEs, while the number of ACEs is

generally higher than that of CWEs, and the number of normal eddies

is greater than that of abnormal eddies. Hence, the multi-year

monthly average eddy number has an apparent seasonal variation

at the sea surface, but there is no seasonal variation in the eddy

numbers at 1,000 m.
3.2 Eddy radius

Figure 2 shows the monthly distribution of the four types of

mesoscale eddies radii at the sea surface (Figures 2A, B) and 1,000 m

(Figures 2C, D). At the sea surface, the multi-year average monthly

radii of CCEs, AWEs, CWEs, and ACEs are 79.19 ± 2.95, 83.28 ± 3.47,

73.23 ± 4.45, and 79.37 ± 3.48 km, respectively. The maximum

monthly average radii of the four eddy types occur in February,

January, June, and July, and their corresponding values are 81.29 ±

1.85, 85.07 ± 3.97, 76.60 ± 3.68, and 81.48 ± 3.20 km. Accordingly, the

minimum values appear in June (77.13 ± 3.46 km), June (81.45 ±

2.45 km), December (70.84 ± 2.06 km), and December (77.65 ±

4.58 km). That is, the maximum of the multi-year monthly average

radius of the normal eddies (CCEs and AWEs) appears in winter

(February, January), and the minimum appears in summer (June,

July). However, the opposite is observed in abnormal eddies. Besides,
Frontiers in Marine Science 05
there is no apparent difference between the multi-year monthly

average radii of the four eddy types, which are all about 80 km.

At 1,000 m, the multi-year monthly average radii of the four eddy

types are 68.32 ± 2.20, 70.34 ± 2.68, 48.06 ± 7.17, and 51.14 ± 7.28 km.

The maximum multi-year monthly average radii occur in October,

January, September, and December, with corresponding values of

69.43 ± 2.12, 71.79 ± 3.21, 52.69 ± 7.30, and 54.81 ± 6.01 km.

Accordingly, the minimum value is in January, August, June, and

June, and their corresponding values are 67.31 ± 1.64, 68.67 ± 2.67,

43.00 ± 4.58, and 48.07 ± 6.67 km, respectively.

In Figure 2, the radius of the four types of eddies has no obvious

variation with the month, either at the surface or at 1,000 m. This

characteristic is consistent with the result of Tang et al. (2019), based

on AVISO data in the STCC area. At the sea surface and 1,000 m, the

average radius of AEs (ACEs and AWEs) is slightly larger than that of

CEs (CWEs and CCEs), except in September (Figure 2D). By

comparing Figures 2A, B with Figures 2C, D, the eddy radius at the

sea surface is larger than that at 1,000 m.
3.3 Eddy rotation velocity

Eddy rotation velocity embodies its ability to encircle its internal

seawater and is an important influencing factor of eddy nonlinearity.

In this study, the eddy rotation velocity is defined as the average value
B

C

D

A

FIGURE 1

Monthly distribution of multi-year (2008 ~ 2017) average eddy number at the sea surface (A, B) and 1,000 m (C, D) in the STCC region. Blue, red, pink,
and green curves represent cyclonic cold-core eddy, anticyclonic warm-core eddy, cyclonic warm-core eddy, and anticyclonic cold-core eddy,
respectively. The bar represents the standard deviation, and the dotted line represents the multi-year average value.
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of the flow velocity within the eddy (UR = 1
No

N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 0
i2 + V 0

i2
p

), where N

represents the total number of grid point within the eddy. At the sea

surface, the monthly distribution of the multi-year average rotation

velocity of the four types of eddies shows large values in summer and

small values in winter (Figures 3A, B). Their average values are 10.59

± 1.05, 10.53 ± 1.36, 8.93 ± 1.50, 8.96 ± 1.13 cm/s, respectively. It can

be seen that the normal eddy’s rotation velocity is greater than that of

the abnormal eddy. The maximum eddy rotation velocity of the four

types of eddies occurs in June, June, May, June, and their

corresponding values are 11.71 ± 0.75, 12.24 ± 0.86, 10.63 ± 0.99,

and 9.97 ± 0.91 cm/s, respectively. Accordingly, the minimum

rotation velocity is 9.47 ± 0.65, 9.02 ± 0.73, 7.44 ± 0.83, and 7.84 ±

0.71 cm/s, appearing in December, December, November, and

December, respectively. At the sea surface, the eddy rotation

velocity in summer is significantly higher than in winter. The

normal eddy rotation velocity is faster than that of the abnormal eddy.

In contrast, at 1,000 m, the multi-year monthly average rotation

velocity of the four types of eddies slightly varies with time

(Figures 3C, D). The rotation velocity of the four eddy types is 1.61

± 0.12, 1.76 ± 0.16, 1.15 ± 0.39, and 1.06 ± 0.28 cm/s, respectively.

Their maximum values appear in October (1.65 ± 0.64 cm/s), October

(1.86 ± 0.56 cm/s), July (1.35 ± 1.59 cm/s), and November (1.26 ± 1.11

cm/s), respectively. Accordingly, it reaches its minimum in August,

April, May, and May, with 1.59 ± 0.47, 1.68 ± 0.51, 0.99 ± 1.50, and

0.92 ± 1.25 cm/s. The eddy rotation velocity at the sea surface is larger
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by about 4 ~ 5 times than that at 1,000 m. The average rotation

velocity of normal eddies is larger than that of abnormal eddies at

both the surface and 1,000 m.
3.4 Eddy horizontal movement velocity

Eddy horizontal moving velocity is another crucial factor

determining its heat and freshwater transport capacity. The

horizontal moving velocity (UH = L
Dt) is defined as the ratio of the

eddy center moving distance (L =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x1)

2 + (y2 − y1)
2

p
) to the

temporal resolution of the OFES data Dt , where (x1,y1) and (x2,y2)

represent the spatial position of the eddy center at two adjacent time

steps. From Figure 4, the eddy horizontal moving velocity at the sea

surface and 1,000 m show no noticeable seasonal variations. The eddy

horizontal moving velocity at the sea surface is about 1.7 ~ 2.0 times

at 1,000 m.

At the sea surface, the multi-year monthly average horizontal

moving velocities of the four eddy types are 10.31 ± 0.67, 10.66 ± 0.83,

10.27 ± 0.81, and 10.66 ± 0.81 cm/s, respectively. The maximum

horizontal moving velocity appears in July, May, March, and June, and

their corresponding values are 10.85 ± 0.73, 11.59 ± 0.71, 11.09 ± 0.74,

and 11.04 ± 0.67 cm/s. The minimum values are reached in December,

January, December, and September, and the corresponding values are

9.96 ± 0.49, 9.82 ± 0.60, 9.60 ± 0.76, 10.15 ± 0.65 cm/s, respectively.
B

C

D

A

FIGURE 2

Monthly distribution of multi-year (2008 ~ 2017) average eddy radius at the sea surface (A, B) and 1,000 m (C, D) in the STCC area. Blue, red, pink, and
green curves represent cyclonic cold-core eddy, anticyclonic warm-core eddy, cyclonic warm-core eddy, and anticyclonic cold-core eddy, respectively.
The bar represents the standard deviation, and the dotted line represents the multi-year average value.
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The eddy horizontal moving velocity (average, maximum or

minimum) at 1,000 m is about half of that at the sea surface.

Accordingly, at 1,000 m, the average horizontal moving velocity of

four types of eddies are 5.54 ± 0.34, 5.74 ± 0.45, 6.36 ± 3.92, and 6.28 ±

3.12 cm/s, respectively. The maximum moving velocities appear in

November, December, April, and January, and their corresponding

values are 5.81 ± 0.41, 6.21 ± 0.49, 9.75 ± 11.28, and 9.19 ± 9.08 cm/s.

The minimum values appear in June, July, June, and June with 5.25 ±

0.28, 5.25 ± 0.30, 5.33 ± 2.32, and 4.70 ± 0.40 cm/s, respectively.
3.5 Eddy nonlinearity

Following Chelton et al. (2011) and Part I, the eddy nonlinearity is

defined as RNL =
UR
UH
, where UR and UH are the eddy rotation velocity

and the horizontal moving velocity, respectively. When the eddy

nonlinearity is greater than 1.0, an eddy can entrap material and

transport them horizontally. Figure 3 illustrates that the eddy rotation

velocity at the sea surface is large in summer and autumn, and small

in winter and spring. There are discernable seasonal variations at

1,000 m. Correspondingly, Figure 4 shows that the eddy horizontal

moving velocity does not vary with seasons at the sea surface and

1,000 m. The eddy nonlinearity shown in Figure 5 at the sea surface is

large in summer and autumn, and small in winter and spring,

indicating that the eddy rotation velocity plays a dominant role in

the seasonal variation of the eddy nonlinearity.
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At the sea surface layer, the average nonlinearity of CCEs, AWEs,

CWEs, and ACEs are 1.41 ± 0.13, 1.40 ± 0.15, 1.20 ± 0.20, and 1.16 ±

0.16, respectively. Except for CWEs, eddy nonlinearity in November

is slightly less than 1.0, while in other months, they are all greater than

1.0 (Figures 5A, B). The nonlinearity of the four eddy types reaches

the maximum value in May, June, May, and June, and the

corresponding values are 1.56 ± 0.09, 1.59 ± 0.12, 1.44 ± 0.127 ±

0.14, and 1.27 ± 0.14, respectively. Accordingly, it reaches the

minimum in November, December, November, and December, and

the corresponding values are 1.28 ± 0.08, 1.25 ± 0.10, 0.98 ± 0.10, and

1.01 ± 0.13, respectively. In a word, the eddy nonlinearity is maximum

in summer and minimum in winter.

Accordingly, there is no seasonal variation in eddy nonlinearity at

1,000 m. The variation of eddy nonlinearity is small, ranging from

0.17 to 0.36 (Figures 5C, D). The average nonlinearity of the four

types of eddies is 0.31 ± 0.02, 0.34 ± 0.03, 0.21 ± 0.08, 0.20 ± 0.05,

which is far less than 1.0. At 1,000 m, the nonlinearity of the four

types of eddies reaches the maximum in October, October, July, and

November, respectively, and the corresponding values are 0.32 ± 0.13,

0.36 ± 0.13, 0.26 ± 0.13, and 0.23 ± 0.13. Accordingly, the eddy

nonlinearity reaches its minimum in December, April, April, and

May, with 0.31 ± 0.13, 0.32 ± 0.13, 0.17 ± 0.13, and 0.17 ± 0.13,

respectively. The eddy nonlinearity at the sea surface is about 4 ~ 5

times greater than that at 1,000 m. It can be inferred that the eddy-

induced heat and freshwater transports are mainly concentrated in

the oceanic upper layer.
B
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FIGURE 3

Monthly distribution of multi-year (2008 ~ 2017) average eddy rotation velocity at the sea surface (A, B) and 1,000 m (C, D) in the STCC area. Blue, red,
pink, and green curves represent cyclonic cold-core eddy, anticyclonic warm-core eddy, cyclonic warm-core eddy, and anticyclonic cold-core eddy,
respectively. The bar line represents the standard deviation, and the dotted line represents the multi-year average value.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1121731
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2023.1121731
3.6 Eddy amplitude

Following Part I, the sea surface height abnormal (SSHA) data is

obtained by using a high-pass filter on the OFES data. Then the absolute

of the extreme SSHA value within the eddy (the minimum value for CEs

and the maximum value for AEs) is taken as the eddy amplitude.

Figures 6A, B show the multi-year monthly average eddy amplitude

distribution for normal and abnormal eddies, respectively. The amplitude

of four types of eddies are 3.73 ± 0.35, 3.62 ± 0.33, 3.33 ± 0.57, and 3.30 ±

0.42 cm, respectively. The amplitude of the CCEs is larger than that of

AWEs from February to July, and is smaller in other months (Figure 6A).

For abnormal eddies, the amplitude of CWEs is very close to that of

ACEs except in May and June (Figure 6B). The maximum amplitude of

the four types of eddies appear in May, June, May, and July,

respectively, and the corresponding values are 3.97 ± 0.31, 3.87 ±

0.38, 3.67 ± 0.70, 3.49 ± 0.30 cm. The minimum amplitude all appear in

December, and their corresponding values are 3.45 ± 0.25, 3.41 ± 0.31,

3.02 ± 0.55, and 2.99 ± 0.46 cm, respectively. By comparing Figures 6A,

B, the amplitude of normal and abnormal eddies has the same change

trend, but the size of the former is larger than that of the latter.
3.7 Eddy eccentricity

Using the same definition as in Part I, eddy eccentricity, which

represents the flatness of the eddy shape, is obtained by fitting the
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eddy boundary. At the sea surface, the average eccentricity of four

types of eddies are 0.79 ± 0.02, 0.78 ± 0.02, 0.78 ± 0.04, and 0.76 ± 0.03

(Figure 7A). The maximum eccentricity appear in September (0.80 ±

0.02), July (0.79 ± 0.02), May (0.79 ± 0.03), and June (0.77 ± 0.03),

respectively, and the minimum in April (0.78 ± 0.02), February (0.77

± 0.02), January (0.76 ± 0.05), and March (0.74 ± 0.04).

At 1,000 m, the average eccentricity of the four types of eddy are

0.79 ± 0.01, 0.78 ± 0.01, 0.76 ± 0.11, and 0.76 ± 0.09, respectively

(Figure 7B). The maximum eccentricity of the four eddy types appear

in September (0.78 ± 0.01), October (0.78 ± 0.01), January (0.74 ±

0.11), and September (0.74 ± 0.09), respectively. Correspondingly, the

minimum eccentricity appear in September (0.78 ± 0.01), October

(0.78 ± 0.01), January (0.74 ± 0.11), and September (0.74 ± 0.09).

The eddy eccentricity of CEs (CWEs and CCEs) is greater than

that of AEs (AWEs and ACEs) at the sea surface, indicating that the

shape of AEs is more regular than that of CEs. The eccentricity of

abnormal eddies at 1,000 m is larger than that at the sea surface.

Besides, the eddy eccentricity of the normal eddies at 1,000 m is

smaller than that at the sea surface. Similarly to that at the sea surface,

the eddy eccentricity at 1,000 m shows no seasonal variation.
3.8 Eddy penetration depth

The eddy vertical penetration depth depends on the eddy’s energy

and the stratification of ambient water. In the vertical direction, part
B
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FIGURE 4

Monthly distribution of multi-year (2008 ~ 2017) average eddy horizontal moving velocity at the sea surface (A, B) and 1,000 m (C, D) in the STCC area.
Blue, red, pink, and green curves represent cyclonic cold-core eddy, anticyclonic warm-core eddy, cyclonic warm-core eddy, and anticyclonic cold-
core eddy, respectively. The bar line represents the standard deviation, and the dotted line represents the multi-year average value.
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B
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FIGURE 6

Monthly distribution of multi-year (2008 ~ 2017) average eddy amplitude at the sea surface (A, B) in the STCC area. Blue, red, pink, and green curves
represent cyclonic cold-core eddy, anticyclonic warm-core eddy, cyclonic warm-core eddy, and anticyclonic cold-core eddy, respectively. The vertical
line represents the standard deviation, and the dotted line represents the multi-year average value.
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FIGURE 5

Monthly distribution of multi-year (2008 ~ 2017) average eddy nonlinearity at the sea surface (A, B) and 1,000 m (C, D) in the STCC area. Blue, red, pink,
and green curves represent cyclonic cold-core eddy, anticyclonic warm-core eddy, cyclonic warm-core eddy, and anticyclonic cold-core eddy,
respectively. The bar line represents the standard deviation, and the dotted line represents the multi-year average value.
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of the eddy is normal in some layers and abnormal in other layers

(Part I). Thus, the four eddy categories cannot be used when

discussing the eddy penetration depth. Therefore, according to the

rotation direction of the eddy flow field at the sea surface, only two

types of eddies are considered: CEs and AEs.

The average penetration depth of CEs is 675.13 ± 67.50 m, with

the maximum value in May (698.24 ± 55.79 m) and the minimum

in July (635.86 ± 59.16 m, Figure 8A). The average penetration

depth of AEs is 622.32 ± 81.85 m, with the maximum value in

April (648.81 ± 67.24 m) and the minimum in August (595.25 ±

96.80 m). That is, the penetration depth of CEs is always deeper than

that of AEs. There is no apparent seasonal variation in these two

categories of eddies.

Stratification is an important parameter to measure the vertical

stability of seawater. Vertical penetration of eddy needs to overcome

the blocking effect of stratification. In order to explain the monthly

variation of eddy penetration depth, Figure 8B shows the monthly

variation of the integrated stratification from 1,000 m to the sea

surface. The integrated stratification over the upper 1,000 m has a

seasonal pattern, greater in summer and autumn than in winter and

spring. Its multi-year monthly average value is 1.89 ± 0.03 m/s2, the

maximum value appears in August (1.96 ± 0.02 m/s2), and the

minimum value appears in February (1.84 ± 0.03 m/s2).

Correspondingly, the multi-year monthly average EKE is

characterized by a high-value distribution in spring and summer,

and low values in autumn and winter (Figure 8C), similar to the

vertically-integrated stratification distribution. The multi-year

monthly average EKE is 80.99 ± 0.02 cm2/s2, the maximum value
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appears in May (94.55 ± 7.31 cm2/s2), and the minimum value

appears in December (67.88 ± 4.95 cm2/s2). The integrated

stratification and the EKE have a similar trend, and their combined

effects show almost no seasonal variations in eddy penetration depth.
4 Discussion

4.1 Eddy anomaly ratio

During the lifespan of an eddy, some eddies can convert from one

eddy type to another. At present, the knownmechanisms for a normal

eddy changing into an abnormal eddy include 1) at the eddy decay

period, due to the instability of its structure, the radius of the normal

eddy suddenly increases and wraps around the surrounding water to

form an abnormal eddy; 2) through eddy-eddy interaction to form an

abnormal eddy (Sun et al., 2019). Therefore, the ratio of the survival

time of abnormal eddies to the overall eddy lifespan is an interesting

topic. Figure 9 shows the statistical histogram (Figures 9A, C) and

cumulative frequency distribution (Figures 9B, D) of the anomaly

ratio g2 at the sea surface (Figures 9A, B) and 1,000 m (Figures 9C, D).

The horizontal axis (g2 ) indicates the ratio of the abnormal eddy

existence duration to that of the eddy lifespan. For example, suppose a

CE has a lifespan of 60 days, including 12 and 15 discontinuous days

as a CWE and the remaining 33 days as a CCE. In that case, the

anomaly ratio is 0.2 and 0.25, respectively, located within the bins of

0.1 ~ 0.2 and 0.2 ~ 0.3 in Figure 9A. The vertical axis g1
(g1 =

N1
N2

� 100%) in Figures 9A, C means the percentage of the
B
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FIGURE 7

Monthly distribution of multi-year (2008 ~ 2017) average eddy eccentricity at the sea surface (A, B) and 1,000 m (C, D) in the STCC area. Blue, red, pink,
and green curves represent cyclonic cold-core eddy, anticyclonic warm-core eddy, cyclonic warm-core eddy, and anticyclonic cold-core eddy,
respectively. The vertical line represents the standard deviation, and the dotted line represents the multi-year average value.
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eddy numbers (N1 ) in the corresponding section of the horizontal

axis to the total eddy numbers (N2 ) with the same polarity.

From Figure 9A, the number of CWEs decreases with the increase

in anomaly ratio, except in the interval of 0.9 ~ 1.0. The highest ratio

g1 of CWEs appears in the 0.0 ~ 0.1 bin, accounting for 13.47% of the

total CEs. About 48.84% of the CWEs exist for less than half of the

overall CEs lifespan (Figure 9B). Only 5.69% of CWEs have an

anomaly ratio g2 that exceeds 90% of the CEs lifespan. Accordingly,

the highest proportion of ACEs appears in the range of 0.0 ~ 0.1,

reaching 11.09% of the total AEs. About 45.54% of the ACEs are less

than half of the overall AEs lifespan. Only 8.64% of the AEs have an

anomaly ratio g2 exceeding 90% of their lifespan.

From Figure 9B, the proportion of ACEs is always more than that

of CWEs within the cumulative frequency of less than 0.7. In contrast,

the proportion of CWEs within a cumulative frequency between 0.7

and 1.0 is more than that of ACEs. There are 1,393 (30.47%) CCEs

and 1,099 (24.04%) AWEs, which are normal eddies throughout their

lifespan (Figure 9B).

The abnormal eddies are mainly concentrated in the oceanic

upper layer. The number of ACEs in each interval bin is more than

that of CWEs at 1,000 m (Figure 9C). This result is more clearly

shown in the cumulative frequency distribution in Figure 9D. At

1,000 m, the proportion of abnormal eddies is smaller than that at the

sea surface, and the cumulative frequency of CWEs and ACEs are

14.06% and 18.19%, respectively. This feature is consistent with the

results of Sun et al. (2021a) in the South China Sea.
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4.2 Influence of different definitions of
abnormal eddy

Abnormal eddies have several definitions. Sun et al. (2019)

proposed a rigorous definition of an abnormal eddy. In addition to

the conditions already used in this study, the anomalous temperature

within an abnormal eddy is 0.1°C higher (for CWE) or lower (for ACE)

than the surrounding background field temperature. This condition

(set the temperature threshold as 0.1°C) can make the abnormal eddies

more robust and eliminate some weak eddies. On the other hand, it

leads to a significant reduction in abnormal eddy numbers. The

research in the North Pacific Ocean pointed out that the proportion

of abnormal eddies is about 10% (Sun et al., 2019), far less than the

results pointed out by Ni et al. (2021), which accounted for about 20%,

and that of Liu et al. (2021), which accounted for about 1/3.

Figure 10 shows the multi-year monthly average eddy number

distribution under the temperature thresholds of 0.025 (solid line)

and 0.05°C (dotted line). It can be seen that when the temperature

threshold is set to 0.025°C (0.05°C), the number of CCEs is less in

summer and autumn, and more in winter and spring. Accordingly,

the multi-year monthly average CCEs is 522.39 ± 48.84 (419.06 ±

46.57), the maximum value is 684.70 ± 47.25 (591.30 ± 55.64), which

appears in December (January), and the minimum value is 406.50 ±

45.92 (279.10 ± 35.90) appearing in July (July). AWEs are less in

summer and autumn, and more in winter and spring. The average

number of AWEs is 454.59 ± 51.26 (355.56 ± 48.85), the maximum
B
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FIGURE 8

Monthly distribution of multi-year (2008 ~ 2017) average eddy penetration depths (A), integrated stratification (B), and eddy kinetic energy (C) in the
STCC area. Blue and curves represent cyclonic eddy and anticyclonic eddy, respectively. The corresponding vertical lines on each curve represent the
standard deviation, and the dotted line represents the multi-year average value.
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number is 625.40 ± 80.10 (556.60 ± 75.00), which appears in January

(January), and the minimum number is 368.20 ± 45.67 (240.10 ±

53.41) appearing in July (September).

The average number of CWEs is 138.48 ± 29.02 (81.97 ± 22.14),

the maximum is 205.40 ± 32.89 (114.60 ± 26.00) in August (July), and
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the minimum is 77.30 ± 22.21 (52.60 ± 19.93), which occurs in

February (April) (Figure 10B). ACEs are more in summer and

autumn, and less in winter and spring. The average number of

ACEs is 229.47 ± 39.14 (141.95 ± 30.34), the maximum value is

327.60 ± 42.69 (182.70 ± 38.34), which appears in August (August),
B

A

FIGURE 10

Monthly distribution of multi-year (2008 ~ 2017) average eddy number under different temperature threshold conditions (0.025 and 0.05°C) in the STCC
area. (A) Cyclonic cold-core and anticyclonic warm-core eddy, and (B) cyclonic warm-core and anticyclonic cold-core eddy.
B

C D
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FIGURE 9

Statistical histogram of the anomaly ratio, which is the time length during which an eddy is abnormal to the overall eddy lifespan (A, C), and the
corresponding cumulative frequency (B, D) at the sea surface layer (A, B) and 1,000 m (C, D) in the STCC area. Green and magenta indicate cyclonic
cold-core eddy and anticyclonic warm-core eddy, respectively.
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the minimum value is 109.50 ± 27.98 (74.70 ± 23.60), appears in

February (February) (Figure 10B). From Figure 10, when the

temperature threshold increases from 0.025 to 0.05°C, the number

of eddies shows a decreasing trend, but the variation trend of the eddy

number does not change.

The seasonal variation of normal and abnormal eddies presents

opposite trends, consistent with the results in the main text. Under

different temperature thresholds, the monthly average number of

CCEs is always more than that of AWEs, while the CWE is always less

than that of ACE. In order to verify the reliability of the results, we

also use temperature thresholds of 0.075 and 0.1°C (Figures not

shown). As the temperature threshold value increases, the number of

the four types of eddies further decreases, but the seasonal variation

trend remains unchanged.
5 Conclusions

Previous studies pointed out that the STCC area has abundant

mesoscale eddy activities (Liu et al., 2012; Tang et al., 2019). Based on

the OFES data and vector geometry automatic detection method, the

seasonal variation of various characteristics for four types of

mesoscale eddies is studied in detail. Following Part I, according to

the rotation direction of the eddy flow field and the sign of anomalous

temperature within the eddy, they can be divided into four categories:

CCE, AWE, CWE, and ACE. We draw the following conclusions

from this study:
Fron
1) At the sea surface, there are significant seasonal variations for

four types of eddies number, rotation velocity, nonlinearity,

and amplitude. Specifically, the normal eddies in winter and

spring are more than in summer and autumn, while the

abnormal eddies show the opposite distribution. The rotation

velocity of the four types of eddies is faster in summer and

autumn than in winter and spring, making the nonlinearity of

eddies in summer and autumn stronger than in winter and

spring. The amplitude of the four types of eddies is strong in

summer and autumn, weak in winter and spring, and the

amplitude of the normal eddy is larger than that of the

abnormal eddy.

2) There is no significant seasonal difference in eddy radius,

horizontal velocity, eccentricity, and vertical penetration

depth of the four types of eddies at the sea surface.

3) At 1,000 m, there is no seasonal variation in each characteristic

of the four types of eddies.

4) It is a common phenomenon that the abnormal eddy

alternates between a normal and an abnormal eddy during

its overall lifespan. Only 30.47% (24.04%) of cyclonic

(anticyclonic) eddies belong to the normal eddy in the

overall eddy lifespan.

5) Increasing the defined temperature threshold value of

abnormal eddies can significantly reduce the eddy numbers

but the seasonal trend of abnormal eddies does not change.
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