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Depth and temperature profiles
reflect individual differences in
the daytime diving behaviours of
pelagic thresher sharks
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Amie L. Williams2, Medel Silvosa2,5 and Gary Cases2,6

1Department of Biological Sciences, University of Chester, Chester, United Kingdom, 2The Thresher
Shark Research and Conservation Project, Cebu, Philippines, 3Department of Marine and Coastal
Sciences, Rutgers University Marine Field Station, Tuckerton, NJ, United States, 4School of
Environmental Sciences, University of Liverpool, Liverpool, United Kingdom, 5College of Natural Science
and Mathematics, Mindanao State University, General Santos City, South Cotabato, Philippines, 6Divelink
Cebu, Daanbantayan, Philippines
We used acoustic telemetry to investigate the roles of depth and temperature in

the daytime foraging behaviours of 13 tagged pelagic thresher sharks by

monitoring their fine scale vertical movements in the Philippines. Cumulatively,

pelagic thresher shark dives traversed the entire water column where they

encountered temperatures that ranged from 33°C at the surface to 12°C at

250 m depths throughout the day, but the movements of individuals varied in

the extent of both their deep and shallow water limits. Dives were not

synchronized to diurnal cycles, and periodicity reflected cycles of similar dives,

the dives themselves, deviations, cruising, and individuality. Pelagic thresher shark

movements between the warm surface layer and cooler waters below the

thermocline (155 – 175 m) may reflect a common Alopiid strategy that balances

maintaining tolerable ambient water temperatures with opportunities to search for

and forage on spatially patchy distributions of prey.
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Introduction

Sharks are ancestrally poikilothermic (Compagno, 2002), but some species have evolved

unique physiological and morphological characteristics to respond to disconnects between

essential resources that partition habitats in the pelagic environment (prey availability,

warmth, dissolved oxygen, light), and exploit its vertical structure (Compagno, 2002; Sutton,

2013; Schlaff et al., 2014). Variations of these characteristics, which may differ among species

of the same genus, have manifested in cranial endothermy (to buffer heat exchange for the

brain and eyes) (Bres, 1993; Weng and Block, 2004), and/or endothermy for swimming

(Klimley et al., 2002; Meekan et al., 2015; Harding et al., 2021). Other species have adapted

behavioural traits that manifest in vertical oscillations through the water column to mediate
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unfavourable ambient water temperatures and exposure to hypoxic

conditions that occur at depth where prey are located (Carey and

Scharold, 1990; Gleiss et al., 2019; Arostegui et al., 2020; Andrzejaczek

et al., 2022). Diving to access prey in deep dark water cools muscles

and eyes that are needed for wide-ranging searches. If a physiological

solution is not evolved, timely returns to warm surface waters devoid

of prey are required (Lawson et al., 2010; Sutton, 2013; Gleiss

et al., 2019).

End points of vertical movement for foraging are defined as diel

vertical migration (DVM) on one end and rapid but short aperiodic

excursions on the other (Gleiss et al., 2019). This spectrum is seen in a

broad range of predatory taxa in the pelagic zone including

istiophorids, scombrids, and lamniform elasmobranchs (Lawson

et al., 2010; Bernal et al., 2017; Gleiss et al., 2019). Although

oscillatory dives might be expected to be similar within a species,

they may be modified by local cues and individual traits learned from

experience within spatially and temporally well-defined bodies of

water (Bres, 1993; Weng and Block, 2004; Schlaff et al., 2014;

Andrzejaczek et al. , 2022). Understanding the variation

(periodicity) in oscillatory diving in such conditions is important to

quantifying the range of traits on which selection acts (Lawson et al.,

2010; Bernal et al., 2017; Gleiss et al., 2019; Andrzejaczek et al., 2022).

The pelagic thresher shark (Alopias pelagicus) is an Indo-Pacific

lamniform that is reported to frequent coastal and offshore waters

from the surface to at least 632 m (Stevens et al., 2009; Sutton, 2013;

Oliver et al., 2019; Arostegui et al., 2020). Pelagic thresher sharks are

likely to be migratory (Baum et al., 2003; Nakano et al., 2003; Reardon

et al., 2004; Oliver, 2012; Sutton, 2013; Oliver et al., 2019), but little is

known of their vertical movements in the open ocean (Oliver et al.,

2019; Arostegui et al., 2020). Since pelagic thresher sharks prey on

food items that use DVM (which is a widespread phenomenon in

marine and freshwater species) as an evasion strategy (Hays, 2003;

Oliver et al., 2013), we can predict that their diving behaviours will be

challenged by depth gradients in temperature and dissolved oxygen.

Here we used acoustic telemetry to quantify the periodicity of pelagic

thresher shark dives in the Visayan Sea and investigate the role that

depth and temperature play in their daytime foraging behaviour.
Method

Monad Shoal is a shallow coastal seamount situated in the Central

Visayan Sea, eight kilometers east of Malapascua Island, Cebu, in the

Philippines (N 11° 19’ 06.7”, E 124° 11’ 31.9”) (Oliver, 2012; Oliver et al.,

2019). The seamount rises 250 m from the sea floor to 15 - 25 m depths

where it plateaus with a surface area of approximately 4.5 km2. Cleaner

fish occupy stations along the mount’s southern fringe where they

provide essential parasite removal services that benefit thresher shark

health and fitness (Oliver et al., 2011; Cadwallader et al., 2015; Oliver

and Bicskos Kaszo, 2015). The predictable and repetitive occurrence of

these interactions offered a unique opportunity to tag pelagic thresher

sharks without catching them, and to monitor their movements near

and away from the seamount (Figure 1A) (Oliver et al., 2019).

Divers tagged thresher sharks with external sensored acoustic tags

(Lotek Wireless Inc. model MM-M-16-25-TP) darted into the

interdorsal musculature from 7 to 28 June 2014 (see methods in

Oliver et al., 2019). Transmitters broadcasted unique CDMA-encoded
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identifiers every 3 seconds (Grothues, 2009). A second channel on

each tag alternately (6 s repeat) transmitted pressure (psi) or

temperature (°C). In the days after tagging we tracked sharks

leaving the seamount from a skiff equipped with stereo directional

hydrophones (LPH_1, Lotek Wireless, Inc.) connected to a logging/

processing system (MAP RT-A Lotek Wireless Inc.) (Oliver et al.,

2019). A RayMarine (model CP100) CHIRP down-vision sonar,

broadcasting at 200 kHz with Time Varying Gain surveyed the

water column for reflective targets and measured depth to provide

environmental context for the interpretation of the dive patterns.

Temperature and pressure data were filtered using methods

described in Oliver et al. (2019), and then scaled into 50 bins

according to preprogramed ranges of -6 °C to 34 °C and 0 and

750 psi (~510 m) respectively. To investigate the temperature profile

of the water column from scatter plots, the alternating temperature

and depth data were discretized to the nearest 5 s timestamp, after

which co-occurring values from a given shark were plotted against

each other.

Three of the tag sensors (two temperature and one pressure)

failed during the tracking period, but failures did not occur over the

entire detection period and were independent of each other (pressure

or temperature). Sensor failures were identifiable as either high

frequency (~12 s) oscillations between reporting real data and false

floors (raw value = 0) when the underlying dive behaviours could be

observed, or when they went to 0 for ensuing durations. Sensor

failures also decoupled the temperature/depth relationship for part of

the record. Descriptive statistics of dispersion were therefore limited

to data set fragments prior to sensor failure (independently for depth

and temperature). We used the Lomb-Scargle method to quantify the

periodicity of thresher sharks’ vertical movements because the time

series of depth for the tagged sharks contained unequally spaced

observations resulting from different tracking encounters of a given

shark (Lomb, 1976; Scargle, 1982). All of the analyses applied

MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA)

native functions.
Results

We tagged 13 pelagic thresher sharks overall, and actively tracked

ten of these during 21 days of field operations (Oliver et al., 2019). Six

of the corresponding time series provided sufficient data (>900

observations each) for the Lomb-Scargle analyses to provide clear

pictures of diving behaviour. Although the mean ( ± SD) water

temperature was 24 ± 3 °C for all sharks combined, the ambient water

temperature that individual thresher sharks were exposed to during

their vertical movements ranged from 12 °C to 33 °C and was highly

variable (Table 1). The depth profiles of the tagged thresher sharks

were also highly variable and ranged from the surface of the water

column (0 m) to the bottom of the water column (250 m at the

deepest point in the valley below). All of the sharks travelled to depths

in excess of 175 m, but the mean depths were much shallower and

varied among individuals (Table 1). Although there was some spatial

and temporal variation, the water temperature gradually declined

from 30 °C at the surface to approximately 24 °C at 155 m (Figure 2).

It then declined rapidly to 15 °C over the next 20 m in the

thermocline. Below 180 m, the water appeared to be well mixed
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and was generally between 13 and 14 °C with a minimum of 12 °C

(Figure 2).

Sonar targets consisted of several types of structures including

highly localized dense aggregations consistent with schools of fish or

squids, intermittent scattering layers (narrowly constrained in depth),

and possibly the sharks themselves (Figure 3). A deep scattering layer

was apparent just above the sea floor during daytime and crepuscular

observations (Figure 3).

When comparing periodograms between sharks there were no

obvious matching peaks for different individuals (Figure 1B).

Inspection of the dive profiles revealed the mechanism behind the

important spectrum bands. Low frequency peaks for some sharks were

composed not of individual dive oscillations but periods of similar

repetitive dives (e.g. shallow dives within the upper mixed layer of 5 to

10 minutes each) that gave way to a period of other cyclical dives (e.g.

predominantly staying on the bottom and rising sharply and briefly

through the thermocline to mid water before returning to the bottom

with a single dive cycle having a period of about 1.2-1.6 hours)

(Figure 1C: Shark ID no.s 59800, 6300). In another example there was

a period of no diving followed by a period of diving (Figure 1C: Shark ID

no. 6200). Occasionally, the longer dives had short deviations up or

down superimposed on them with periods of 1-10 minutes, which were

irregular among dives within a set of otherwise similar dives (Figure 1C:

Shark ID no.s 59700, 59800). The highest frequency cycles were an

artefact of sharks swimming level at a depth corresponding to the

boundary between an upper or lower sensor reporting bin, so that one or

the other depth bin might be reported every 6 s (Figure 1C: 6200). Some

sharks made use of the entire water column throughout the day, while

others appeared to be more selective in their depth profiles (Figure 1C).

The total depth range appeared to influence the time period since dives

over greater depth ranges took longer to traverse (Figure 1C).
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Discussion

The longest dive oscillation phase (~10 hours) was consistent with

our prediction that pelagic thresher sharks would respond to the DVM

of their prey (Hays, 2003). DVM is typically characterised by prey

species remaining in deep water during the day to avoid visually

orientating predators and moving into shallow water at night where

they feed before returning to depths at dawn (Bollens and Frost, 1989;

Andrzejaczek et al., 2022). Our daytime sonargrams showed an

intermittent sound scattering layer (SSL) close to the seafloor that

was consistent with small schooling fish (Sameoto, 1982; Arostegui

et al., 2020). While pelagic thresher sharks made no single dives that

lasted a day, they appeared to respond to DVM patterns in their prey by

performing series of deep-water dives in the early hours of the morning

(Josse et al., 1998; Stevens et al., 2009; Musyl et al., 2011; Bernal et al.,

2017). Similar patterns have been observed in a variety of shark species

including bigeye thresher sharks, Alopias superciliosus, (Musyl et al.,

2011), common thresher sharks, Alopias vulpinus (Cartamil et al., 2010;

Cartamil et al., 2011), blue sharks, Prionace glauca (Carey and Scharold,

1990), white sharks, Carcharhinus carcharias (Dewar et al., 2004),

basking sharks, Cetorhinus maximus (Shepard et al., 2006), and

oceanic white tip sharks, Carcharhinus longimanus (Andrzejaczek

et al., 2018). Yet the dominant periodicity in the vertical movements

of the pelagic thresher sharks that we tagged varied for each individual

in spite of having strong spectral periodicities at periods of less than 1

cycle per day, which indicated localized and idiosyncratic modifications

in response to other factors (Musyl et al., 2011).

One of the most widespread behaviours associated with the

movements of marine vertebrates in the open ocean is oscillatory

swimming in which ectotherms optimize their body temperature by

recovering heat lost when deep diving (Klimley et al., 2002; Harding
TABLE 1 Summary data of tagged and tracked male (M), female (F), juvenile (J), transitional (T), adult (A), and sex/maturity undetermined (ND) pelagic
thresher sharks.

SEA TEMPERATURE (°C) SHARK DEPTH (m)

TAG ID Sex Size Min Max Mean ± SD Min Max Mean ± SD

59900 F ND 13.2 29.20 22.06 5.86 21 198 110 66

60200 F T 14.00 24.40 22.45 2.38 83 208 129 18

60000 M ND 13.2 33.20 Failed Failed 20 239 120 56

60600 M A 13.2 30 22.62 5.18 0 250 76 85

60700 M A 17.20 30.80 28.40 3.18 0 178 42 63

59800 ND A 12.4 31.60 19.15 7.03 0 250 140 86

59700 ND A 13.2 30.8 27.11 5.17 0 229 45 65

60400 M A 13.20 30.00 23.92 3.87 0 177 109 58

60300 F T 14.00 30.00 21.97 4.49 0 198 119 49

60500 ND A 14.80 30.80 28.74 1.01 0 178 16 15

61200 ND ND 13.20 30.00 28.46 3.31 0 250 30 49

61100 F A 13.20 30.00 25.50 6.38 0 219 62 76

60800 F ND 28.40 30.00 Failed Failed 0 31 Failed Failed
frontie
Mean and standard deviation were not calculated for short or corrupted time series from failed sensors. The sharks that provided time series that were useful for Lomb-Scargle analyses are highlighted
in grey.
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et al., 2021), or by transferring heat to the water column to reduce

heat stress (Kitagawa et al., 2006; Bernal et al., 2017). Shark species

that exhibit this behavioural pattern include the bigeye thresher shark,

Alopias superciliosus (Musyl et al., 2011), the scalloped hammerhead

shark, Sphyrna lewini (Klimley, 1993), and the blue shark, Prionace

glauca (Carey and Scharold, 1990). Oscillatory movements by pelagic

thresher sharks in this study reflect this type of behaviour, and pelagic
Frontiers in Marine Science 04
thresher sharks could be returning to surface waters to warm-up at

the limit of their thermal inertia, after performing a deep dive

(Andrzejaczek et al., 2022). The depth limits of the dive oscillations

could also reflect a behavioural adaptation to avoid increasingly

hypoxic conditions that occur below 150 m (Bernal et al., 2017;

Arostegui et al., 2020; Harding et al., 2021; Andrzejaczek et al., 2022).

Although swimming in oscillations may be efficient as a

thermoregulation and/or respiration strategy for pelagic thresher

sharks, it risks temporarily decoupling them from access to their

prey (Klimley et al., 2002; Musyl et al., 2011).

The thermal gradient encountered by tagged pelagic thresher

sharks was characterised by a strong thermocline, indicating a

pycnocline, and the dives of several sharks were focused in

corresponding depths. While such limits may have met a shark’s

need to thermoregulate without additional travel, it is possible that

pelagic thresher shark dive oscillations may also have intercepted the

scent plumes of their prey which typically disperse along isopycnals

(rather than spherically) in stratified water (Carey and Scharold,

1990). Our sonargrams showed that targets consistent with prey were

found throughout the water column. DVM in thresher shark dives

may therefore not have been a response to DVM in prey if a win-stay-

lose-shift or backlighting strategy was favoured (Figure 3) (Carey and

Scharold, 1990; Bonnet-Lebrun et al., 2021). These pressures could be

working in tandem to drive the evolution of physiological solutions to

thermoregulation in pelagic thresher sharks.

When investigating the vertical movements of a single pelagic

thresher shark in the Red Sea, Arostegui et al. (2020) showed that the

shark’s daytime diving behaviour avoided hypoxic conditions that

occur below 300 m in relatively cool (mean 22.1 °C) water (even

though that is where the daytime distribution of its prey was most

likely to be located) in favour of nighttime overlaps with small

epipelagic prey fishes that occur in relatively warm (mean 24.2 °C)

surface waters (50-150 m). They concluded that the shark’s diving

behaviour was not constrained by the Red Sea’s ambient water

temperature which ranged from 21 to 26 °C over a 24-hour (day
FIGURE 1

(A) Tags were deployed into the sharks’ interdorsal musculature using
closed-circuit rebreathers and a modified speargun. (B) Lomb-Scargle
periodograms of depth for six acoustically-tagged pelagic thresher
sharks (shark 60300 has two separate time series, in sub-panels D, E).
Red dots correspond to P-values below 0.05 (representing
frequencies with higher power than would be expected under white
noise). (C) Examples of depth (m) and temperature profiles (°C) against
time of day (x-axis) expanded from full records. Shark tag ID is
indicated in the bottom left of each sub-panel.
FIGURE 2

Depth versus temperature data for 1,146 records where depth and
temperature data for a given shark (amongst all sharks combined)
were both logged in a common 5 sec discretized time stamp. The red
line shows the best fit model using a smoothed spline.
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and nighttime) cycle. Conversely, the ambient water temperature that

the 13 sharks that we tagged encountered in the Visayan Sea ranged

from 12 to 33 °C over a 12-hour daytime cycle. The daytime dive

profiles and 21 °C maximum temperature exchange that we recorded

resemble those reported for closely related bigeye thresher sharks

(Compagno, 2002; Musyl et al., 2011) and support other assertions

that pelagic thresher sharks are physiologically and behaviourally

adapted for thermotolerance (Weng and Block, 2004; Harding et al.,

2021). Unlike the shark that was monitored in the Red Sea where

depth was not limited by the seafloor and where the minimum

temperature at maximum depth (632 m) was 21.6 °C, our observed

maximum recorded diving depth of 250 m was constrained by the

depth of the water column. Since most of the 13 sharks that we tagged

only went to the bottom of the thermocline where the water

temperature was 12 °C, data collected from pelagic thresher sharks

in deeper, mixed, truly pelagic environments, will further knowledge

of their ecology in the future.
Frontiers in Marine Science 05
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FIGURE 3

Ray-Marine sonograms showing (A) patchiness in the mid layer
(circles) and continuity in the deep scattering layer (arrows); (B) a
highly localised dense aggregation consistent with a school of fish
(circle); and (C) intermittent scattering layers (arrows) and possibly the
tracked shark itself (circle).
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