
Frontiers in Marine Science

OPEN ACCESS

EDITED BY
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The tropical western Pacific and the adjacent South China Sea are home to many

low-lying islands and coastal zones that are vulnerable to flood hazards resulting

from extreme sea level (ESL) changes. Based on the hourly sea level recorded by

15 tide gauges during the period 1980-2018, this study evaluates the historical

trend of ESLs over this region. On this basis, a regression model for hourly future

sea-level prediction is established by combining the atmospheric reanalysis

products, the tidal harmonics, and the outputs of three climate models

archived by the Coupled Model Intercomparison Project Phase 6 (CMIP6) to

evaluate the future ESL changes in 1.5 °C and 2.0 °C warmer climates. The

historical trend of ESLs show that the ESLs along the coasts and islands of the

tropical western Pacific have significantly risen during the past decades, which is

mainly contributed by the mean sea level rise. And results from the historical

observations and the prediction model show that in a warming climate from

1980 to 2050, both themean sea levels and ESLs rise with fluctuations. Themean

sea level change plays an important role in the secular trend of ESLs, while the

interannual-to-decadal variability of ESLs is significantly affected by tides and

extreme weather events. Under the warming scenario of 1.5°C, the changes in

the return levels of ESL relative to the historical period are generally small at most

tide gauge sites. Compared with the situations under 1.5°C warming, the return

levels of ESL at most selected tide gauges will rise more significantly under the

2.0°C warming scenario, so the frequency of the current 100-year return level

will reduce to less than 10 years at most stations. The above results suggest that

this additional 0.5°C warming will cause a huge difference in the ESLs along the

coasts and islands of the tropical western Pacific. As proposed in the Paris climate

agreement, it is very necessary to limit anthropogenic warming to 1.5°C instead

of 2.0°C, which will substantially reduce the potential risk of flood disasters along

the coasts and islands of the tropical western Pacific.
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Introduction

The extreme sea level (ESL) is defined as the maximum sea level

during a selected period, usually a year, and its variability is mainly

triggered by the combined effects of mean sea level, tides, and storm

surges (Marcos et al., 2015). For instance, strong ESL events often

occur when high tides coincide with storm surges due to

atmospheric forcing, often leading to the most hazardous coastal

flooding and causing devastating damage to coastal ecosystems and

human livelihoods (Vousdoukas et al., 2018). Therefore, in recent

years, the changes in ESLs have been extensively investigated at

both global and regional scales (e.g. Cayan et al., 2008; Feng et al.,

2015; Feng and Jiang, 2015; Wahl et al., 2017; Rasmussen et al.,

2018; Kirezci et al., 2020). There is considerable evidence that ESL

has generally risen globally over the past few decades and that

changes in ESL, especially its secular trend, are highly correlated

with changes in mean sea level in many coastal regions (Marcos

et al., 2009; Menéndez and Woodworth, 2010; Weisse et al., 2014).

Meanwhile, future projections by climate models suggest that the

increase in the occurrence frequency of ESL caused by

anthropogenic warming is more significant in tropical oceans

than in mid-high latitudes (Vousdoukas et al., 2018; Tebaldi

et al., 2021).

The tropical western Pacific is characterized by the highest sea

surface temperature in the global ocean, bearing frequent storms

and typhoon activities. It is also a region containing strong

variability of interannual-to-decadal climate modes, like El Niño

and Southern Oscillation (ENSO) and Pacific Decadal Oscillations

(PDO). Strong sea level variability, induced by storm surges, tides,

and lower-frequency climate modes, leads to more coastal

inundation in low-lying, highly-populated coastal regions of the

tropical western Pacific. The tropical western Pacific contains many

low-lying islands and coastal areas with heavy concentrations of

population and economic activity, where the impact of ESL will be

particularly severe for this region. Some studies on global ESL have

already specifically depicted the ESL variability in the tropical

western Pacific and adjacent Asian waters. Vousdoukas et al.

(2018) predicted that compared with the status during 1980-2014,

ESL in 2100 would increase by 57 cm in the southeast Asia waters

and by 59 cm in the south Pacific, the highest rise in the globe,

under the moderate warming scenario of RCP4.5. The work further

pointed out that the rise in ESL was mainly driven by the thermal

expansion of ocean water, followed by contributions from ice mass

loss from glaciers and ice sheets in Greenland and Antarctica.

Tebaldi et al. (2021) pointed out that in 2100, the frequency of the

current 100-year return level will change to one year at most of the

stations in the southeast Asia waters under the scenario of 1.5°C

warming. Wahl et al. (2017) predicted that under RCP4.5, the

frequency of the current 100-year return level in the tropical

western Pacific islands would change to 1-5 years by 2050, and

those in most stations along the tropical western Pacific coast would

change to 5-20 years by 2050, only those in a small number of

stations would change to 20-50 years.
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The Paris Climate Agreement aims to hold global warming

well below 2.0°C and to pursue efforts to limit it to 1.5°C above

pre-industrial temperature. (UNFCCC, 2015a). However, a recent

literature review under the United Nations Framework

Convention on Climate Change (UNFCCC) found the notion

that ‘up to 2.0°C of warming is considered safe, is inadequate’ and

that ‘limiting global warming to below 1.5°C would come with

several advantages (UNFCCC, 2015b)’. Recently, increasing

studies have been performed to investigate the extreme climate

events (i.e., ESL, marine heat wave, drought risk) at the 1.5°C and

2.0°C global warming, and most results indicated the superiority

of limiting warming to 1.5°C rather than 2.0°C (Lehner et al.,

2017; Dosio et al., 2018; Rasmussen et al., 2018; Feng et al., 2018b;

Tebaldi et al., 2021). However, the difference in ESL under these

two warming scenarios has not yet been well understood in the

tropical western Pacific.

To further clarify the ESL characteristics in the western Pacific

and the adjacent South China Sea (SCS), the return periods and

return levels of ESLs were systematically investigated in this study

using the tide gauge sea level observations, the atmospheric

reanalysis products, and the state-of-the-art climate models.

Particular attention is paid to the different ESL responses to 1.5°C

and 2.0 °C warming levels. As the SCS is often treated as a part of

the western Pacific, hereafter, we name the whole study region as

the tropical western Pacific. The rest of this paper is organized as

follows. Section “Data and Methods” describes the datasets and

methods used in this study. In Section “Results”, we explore the

historical ESL variability and the future ESL changes at 1.5°C and 2°

C warming levels. Contributions of potential influential factors are

also evaluated. Lastly, our results are summarized and discussed in

Section “Conclusion and Discussion”.
Data and methods

Tide gauge data

The tide gauge sea level data used in this study are collected and

distributed by University of Hawaii Sea Level Center, one of the

primary data centers in the Global Sea Level Observing System. The

accuracy and completeness of the data are critical for correct

estimations of ESL changes. So only hourly Research Quality

(RQ) data with more rigorous quality control are adopted in this

study. Given that the earlier tide gauge data has lower completeness,

we focused on the RQ data during the period January 1980 -

December 2018 and required the time series to contain at least 25

years of data, resulting in 15 stations. The locations and names of

the selected tide gauge stations are shown in Figure 1. In addition,

obvious spurious records or abnormal data spikes in the sea-level

time series of all tide gauges were checked by visual inspections and

then further corrected or eliminated. For instance, in the sea-level

records of a few stations (e.g. Hir, Lgp), an overall drift with

anomalously large amplitude occurs after a certain point in time,
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probably due to the artificial relocation of tide gauge. To correct

these abrupt sea-level shifts, the abnormal differences between

adjacent records were replaced by the differences between their

corresponding climatological mean values during 1980-2018.
Percentile analysis method and ensemble
empirical mode decomposition

The percentile analysis method has been widely used to assess

ESL changes (Marcos and Woodworth, 2017; Feng et al., 2018b;

Feng et al., 2019). It gives the percentiles below which a certain

percentage of the data in a dataset is found. In this study, this

method is applied to extract 99.9%, 99%, and 90% percentiles of the

observed sea level each year to reveal interannual and longer-term

variability of ESLs.

The sea level tendency can be estimated by analyzing its

oscillatory behavior, which means extracting periodic components

from original observations successively until no periodic

component is left (Jevrejeva et al., 2006). Due to the empirical,

intuitive, direct, and adaptive characteristics, the empirical mode

decomposition (EMD) method is suitable for estimating the

accurate long-term trend of the sea level data (Huang et al., 1998;

Huang et al., 1999). The EMD method decomposes an arbitrary

time series X(t) into a finite and often small number of intrinsic

mode functions (IMFs), defined as any function with an equal

number of extreme and zero-crossing. Then X(t) can be described

as:

X(t) =on
j=1IMFj + rn (1)

where, n is the number of IMFs, and rn is the residual (Huang

et al., 1998).

Ensemble empirical mode decomposition (EEMD) is the

improved method to obtain IMFs with more direct physical

meaning and greater uniqueness (Wu and Huang, 2009). EEMD

was estimated by averaging numerous EMD runs with the addition

of some white noise and has been widely used to get the long-term
Frontiers in Marine Science 03
change of the mean sea levels recently (Chen et al., 2017; Feng et al.,

2019; Ezer and Dangendorf, 2020). By averaging the different

decompositions, the noise was averaged out and the true

decomposition was calculated with a confidence estimate.
Extreme value analysis method

The risks associated with ESLs can be assessed from the

estimates of return levels and return periods. Return level is

defined as the sea level that occurs at a specific frequency. A

return period refers to the average time between a specific sea-

level return level being exceeded at a particular location. We

obtained return levels and return periods by the transformed-

stationary approach for non-stationary extreme value analysis

(Mentaschi et al., 2016). The first step of this approach is the

input of the initial ESL time series. We did this based on the classical

annual maximum method, which defines the maximum values of

each year in the hourly sea level time series as the ESLs. And the

second step is to analyze the extreme value distribution of the input

data. Compared with the traditional non-stationary extreme

analysis method, this approach separates the detection of non-

stationarity of the time series from the fitting of extreme

distribution. It consists of (i) transforming a non-stationary time

series into a stationary one, to which the stationary theory can be

applied, and (ii) reverse transforming the result into a non-

stationary extreme value distribution by means of some frequency

analysis methods, such as the Gumbel, Weibull, and generalized

extreme value (GEV) distributions. This study used the GEV

distribution model to analyze the return levels of ESLs since it

frequently outperforms other alternative methods (Feng and Jiang,

2015) and has been widely used to investigate various types of

extreme events (Dosio et al., 2018; Vousdoukas et al., 2018; Takbash

and Young, 2020). The detailed theoretical background and

equations for the GEV distribution and the transformed-

stationary approach can be found in Huang et al. (2008) and

Mentaschi et al. (2016).
FIGURE 1

Mean dynamic topography over the study region based on the CNES-CLS18 dataset (Mulet et al., 2021) and the locations of 15 selected tide gauges:
Pohnpei (Pp), Nauru (Nr), Malakal (Mlk), Honiara(Hir), Noumea (Nm), Kapingamarangi (Kprg), Guam (Gm), KoLaK (KLK), HongKong (HK), Booby Island
(BI), Cape Ferguson (CF), Legaspi (Lgp), Davao (Dv), Kota Kinabalu (KKbl), Tanjong Pagar (TP).
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A model of hourly sea level

Since the prediction of future ESLs by extreme value analysis

method requires hourly sea level data, this study adopted a two-

stage procedure to realize the future ESL projections: first, an hourly

regression model on sea level was established for each station based

on the observational data and CMIP6 historical simulations; then,

using these regression models, we projected future hourly sea level

and evaluated the corresponding ESL variability under 1.5°C and

2.0°C warming scenarios. It has been pointed out that both

atmospheric pressure effect and wind forcing can cause sea level

change, and the greatest influence on short-period non-tidal sea

level variability comes from inverse barometer effects, with wind

stress contributing only incrementally (Cayan et al., 2008; Feng and

Jiang, 2015; Muis et al., 2017). Following Vousdoukas et al. (2018),

we define hourly sea level (HSL) as:

HSL = MSL + hTIDE + hCE (2)

where, MSL represents the yearly-mean sea level, hTIDE is the

astronomical tide level, and hCE is the water level fluctuations due to
climate extremes, i.e., wind-waves and storm surges. The historical

MSL is defined as the yearly-mean sea level computed from tide

gauge data, and the future MSL is calculated mainly based on the

dynamic sea level (labelled as ‘ZOS’) and the global mean

thermosteric sea level change (labelled as ‘ZOSTOGA’) data

provided by the CMIP6 models. The ‘ZOS’ and ‘ZOSTOGA’ data

are de-drifted by removing their respective secular trends in the

corresponding pre-industrial control runs. In addition, the

influences of ocean mass change due to the freshwater imports

from glaciers, Antarctic ice sheet, Greenland ice sheet, and land

water have also been considered. The annual forecast values of these

factors estimated in some previous studies are directly used in this
Frontiers in Marine Science 04
study(Wada et al., 2012; Slangen et al., 2014; Marzeion et al., 2020;

Edwards et al., 2021). The past and future hTIDE are calculated by

the tidal harmonic constants of 27 components given by the

FES2014 tidal model (Lyard et al., 2021). For the historical period

of 1980-2018, the values of HSL are directly derived from tide gauge

observations, so the historical non-tidal sea level residuals hres can
be obtained by subtracting MSL and hTIDE from HSL, and it

corresponds to atmospherically forced hCE in the Equation (2).

Following Cayan et al. (2008), we used the historical

observations to establish one multiple linear regression model for

each station that correlated hres with the sea level fluctuations hCE
driven by local sea level pressure (SLP) and sea surface wind stress

forcing. The hourly SLP and wind stress are derived from the ERA5

reanalysis dataset. The correlation coefficients and F-test statistics

between the predicted hCE and the calculated hres are shown in

Table 1. The general correlation coefficients of coastal stations (i.e.,

Nm, KLK, BI, CF) are mostly higher than those of islands. Some of

them even exceed 0.7. Due to the large amount of data involved in

the regression (at least 236688 hourly records in 39 years), the

correlation coefficients of islands located in the open ocean (i.e., Pp,

Nr, Mlk, Hir, Kprg) are relatively low but still reach more than 0.2.

The F-test statistics of all 15 stations are much higher than the

critical F value of 1.0, so the multiple linear regression model is

generally significant. It can also be seen from Table 1 that the

contribution ratios of SLP to hCE at 15 stations are more than 97%,

which, as also suggested by Cayan et al. (2008), reflects the

dominant role of the barometric effect.

The future hCE projection is mainly based on the SLP and wind

stress simulated by three CMIP6 numerical models under ssp2-4.5

scenario (Table 2). We chose these three CMIP6 numerical models

because their outputs contain all of the variables with the necessary

temporal resolutions for sea level estimations. In addition, the
TABLE 1 The number of samples and the multiple linear regression model results for each tide-gauge station.

Number of Samples Correlation coefficient F-test statistics Percentage of SLP

Pp 341880 0.203 4710 0.998

Nr 341880 0.308 >10000 0.996

Mlk 341880 0.262 8302 0.990

Hir 341880 0.248 7340 0.997

Nm 341880 0.597 >10000 0.998

Kprg 306816 0.285 8353 0.999

Gm 333120 0.316 >10000 0.998

KLK 306816 0.712 >10000 0.996

HK 341880 0.413 >10000 0.982

BI 271752 0.764 >10000 0.995

CF 236688 0.591 >10000 0.993

Lgp 298032 0.410 >10000 0.999

Dv 280536 0.294 7643 0.995

KKbl 245448 0.310 6922 0.997

TP 271752 0.462 >10000 0.978
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historical simulations of these three models reasonably reproduce the

mean and variance patterns of SLP and wind stress shown in the

results of ERA5 reanalysis (Figures not shown). The future

simulations of these three models begin in 2015. Since the model

outputs only provide daily SLP and wind stress, the data need to be

interpolated hourly to meet the requirement of future hCE prediction.
To synthesize hourly SLP and wind stress, we extracted the high-

frequency signals with a period shorter than 24 hours from the hourly

SLP and wind stress time series of the ERA5 product and interpolated

these hourly time series to the corresponding daily outputs of CMIP6

models. Then, with reference to the ERA5 reanalysis data, the varying

amplitudes of the interpolated data were adjusted proportionally to

ensure that the variance of both datasets was the same. Then the

interpolated SLP and wind stress data were input into the sea level

regression model for each tide gauge station to predict the future

hourly hCE during 2015-2050. The HSL in the future was finally

obtained by adding the predicted annual meanMSL and hourly hTIDE
and hCE at each station through Equation (2).
Results

Historical ESL variability

The 99.9%, 99%, and 90% levels of observed sea level have been

calculated at all 15 tide gauges (Figure 2). The results show that the

three percentile levels of each station are similar, but the fluctuation

amplitude of ESL is the largest at 99.9% level and the smallest at

90% level. Except for Pp, KLK, Dv, and KKbl, the three percentile

levels of ESL at all other stations rise with fluctuations. At the same

time, the ESLs of all tide gauges show obvious interannual-to-

decadal variability, among which the varying amplitudes at HK and

BI stations are the most obvious, with a range of more than 0.3 m.

The EEMD method is used to further extract the long-term

nonlinear trends of ESLs in coastal and island zones of the tropical

western Pacific. As seen in Figure 3, ESLs along the coasts and

islands of the tropical western Pacific generally present rising trends

during 1980-2018. But the detailed tendency features of ESLs at

different tide gauges are distinct. At Hir and KLK, the growing

trends are almost linear. At Nm, Gm, BI, and CF, the growing

trends are not obvious initially but strengthen gradually. At Nr,

Mlk, Kprg, HK, Lgp, and Dv, the rising trends weaken gradually. At

Pp, KKbl, and TP, the ESLs show obvious rising trends before 2005

and then shift to decline afterward. It should be noted that the long-

term trend derived via EEMD method may be significantly

influenced by extreme anomalies in some specific years. For

example, at Pp, the decline trend after 2000 is primarily caused

by the large negative anomalies of sea level in 2015.
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To evaluate the potential impacts of mean sea level variability

on the ESL changes, this study calculates the correlations between

the 99.9% percentile ESL and the yearly-mean sea level. The results

in Table 3 suggest that the ESLs are significantly correlated with the

mean sea level at most of the 15 tide gauges. The overall correlation

for all stations is 0.736 (above the 99% confidence level). Generally,

the correlation coefficients are relatively high for stations on small

islands in the western Pacific Ocean and relatively low for stations

on the coasts of continents or big islands. For instance, the stations

with correlation coefficients higher than 0.85 (Pp, Nr, Mlk, Hir, Gm,

Lgp, and Dv) are all located on relatively smaller islands. In

contrast, correlations lower than 0.6 exist within the SCS (KLK

and HK) and on the eastern Australian coast (CF). The CF station is

the only one whose correlation coefficient does not exceed the 95%

confidence level (Table 3). This regional contrast in correlation

coefficients implies that the impact of year-mean sea level on the

ESL variability looks more significant in the open ocean than in the

coastal region.

After the removal of EEMD trends, the correlation coefficients

between ESLs and yearly-mean sea levels decrease at all tide gauges,

suggesting that the long-term trends of ESLs are substantially

contributed by the mean sea level trends, consistent with previous

studies in other regions (Marcos et al., 2009; Weisse et al., 2014).

The overall correlation coefficient reduces from 0.736 to 0.513, but

remains above the 99% level. Besides CF station, the correlation

coefficients for stations HK and KLK also reduce to below the 95%

confidence level after detrending. It is worth mentioning that these

three stations are located on the coastlines of continents, while the

correlation coefficients of small islands located in the open ocean

also decrease after detrending but are still above the 95% confidence

level, indicating that mean sea level modulates not only to the

secular ESL trend but also the interannual-to-decadal ESL

variability during 1980-2018.
Projections of future ESLs under 1.5°C and
2°C warming scenarios

The 21st-century simulations of three climate models from

CMIP6 are used to predict the future amplitudes of the global

mean surface temperature. In all these models, the baseline for

future warming estimations is initial warming of 1.1°C in 2015,

derived from the HadCRUT5 global mean surface temperature

difference between 2013-2017 and 1850-1900. The projections of

three climate models consistently suggest that global warming will

reach 1.5°C in the 2020s and 2.0°C during 2040-2050 (Table 2).

CMCC-ESM2 simulation reaches 1.5°C in 2026 and 2.0°C in 2040,

respectively. MIROC6 is the earliest to reach 1.5°C warming in
TABLE 2 The selected CMIP6 simulations and projected year of warming.

Resolution (atmosphere) Resolution (oceans) 1.5°C warming (year) 2°C warming (year)

MIROC6 1.4°×1.4° 0.7°×1° 2023 2043

CMCC-ESM2 1°×1.25° 0.6°×1° 2026 2040

EC-Earth3 0.7°×0.7° 0.6°×1° 2029 2050
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2023, but it reached 2.0°C warming later than CMCC-ESM2 in

2043. EC-Earth3 has the slowest warming rate, reaching 1.5°C in

2029 and 2.0°C in 2050.

The return levels and return periods of ESLs under different

warming levels are further calculated by using the extreme value

analysis method described above. Compared with the present-day

status observed by tide gauges, the changes in return levels under

the 1.5°C warming scenario are generally small (Figure 4). At some

tide gauge stations (e.g., Nr, Nm, and Dv), the return levels

estimated based on three climate models all show little changes

relative to the observed present-day values. Under the 2.0°C

warming scenario, however, the return levels of ESLs at most tide

gauge sites increases substantially compared to the present-day

scenario (Figure 5), suggesting a rapid intensification of ESL from

the 2020s to 2040s.
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To further quantify the potential influences of warming

magnitudes on the return levels and return periods, we list in

Table 4 the present and future 100-year return levels, as well as the

future return periods of the present 100-year return level in the

climate models under 1.5°C and 2°C warming scenarios.

Compared with the historical observations in the past four

decades, the return levels predicted by the three climate models

mainly exhibit weak changes under the 1.5°C warming condition.

Especially at Nr, Nm, Gm, CF, Lgp, and Dv stations, the changing

amplitudes of 100-year return levels corresponding to 1.5°C

warming are mostly less than 0.05 m. At other stations, however,

the inter-model discrepancies are relatively larger. At Pp, Mlk, and

HK stations, the increases of 100-year return levels predicted by

MIROC6 are 0.16 m, 0.22 m, and 0.51 m, respectively, significantly

higher than the predicted values in the other two models. At Hir,
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FIGURE 2

99.9% (red lines), 99% (blue lines), and 90% levels (green lines) of the observed sea levels at 15 tide gauges.
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Kprg, KLK, and TP stations, EC-Earth3 predicts the 100-year

return levels to increase by 0.11 m, 0.12 m, 0.28 m, and 0.17 m

under the 1.5°C warming, which are also relatively higher than the

increments in the other two models. In contrast, the CMCC-ESM2

predicts small differences between the present and the future return

levels at most tide gauge sites. Such an inter-model diversity stems

partly from the differences of climate models in simulating the SLP,

which, as suggested by some recent studies, can be potentially

attributed to the model biases in response to historical forcing (Ose

et al., 2022; Wills et al., 2022). Compared with the other two

models, CMCC-ESM2 simulates much weaker fluctuations of SLP,

resulting in relatively weaker variability of the predicted hCE,

leading to smaller return levels.
Frontiers in Marine Science 07
Despite the above-mentioned inter-model discrepancies, the

results of the three climate models consistently suggest that the

increments of 100-year return level are much larger under the

warming scenario of 2°C than 1.5°C (Table 4). Compared with the

values derived from tide gauge observations, the results of MIROC6

model suggest that the 100-year return levels under 2°C warming

increase by 0.11~0.54 m at 15 tide gauge sites, which are about

0.03~0.35 m higher than the values under 1.5°C warming. The

return period of the present 100-year return levels ranges from 2 to

18 years under 2°C warming. The CMCC-ESM2 simulations also

show that at 14 tide gauge stations except for HK, the 100-year

return levels increase by 0.01~0.25m from the present day to the 2°

C warming scenario, and the return period of present 100-year
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FIGURE 3

Long term trends of the ESLs at 15 tide gauges (red lines), 99.9% levels of the observed sea levels (green lines).
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return levels decreases to 3~56 years under 2°C warming. The

corresponding changes from 1.5°C to 2°C of global warming are

-0.01~0.26 m for 100-year return levels. For the HK station, as

discussed above, the varying magnitude of SLP projected by

CMCC-ESM2 is pretty large during 2018-2026 and becomes

relatively smaller during 2026-2040, resulting in the predicted

100-year return level under 2°C warming being smaller than that

under 1.5°C warming (3.85 m versus 3.99 m, see Table 4). The 100-

year return levels based on the EC-Earth3 increase by 0.07-0.47m

from the present day to the 2°C warming scenario. Compared with

the 1.5°C warming condition, the 100-year return levels increase by

0.01-0.28m under 2°C warming. The corresponding return periods

of the present 100-year return levels reduce to 1-52 years,

significantly shorter than those under 1.5°C warming. The results

of all three models suggest that an additional 0.5°C warming from

1.5°C to 2°C strongly impacts ESLs along the coasts and islands of

the tropical western Pacific.
Contributions of different factors
to the ESLs

This study also assessed the roles of mean sea level, tides, and

water levels caused by extreme weather in determining the ESL at

each tide gauge based on the historical data during 1980-2018 and the

simulations of the EC-Earth3 model during 2019-2050. By selecting

the respective values of these three components at the time of ESL

occurrence, we evaluated the potential impacts of their time series on
Frontiers in Marine Science 08
the long-term trend and interannual-to-decadal variability of ESL.

Here we take the results of Nr and KLK stations as examples. As

shown in Figure 6, the secular trends of ESLs and mean sea levels are

almost the same for both Nr and KLK stations. The ESLs at the two

stations rise at the rates of 5.29 mm/year and 11.6 mm/year,

respectively. While the trends of mean sea levels are 5.45 mm/year

and 8.20 mm/year, respectively. It indicates that mean sea level may

play an important role in the long-term changes of ESLs. After

removing the long-term trends, the correlation coefficients between

ESL and the sum of water level caused by the tide and extreme

weather are 0.848 for Nr and 0.969 for KLK, suggesting that the

interannual-to-decadal variability of ESLs is also significantly

influenced by water level fluctuations associated with the tide and

extreme weather. When the high water level caused by extreme

weather meets the high tide, a significant ESL event could probably be

generated. Therefore, the influence of these two factors should be

considered in more detail when analyzing specific ESL events.

Besides, we also calculated the percentage of explained variance of

mean sea level, tide, and extreme weather to ESL variability. For Nr

station, mean sea level, extreme weather, and tide can explain 40.1%,

45.4%, and 14.5% of the variance, respectively. And mean sea level,

extreme weather, and tide can explain 33.4%, 37.6%, and 29.0% of the

variance, respectively, at KLK station. Similarly, the results from other

stations or other climate models also consistently suggest that the

long-term trends of ESL during 1980-2050 are mainly contributed by

the yearly-mean sea level, while the contributions of extreme weather

and tide are also crucial on the interannual-to-decadal timescales

(see Table 5).
TABLE 3 Correlation coefficient between the ESL and mean sea level at 15 tide gauges (C1) and the correlations after getting rid of EEMD trends (C2),
the P1/P2 are the p-value from t-test (where p < 0.05 means that the correlation was significant at 95% confidence level).

C1 P1 C2 P2

Pp 0.864 <0.01 0.654 <0.01

Nr 0.883 <0.01 0.695 <0.01

Mlk 0.913 <0.01 0.739 <0.01

Hir 0.882 <0.01 0.805 <0.01

Nm 0.717 <0.01 0.390 0.01

Kprg 0.725 <0.01 0.361 0.02

Gm 0.910 <0.01 0.876 <0.01

KLK 0.576 <0.01 0.097 0.58

HK 0.453 <0.01 0.052 0.75

BI 0.622 <0.01 0.649 <0.01

CF 0.310 0.12 -0.035 0.86

Lgp 0.906 <0.01 0.564 <0.01

Dv 0.888 <0.01 0.872 <0.01

KKbl 0.687 <0.01 0.497 <0.01

TP 0.711 <0.01 0.477 <0.01

Overall Correlation 0.736 <0.01 0.513 <0.01
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Conclusion and discussion

Using hourly sea level data from 15 tide gauges along the coasts

and islands, the atmospheric forcing from ERA5 reanalysis, and

three climate model simulations in CMIP6, this study analyzed the

historical ESL variability over the tropical western Pacific and then

further evaluated the future ESL changes in 1.5°C and 2°C

warmer climates.

The ESL presents an overall rising trend from 1980-2018 over

the tropical western Pacific. Meanwhile, the ESL trends derived

from EEMD show different time-varying features at different tide

gauges. At Hir and KLK, the growing trends are almost linear. At

Nm, Gm, BI, and CF, the growing trends are not obvious initially
Frontiers in Marine Science 09
but strengthen gradually. At Nr, Mlk, Kprg, HK, Lgp, and Dv, the

growing trends weaken gradually. At Pp, KKbl, and TP, the ESLs

show obvious rising trends before 2005 and then shift to decline

afterward. The comparison between ESL and mean sea level

suggests that the mean sea level essentially modulates the secular

ESL trend and the interannual-to-decadal ESL variability during

1980-2018. The contribution of mean sea level to ESL appears more

significant on small islands in the open ocean than on the coastlines

of continents or within the SCS.

A sea level prediction model involving the influences of mean

sea level, tides, and extreme weather events is established to assess

the future ESL changes under different warming scenarios. The

return levels of ESLs differ significantly under the 1.5°C and 2.0°C
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FIGURE 4

Return levels of the ESL at present (red line) and under the 1.5°C warming scenario: MIROC6 (blue line), CMCC-ESM2 (green line), EC-Earth3 (pink line).
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warming scenarios. Compared with the 1.5°C warming scenario, the

return levels of ESL at most tide gauges along the coasts and islands

of the tropical western Pacific show significant increases under 2.0°

C warming scenario. It means that the additional 0.5°C warming

will significantly increase the intensity and frequency of ESLs over

the tropical western Pacific. Therefore, limiting anthropogenic

warming to 1.5°C rather than 2.0°C, as the Paris Climate

Agreement recommended, will provide key benefits for mitigating

the flooding risks and damages on low-lying islands and coasts over

the tropical western Pacific.

The combination of historical data and future estimations by

the prediction model suggests that the secular increasing trends of
Frontiers in Marine Science 10
ESL and mean sea level are almost the same in magnitude during

1980-2050, while the interannual-to-decadal ESL variability of ESL

is also substantially influenced by tides and extreme weather events.

The novelty of this study is that we detailedly show the similarities

and differences of ESL changes at 15 tide gauge stations in the

tropical western Pacific and illustrate the corresponding future ESL

responses to the different warming scenarios of 1.5°C and 2°C.

There are also some aspects that can be further studied. In this

paper, we mainly use a multivariate linear regression method to

simulate the value of hCE at 15 tide gauge sites (Cayan et al., 2008).

The advantage of this method is effective and convenient, which is

more suitable for the analysis of individual stations. However, this
frontiersin.or
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FIGURE 5

Return levels of the ESL at present (red line) and under the 2.0°C warming scenario: MIROC6 (blue line), CMCC-ESM2 (green line), EC-Earth3 (pink line).
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method only depends on the linear relationship between SLP, wind

stress, and hCE, and does not consider the nonlinear interaction of

tide, storm surges, and waves, which may lead to certain errors

(Arns et al., 2015). In some previous works predicting global ESLs,

the storm surge water level and significant wave height are derived

from model simulations (Vousdoukas et al., 2018; Kirezci et al.,

2020; Tebaldi et al., 2021). It is another feasible scheme to analyze

the hourly simulation results directly. But it may also bring other

uncertainty due to the simulation biases in climate models.

On the other hand, the results of this paper are mainly obtained

by statistical analysis, and the underlying physical processes that

affect ESL changes have not been well explained. So, future work will
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analyze the physical mechanisms of ESL changes in the tropical

western Pacific. One of the research focuses can be the dynamic

linkage between ESLs and climate variabilities, such as ENSO, PDO,

and Atlantic Multidecadal Oscillation (AMO). Another potential

research field is the impacts of the surge, which is the component

of the water level largely driven by the wind. Some studies have taken

the water level data from tide gauges minus the water level caused by

the tide as a surge and analyzed the relationships amid tides, surges,

their interactions, and ESLs (Haigh et al., 2013; Feng and Tsimplis,

2014; Wang and Zhou, 2017; Feng et al., 2018a). In recent years, the

skew surge (defined as the difference between the maximum sea level

occurring around high tide and the astronomical high‐tide level) has
TABLE 4 Hundred-year return levels (m) of the ESL in the present day, and under the 1.5°C and 2.0°C warming scenarios at 15 tide gauges.

(m) OBS MIROC6 CMCC-ESM2 EC-Earth3

1.5°C 2.0°C 1.5°C 2.0°C 1.5°C 2.0°C

Pp 1.85 2.01(8) 2.11(2) 1.89(25) 2.02(4) 1.93(13) 2.10(1)

Nr 2.98 2.99(79) 3.27(4) 2.99(87) 3.13(7) 3.00(62) 3.28(3)

Mlk 2.78 3.00(6) 3.20(3) 2.79(50) 2.86(9) 2.79(59) 2.91(6)

Hir 1.36 1.37(69) 1.49(4) 1.36(86) 1.50(3) 1.47(7) 1.57(2)

Nm 2.09 2.07(175) 2.23(9) 2.08(113) 2.16(28) 2.10(72) 2.35(3)

Kprg 1.99 2.08(13) 2.36(2) 2.00(81) 2.12(5) 2.11(8) 2.28(2)

Gm 1.66 1.65(118) 1.85(9) 1.65(120) 1.67(70) 1.67(70) 1.83(6)

KLK 4.22 4.27(47) 4.51(4) 4.32(18) 4.32(8) 4.50(6) 4.69(2)

HK 3.87 4.38(20) 4.41(18) 3.99(67) 3.85(107) 4.04(58) 4.05(52)

BI 4.83 4.90(44) 5.06(7) 4.92(25) 4.93(16) 4.85(71) 5.08(9)

CF 4.15 4.12(145) 4.47(14) 4.10(189) 4.32(26) 4.20(61) 4.22(44)

Lgp 3.06 3.07(83) 3.18(12) 3.08(26) 3.13(7) 3.09(42) 3.25(3)

Dv 4.32 4.32(115) 4.43(13) 4.33(70) 4.45(6) 4.33(80) 4.54(5)

KKbl 3.99 4.02(61) 4.16(18) 4.02(58) 4.01(56) 4.07(37) 4.10(18)

TP 3.59 3.64(52) 3.88(7) 3.58(110) 3.84(11) 3.76(20) 4.05(4)
Future return period (years) of the present 100-year return levels are listed in the bracket.
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FIGURE 6

Comparison of ESL components at Nr and KLK stations: ESL (blue line), mean sea level (red line), sea level caused by tide plus extreme weather
(green line), by tide (pink line) only, and by extreme weather (yellow line) only.
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become a popular indicator for analyzing the correlation between ESL

and surge (Marcos and Woodworth, 2017; Feng et al., 2019). But

these research fields are still in the exploratory stage and have much

room for improvement in the future.
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TABLE 5 The percentage of explained variance of mean sea level, extreme weather, and tide to the ESL variability based on three CMIP6 model simulations.

% MIROC6 CMCC-ESM2 EC-Earth3

MSL CE TIDE MSL CE TIDE MSL CE TIDE

Pp 35.2 51.2 13.6 53.0 40.0 7.0 56.0 36.3 7.7

Nr 43.8 41.9 14.3 53.7 32.4 13.9 40.1 45.4 14.5

Mlk 33.3 48.2 18.5 57.1 29.2 13.7 61.5 28.0 10.5

Hir 48.6 38.8 12.3 69.2 18.5 12.3 59.5 29.3 11.2

Nm 45.4 33.8 20.8 45.3 36.3 18.4 61.6 24.8 13.6

Kprg 40.9 49.8 9.3 62.9 29.5 7.6 43.9 46.9 9.2

Gm 35.9 59.9 4.2 64.7 32.0 3.3 63.1 32.3 4.6

KLK 38.0 34.8 27.2 44.0 28.2 27.8 33.4 37.6 29.0

HK 5.2 77.4 17.4 11.6 65.4 23.0 13.0 62.9 24.1

BI 16.9 65.2 17.9 23.4 49.3 27.3 27.0 49.9 23.1

CF 6.8 68.8 24.4 30.3 51.4 18.3 23.6 59.8 16.6

Lgp 33.7 44.4 21.9 34.3 52.8 12.8 45.7 37.2 17.1

Dv 61.9 28.4 9.7 71.6 21.6 6.8 63.9 22.5 13.6

KKbl 8.1 61.1 30.8 36.9 40.2 22.9 40.7 39.0 20.3

TP 43.8 41.9 14.3 53.7 32.4 13.9 40.1 45.4 14.5
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